Cracking bank PINs by playing Mastermind *

Riccardo Focardi and Flaminia L. Luccio

Universita Ca’ Foscari Venezia,
{focardi,luccio}@dsi.unive.it

Abstract. The bank director was pretty upset noticing Joe, the system
administrator, spending his spare time playing Mastermind, an old use-
less game of the 70ies. He had fought the instinct of telling him how to
better spend his life, just limiting to look at him in disgust long enough
to be certain to be noticed. No wonder when the next day the director fell
on his chair astonished while reading, on the newspaper, about a huge
digital fraud on the ATMs of his bank, with millions of Euros stolen by
a team of hackers all around the world. The article mentioned how the
hackers had ‘played with the bank computers just like playing Master-
mind’, being able to disclose thousands of user PINs during the one-hour
lunch break. That precise moment, a second before falling senseless, he
understood the subtle smile on Joe’s face the day before, while training
at his preferred game, Mastermind.

Keywords: Security APIs, PIN processing, Hardware Security Modules, Mas-
termind.

1 Introduction

The Mastermind game was invented in 1970 by Mordecai Meirowitz. The game
is played as a board game between two players or as a one player game between
a single player and the computer (in both cases called the codebreaker and the
codemaker, respectively) [19]. The codemaker chooses a linear sequence of colored
pegs and conceals them behind a screen. Duplicates are allowed. The codebreaker
has to guess, in different trials, both the color and the position of the pegs. During
each trial he learns something and based on this he decides the next guess: in
particular, a response consisting of a black peg (which we will call black marker)
represents a right guess of the color and the position of a peg (but the marker
does not indicate which one is correct), a response consisting of a white peg
(called white marker) represents only the right guess of a color but at the wrong
position.

An apparently completely unrelated problem is the one of protecting user’s
Personal Identification Number (PIN) when withdrawing some money at an
Automated Teller Machine (ATM). International bank networks are structured

* Work partially supported by Miur’07 Project SOFT: “Security Oriented Formal
Techniques”.

HSM HSM

I Accept __ l
Acquiring Issuing
bank Refuse - bank
[\ T
PNy, PN {PIN}y,
| AN |
ATM Switch |— {PIN},, — | Switch
| | |
HSM with e HEM
keypad

Fig. 1. Bank network.

in such a way that an access to an ATM implies that the user’s PIN is sent to the
issuing bank for the verification. While travelling, the PIN is decrypted and re-
encrypted by special tamper-resistant devices called Hardware Security Modules
(HSMs) which are placed on the traversed network switches, as illustrated in
figure 1. The first PIN encryption is performed by the ATM keypad which is
an HSM itself, using a symmetric key k; shared with the neighbour acquiring
bank. While travelling from node to node, the encrypted PIN is decrypted and
re-encrypted with another key shared with the destination node, by the HSM
located in the switch. The final verification and acceptance/refusal of the PIN
is done by the issuing bank.

Although this setting seems to be secure, several API-level attacks have been
discovered on these HSMs in the last years [5,6,10]. These attacks work by
assuming that the attacker is an insider gaining access to the HSM at some
bank switch and performing subtle sequences of API calls from which he is able
to deduce the value of the PIN. There are many examples of such attacks, the
one we are considering in this paper is the so-called dectab attack [6], which
we will illustrate in the detail in the next section. Intuitively, while verifying
the PIN, the PIN verification API at the issuing bank HSM takes as an input
different parameters, some of which are public. One of these parameters is a
decimalization table that maps an intermediate hexadecimal representation of
the user PIN into a decimal number. By manipulating some information, e.g., by
modifying the way numbers are decimalized and by observing if this affects the
result of the verification, the attacker can deduce which are the actual PIN digits.
The position of the guessed PIN digits is reconstructed by manipulation another

public parameter, i.e., the offset of the PIN. By combining all this information
the attacker is able to reconstruct the whole PIN.

