
Dynamic Types for Authentication ∗

Michele Bugliesi Riccardo Focardi
Matteo Maffei

Dipartimento di Informatica, Università Ca’ Foscari di Venezia,
Via Torino 155, I-30172 Mestre (Ve), Italy

{michele,focardi,maffei}@dsi.unive.it

Abstract

We propose a type and effect system for authentication protocols built upon a
tagging scheme that formalizes the intended semantics of ciphertexts. The main
result is that the validation of each component in isolation is provably sound and
fully compositional: if all the protocol participants are independently validated,
then the protocol as a whole guarantees authentication in the presence of Dolev-
Yao intruders possibly sharing long term keys with honest principals. Protocol
are thus validated in the presence of both malicious outsiders and compromised
insiders. The highly compositional nature of the analysis makes it suitable for
multi-protocol systems, where different protocols might be executed concurrently.

1 Introduction

The importance of language-based security in the formal analysis of security protocols
dates back to Abadi’s seminal work [1] on secrecy by typing. Since then, a number of
language-based techniques have been applied in the analysis of an increasingly large
class of security protocols [2, 8, 9, 13, 14, 18, 20, 21, 34]. These approaches have
the advantage of reasoning about security at the language level, thus clarifying why a
message component is there and how security is achieved. This is particularly impor-
tant for authentication protocols, where flaws are often originated by a certain degree
of ambiguity in the encrypted messages circulated in the handshakes. Language-based
reasoning on authentication