Our contribution. In this paper we show that decimalization attacks can be
seen as playing an extended Mastermind game. Each API call represents a trial
of the codebreaker and the API return value is the corresponding answer of the
codemaker. Manipulating the dectab and the offset together is similar to asking
the codemaker to disclose the color and the position of one PIN digit, in case the
guess is correct, similarly to what happens with a black marker of Mastermind.
Modifying the dectab only, instead, corresponds to asking for the presence of
certain digits in the PIN, analogously to the white marker in the game.

We make the above intuition formal by showing how PIN cracking and Mas-
termind can be seen as instances of a more general problem, or game. This
extended problem suggests a new way of improving the dectab attack. The idea
is to allow the player (i.e, the attacker) to ask for sets of colors (i.e., digits),
instead of just single colors, for each position. This, in fact, can be implemented
in the PIN cracking setting by modifying multiple entries of the dectab, as we
will show in detail. We show that this reduces the known bounds on the number
of average API calls for performing the attacks from 16.145 to 14.484 which is
close to the optimal value of 13.362.

To this aim, we develop a computer program that optimizes a well known
technique presented by Knuth in [15] for the standard Mastermind game and
extend it to our setting. We perform experiments showing that the program is
almost as precise as state-of-the-art Mastermind solvers [13] but faster, being it
able to compute strategies for cases not yet covered. More interestingly, the very
same solving strategy is adapted to the PIN cracking problem proving the above
mentioned new bound on the average number of API calls required in dectab
attacks.

Paper structure. In section 1.1 we briefly summarize the related literature. In
section 2 we formally define the two problems, i.e., the Generalized Mastermind
Problem and the PIN Cracking Problem. In section 3 we introduce the Extended
Mastermind Problem, i.e., a general problem whose instances are the Generalized
Mastermind Problem and the PIN Cracking Problem. In section 4 we expose
some experimental results, and we conclude in section 5.

1.1 Related literature

Mastermind. In [15] Donald Knuth presented an algorithm for the solution of
the standard Mastermind game, which is played using pegs of 6 different colors,
in a sequence of length 4. He showed how the codebreaker can find the pattern
in five moves or fewer, using an algorithm that progressively reduces the number
of possible patterns. Each guess is made so that it minimizes the maximum
number of remaining possibilities. The expected number of guesses is 4.478. In
1993 Kenji Koyama and Tony W. Lai proposed a technique that uses at most 6
guesses but decreases the expected number to 4.340 or to 4.341 if only 5 guesses

are allowed [17]. In [4, 14], the authors apply evolutionary and genetic algorithms
to solve the Mastermind problem.

Different variants of the game have been proposed, e.g, in [9], Chvatal men-
tions a problem, suggested by Pierre Duchet, called the static Mastermind. This
problem consists of finding the minimum number of guesses made all at once (i.e.,
without waiting for the responses), that are required to determine the code.

In [8] the authors propose a bound for finding a hidden code by asking ques-
tions. This problem relates to the Generalized Mastermind Game with N colors
and sequences of length k. The authors show that {%w + 2NlogN + 2N + 2
guesses are sufficient to solve the problem.

Finally, in [13] the authors present some new bounds to the Generalized
Mastermind Game. Using a computer program they compute some new exact
values of maximum number of guesses. They also provide theoretical bounds for
the case of sequences of length 2, 3 and 4, and for the general case of N colors
and length k.

PIN cracking. API-level attacks on PINs have recently attracted attention from
the media [1,3]. This has increased the interest in studying formal methods
for analysing PIN recovery attacks and API-level attacks in general [18]. In
particular, different models have been proposed, e.g., in [6] the authors prove that
in average 16.5 API calls are required to reconstruct the PIN and this bound was
decreased to 16.145 in [18]. In [7] we have presented, together with other authors,
a language-based setting for analysing PIN processing API via a type-system. We
have formally modelled existing attacks, proposed some fixes and proved them
correct via type-checking. These fixes typically require to reduce and modify the
HSM functionality by, e.g., sticking on a single format of the transmitted PIN
or adding MACs for the integrity of user data. Notice, in fact, that the above
mentioned attack is based on the absence of integrity on public user data such
as the dectab and the offset. As upgrading the bank network HSMs worldwide
is complex and very expensive in [11] we have also have proposed a low-impact,
easily implementable fix requiring no hardware upgrade which makes attacks
50000 times slower, but yet not impossible.

2 The two problems

In this section we give a formal definition of the two problems we will be relating.
We first define the Generalized Mastermind Problem (GMP), i.e., the problem
of solving a Generalized Mastermind Game, and we then present the problem of
attacking a PIN using the decimalization table, and we call it the PIN Cracking
Problem (PCP).

2.1 The Generalized Mastermind Game

The Generalized Mastermind Problem is a game that is played between a player
(the “codebreaker”) and a computer or another player (the “codemaker”). The

Fig. 2. An example of a Mastermind game.

codemaker chooses a linear sequence of k colored pegs, which we call secret and
conceals them behind a screen. The colors range in a set {0,1,..., N — 1}. The
codebreaker has to guess the secret, i.e., both the color of the pegs and their
exact position. The game is played in steps, each of which consists of a guess of
the codebreaker and a response of the codemaker. The response can be empty,
can contain a black or a white marker, i.e., is a sequence of at most 4 markers
chosen in the set {B,W}. The black marker represents a correct guess both of
the color and the position of a peg, there is no indication however of its position,
the white marker only represents the correct guess of the color.

An example of the standard Mastermind game, i.e., played with N = 6
colors and k = 4 pegs, is shown in figure 2 taken from [2]. In this example black
markers are depicted in red. We have added numbers to identify different colors.
At the first step the codebreaker only finds a right color, i.e., a cyan peg (2), in
a wrong position, thus the response is a white marker, i.e., W. At the next step
he correctly guesses a red peg (3) in the right position and a purple peg (4) in
a wrong position, thus the response is a black and a white peg, i.e., B, W, an so
on. At the last step the response are 4 black markers, i.e., B, B, B, B.

Note that in the standard Mastermind game the set of all possible solutions
has size 6%, in the Generalized Mastermind Game the size explodes to N*, thus
running plain exhaustive search techniques might become problematic when N
and k increase too much.

We can now formulate our problem.

The Generalized Mastermind Problem (GMP). Given a Generalized Mastermind
Game played on N colors and k pegs, devise a minimal sequence of guesses for
the correct disclosure of the secret.

PIN_.V (PAN, EPB, len, offset, vdata, dectab) {
x1 = encpa(vdata) ;
xo = left(len, z1);
z3 := decimalize(dectab, z2) ;
z; :=sum_mod10(zs, offset) ;
x5 :=decy (EPB);
x6 := fcheck(zs) ;
if (zs =L1) then return(”format wrong”);
if (z; = x5) then return("PIN correct”);
else return("PIN wrong’)}

Table 1. The verification API.

2.2 API-level attacks in bank networks

In this section we show in detail a real API-level attack to the bank PINs. As
we have mentioned in the introduction, a PIN travelling along the network has
to be decrypted and re-encrypted under a different key, and this is done using
a so called translation API. While the PIN reaches the issuing bank, its corre-
spondence with the validation data, i.e., a value that is typically an encoding of
the user Personal Account Number (PAN) and possibly other ‘public’ data, such
as the card expiration date or the customer name, is checked via a werification
API. We focus on this latter API, called PIN_V and reported in table 1, that
checks the equality of the actual user PIN, derived through the PIN derivation
key pdk, from the public data offset, vdata, dectab, and the trial PIN inserted at
the ATM that arrives encrypted under key & as EPB (Encrypted PIN block).
The API returns the result of the verification or an error code.

PIN_V behaves as follows:

— The user PIN of length len is computed by first encrypting validation data
vdata with the PIN derivation key pdk (z;) and obtaining a 16 hexadecimal
digit string. Then, the first len hexadecimal digits are chosen (z2), and dec-
imalised through dectab (zs), obtaining the ‘natural’ PIN assigned by the
issuing bank to the user. decimalize is a function that associates to each pos-
sible hexadecimal digit (of its second input) a decimal one as specified by its
first parameter (dectab). Finally, if the user wants to choose her own PIN, an
offset is calculated by digit-wise subtracting (modulo 10) the natural PIN
from the user-selected one (z).

— To recover the trial PIN EPB is first decrypted with key & (z5), then the PIN
is extracted by the formatted decrypted message (zg). This last operation
depends on the specific PIN format adopted by the bank. In some cases, for
example, the PIN is padded with random digits so to make its encryption

immune from codebook attacks. In this case, extracting the PIN involves
removing this random padding.

— Finally, if z4 fails (L represents failure) then a message is returned, moreover
the equality between the user PIN and the trial PIN is verified.

An API attack on PIN_V. We now illustrate a real attack on PIN_V first
reported in [6]. The attack works by iterating the following two steps, until the
whole PIN is recovered:

1. To discover whether or not a decimal digit d is present in the user ‘natural’ PIN
contained in x3 the intruder picks digit d, changes the dectab function so that
values previously mapped to d now map to d+1 mod 10, and then checks whether
the system still returns ‘PIN correct’. If this is the case d is not contained in the
‘natural’ PIN.

2. To locate the position of the digit previously discovered by a ‘PIN wrong’
output the intruder also changes the offset until the API returns again that the
PIN is correct.

We illustrate the attack through a simple example.

Example 1. Assume len=4, dectab=5753108642143210, as

0123456789 ABCDETF
5753108642143210

offset=4732. The correct solution, unknown to the intruder, is the following.
zg = left(4, AD7295F DE32BA101)|= ADT72

zg = decimalize(dectab, ADT2) = 1265
2, = sum_mod10(1265,4732) — 5997
x5 = dec ({5997, 7}) = (5997,r)
zg = fcheck(5997,r) = 5997

Since z¢ is different from | and z; = x4, the API returns ‘PIN correct’.

The attacker, unaware of the value of the PIN; first changes the dectab, which
is a public parameter, as dectab’=5753118642143211, i.e., it replaces the two 0’s
by 1’s. The aim is to discover whether or not 0 appears in x3. Invoking the API
with dectab’ we obtain decimalize(dectab’, ADT2) = decimalize(dectab, AD72) =
1265, that is 0 does not appear in x3. The attacker proceeds by replacing the 1’s of
dectab by 2’s: with dectab”=5753208642243220 he has decimalize(dectab”, AD72)
= 2265 # decimalize(dectab, AD72)=1265, reflecting the presence of 1’s in the
original value of z3. Then, z4=sum_mod10(2265,4732) =6997 instead of 5997
returning ‘PIN wrong’.

The intruder now knows that digit 1 occurs in x3, and to discover its position
and multiplicity, he now varies the offset so to ‘compensate’ for the modification
of the dectab. In particular, he tries to decrement each offset digit by 1. For
example, testing the position of one occurrence of one digit amounts to trying
the following offset variations: 3732, 4632,4722,4731. Notice that, in this specific
case, offset value 3732 makes the API return again ‘PIN correct’.

The attacker now knows that the first digit of x5 is 1. Given that the offset
is public, he also calculates the first digit of the user PIN as 1+ 4 mod 10 = 5.

We can now formulate our problem.

The PIN Cracking Problem (PCP). Given a bank network the PCP consists
of recovering an encrypted (i.e., secret) PIN by devising a malicious sequence of
calls to the verification API.

3 Extended Mastermind

We exend the Generalized Mastermind Problem presented in previous section,
by allowing the codebreaker to pose an extended guess composed of k sets of
colored pegs, instead of just k pegs. Intuitively, the sets represent alternative
guesses, i.e., it is enough that one of the peg in the set is correct to get a black
or a white marker.

More formally, let ¢ = {0,1,...,N — 1} be the set of colors. We note
(S1,52,...,5k), with Sq,...,S5; C C, an extended guess, and (c1,ca,...,Ck),
with c1,...,c, € C, the secret.

Intuitively, the number of black markers represents the number of colors in
the secret belonging to the corresponding set. Formally:

Definition 1 (Black markers). The number b of black markers is computed
asb=1{i € [1,k] | ¢; € S;}|.

The number of white markers, instead, corresponds to the number of colors
in the secret belonging to sets in the guess, but not the ones in the corresponding
position. To formalize this we first compute the number of occurrences of a color
] € C in the secret code as p; = |{¢ € [1,k] | j = ¢;}|, and in the guess as
q; = |{t € [1,k] | j € Si}|. Now min(pj,q;) represents the number of matching
pegs of color j. If we sum over all the colors we obtain the overall number of
matching pegs. From this we need to subtract the ones giving black markers, in
order to obtain the number of white markers.

Definition 2 (White markers). The number w of white markers is computed
N :

asw =YV min(p;,q;) b

Let show the above definitions with a simple example

Example 2. Let N =6, (1,2,3,1) be the secret and (1,3,1,3) be the guess’ We
compute b = |{i € [1,k] | ¢; € S;}| = |{1}| = 1. In fact only the first ‘1’ is in the
right position, giving a black marker. Then we have

po=H{} =0 o=} =0
pr=[{1,4}[=2 ¢ =|{1,3} =2
p2= {2} =1 g2 = [{}] =0
p3=|{3}| =1 q3:\{2,4}\=2
pa={}} =0 aa={} =0
ps={} =0 = =0

! we omit the set notation for singletons, i.e., we write (1,3,1,3) in place of

({1}, {3} {1}, {3}

Now Zjvzl min(p;,q;) = 3 meaning there are 3 matching pegs (the two 1’s and
one of the 3), but one of them is already counted as a black. Thus we obtain
w = 3 — b = 2. Notice that the two 3’s in the guess are counted just once, as
only one 3 appears in the secret code. This is why we need to take min(p;, g;).

To see how this scales to set consider the extended guess (1,3,1,{1,3}). In
this case we have b = 2 (the first and the last pegs) and w = 3—b =1, i.e., there
is one peg in the wrong position (i.e., the ‘3’).

Definition 3 (The Extended Mastermind Problem - EMP). Given an
Ezxtended Mastermind Game played on N colors and k pegs, devise a minimal
sequence of guesses for the correct disclosure of the secret.

We now show how the two previous problem can be seen as instances of EMP.
Lemma 1. GMP is an instance of EMP.

Proof. Tt is sufficient to restrict sets in guesses to singletons to recover the Gen-
eralized Mastermind Game.

More interestingly, we see how the PIN cracking problem can be seen as partic-
ular instance of GMP.

Lemma 2. PCP is an instance of EMP.

Proof. We restrict the extended guesses (Si,...,Sk) so that, once the offset
digits have been subtracted from each member of the corresponding set, the
resulting sets are either equal or disjoint. Let Sl, ceey S't, t < k, be such sets. We
modify the dectab of each digit d € S; by mapping it into d + ¢. This mapping
is well-defined given that sets S; are disjoint. At the same time we modify the
digits of the offset at the positions where S; occurs (recall it may occur more
than once in case of equal sets) by decreasing them by i. As a result, since we
have changed the offset, the only way to obtain a ‘PIN correct’ is that the digits
of the intermediate PIN calculation at those positions have been increased by i
and this only holds if they appears in S;. Iterating this on all the sets we easily
see that ‘PIN correct’ corresponds to having ¢; € S; for all i = 1,... k, i.e.,
having four black markers. Thus, we say that the codemaker answers ‘yes’ when
the answer is 4 black markers and ‘no’ otherwise. Notice that the player can use
extended guesses and ask for sets of values and not just singletons, so it is not
necessary to guess the exact code to get a ‘yes’.

4 Experimental results

We have devised a program which is an optimized extension of the original
program for Mastermind presented by Knuth in [15]. It works as follows:

1. Tries all the possible guesses. For each guess, computes the number of ‘sur-
viving’ solutions related to each possible outcome of the guess;

[Colours/Pegs[[2[3]4]5[6]7]8]9]10]

2 3|4(4|5(6|6|7|7| 8
3 4|4(4|415|6|6

4 4|4/4|5|6

5 5(5(5

6 5(5(5

7 6|6(6

8 6|6(6

9 T\

10 778

Table 2. Our optimization of Knuth’s algorithm.

2. Picks the guess from the previous step which minimizes the maximum num-
ber of surviving solutions among all the possible outcomes and performs the
guess:

(a) For each possible outcome, stores the corresponding surviving solutions
and recursively calls this algorithm;

(b) stops whenever the number of surviving solutions is 0 (impossible out-
come) or 1 (guessed the right sequence).

In order to reduce the complexity of the exhaustive search over all possible
guesses we have implemented an optimization which starts working on a subset
of the colors (the one used up to the current guess) and adds new colors only
when needed by the guesses. This is similar, in the spirit, to what is done in [13].

We first show some results obtained by running this optimized algorithm to
the Generalized Mastermind Problem. Note that most computations took few
seconds, others few minutes, and we were also able to find new upper bounds on
the minimal number of moves for unknown values (see Table 2, values in bold).
As a matter of fact, as it is mentioned in [12], Knuth’s idea does not define an
optimal strategy, it is however very close to the optimal. In [13] some empir-
ical optimal values were computed (see Table 3) and some theoretical bounds
were presented. Note that our values differ at most by one from the exact ones.
Moreover, we were able to efficiently find bounds on 2 colors and 9 and 10 pegs
and 3 colors and 8 pegs, and to list the exact sequence of moves to be followed,
whereas the program of [13], as the authors state, would probably take “many
weeks” of computation.

We have then applied the very same algorithm to the PIN cracking problem.
In this case we have noticed that using sets with more than two elements in
the guesses did not improve the solutions. With sets of size at most two the
algorithm performs quite well and we have been able to improve the results of
[18] by finding a strategy with an average number of calls of 14.484 instead of
16.145. This improvement is based on the idea of extended guesses, in which
sets of values can be queried by simultaneously changing their mapping in the
dectab of a same quantity. This idea is new, and extends the attack strategy

[Colours/Pegs|[2[3[4]5]6]7]8]

2 3|3(4|4|5(5|6
3 3|4(4|4(5(5
4 4|4/4|5(5

5 4|5(5|5

6 555

7 5(6|6

8 6|6(6

9 6|6(7

10 T\

Table 3. Bounds from [13].

illustrated in [6] and studied in [18]. Notice that in [6, 18] special ‘dectab-only’
API calls, where the offset is left untouched, are exploited in order to immediately
discover whenever a digit appears as one of the intermediate PIN digits. In our
approach, these calls are generalized to sets by performing guesses (once the
offset is subtracted) of the form (S‘ ey S’), with S containing the digits whose
presence has to be checked. We also found a new bound for PINs of length 5
giving an average of 20.88 calls. It is worth noticing that our results are close to
the optimal partitioning of the solutions into an almost-balanced binary tree. In
fact, it can be easily computed that this would give a number of average calls of
13.362 and 16.689 for PINs of length 4 and 5, respectively.

All the files containing the detailed strategies for Mastermind and PIN crack-
ing can be downloaded at http://www.dsi.unive.it/~focardi/MM_PIN/

5 Conclusion

In this paper we have considered two rather different problems, Mastermind
and PIN cracking, and we have shown how they can be seen as instances of an
extended Mastermind game in which guesses can contain sets of pegs. We have
implemented an optimized version of a classic solver for Mastermind and we have
applied it to PIN cracking, improving the known bound on the number of API
calls. The idea of using sets in the guesses has in fact suggested a new attacking
strategy that reduces the number of required calls. By combining ‘standard’
attacks with this new strategy we have been able to reduce the average number
of calls from 16.145 to 14.484. We also found a new bound for PINs of length 5
giving an average of 20.88 calls. Both average cases are close to the optimum.
As a future work we intend to study the extension of more involved techniques
such as the ones of [13] to the PIN cracking setting. As a final note, we would
solicit the bank director of our abstract, and other serious people to be more
open-minded and never assume that something is useless just because it is funny,
“soomner or later society will realize that certain kinds of hard work are in fact
admirable even though they are more fun than just about anything else” [16].

Acknowledgements. We would like to thank Graham Steel for his helpful com-
ments and suggestions.

References

1.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Hackers crack cash machine PIN codes to steal millions. The Times online. http:
//www.timesonline.co.uk/tol/money/consumer_affairs/article4259009.ece.
Mastermind. http://commons.wikimedia.org/wiki/File:Mastermind. jpg.

PIN Crackers Nab Holy Grail of Bank Card Security. Wired Magazine Blog *Threat
Level’. http://blog.wired.com/27bstroke6/2009/04/pins.html.

L. Bento, L. Pereira, and A. Rosa. Mastermind by evolutionary algorithms. In
New York ACM Press, editor, Proc. ACM Symp. Applied Computing, San Antonio,
Texas, page 307311, 28 February-2 March 1999.

O. Berkman and O. M. Ostrovsky. The unbearable lightness of PIN cracking.
In Springer LNCS vol.4886,/2008, editor, 11th International Conference, Financial
Cryptography and Data Security (FC 2007), Scarborough, Trinidad and Tobago,
pages 224-238, February 12-16 2007.

M. Bond and P. Zielinski. Decimalization table attacks for pin cracking. Technical
Report UCAM-CL-TR-560, University of Cambridge, Computer Laboratory, 2003.
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-560.pdf.

M. Centenaro, R. Focardi, F. Luccio, and G. Steel. Type-based analysis of PIN
processing APIs. In Proceedings of the 14th Furopean Symposium on Research in
Computer Security (ESORICS’09), pages 53-68. Springer, LNCS 5789, 20009.

Z. Chen, C. Cunha, and S. Homer. Finding a hidden code by asking questions.
In Springer LNCS vol. 1090/1996, editor, Computing and Combinatorics Second
Annual International Conference (COCOON ’96) Hong Kong, pages 50-55, June
1719 1996.

V. Chvatal. Mastermind. Combinatorica, 3:325-329, 1983.

. J. Clulow. The design and analysis of cryptographic APIs for security devices.

Master’s thesis, University of Natal, Durban, 2003.

R. Focardji, F. Luccio, and G. Steel. Blunting differential attacks on PIN processing
APITs. In Proceedings of the 14th Nordic Conference on Secure IT Systems (NordSec
2009). Springer, LNCS 5838, October 2009.

W. Goddard. Mastermind revisited. J. Combin. Math. Combin. Comput., 51:215—
220, 2004.

G. Jéager and M. Pezarski. The number of pessimistic guesses in generalized mas-
termind. Information Processing Letters, 109:635-641, 2009.

T. Kalisker and D. Camens. Solving mastermind using genetic algorithms. In
Springer, editor, Lect. Notes Comput. Sci., 2724, page 15901591, 2003.

D. Knuth. The Computer as a Master Mind. Journal of Recreational Mathematics,
9:1-6, 1976.

Donald E. Knuth. The Stanford GraphBase: a platform for combinatorial comput-
ing. Addison-Wesley Professional, 1993.

M. Koyama and T. Lai. An Optimal Mastermind Strategy. Journal of Recreational
Mathematics, 25:251-256, 1993.

G. Steel. Formal Analysis of PIN Block Attacks. Theoretical Computer Science,
367(1-2):257-270, November 2006.

J. Stuckman and G. Zhang. Mastermind is NP-Complete. INFOCOMP Journal
of Computer Science, 5:25-28, 2006.

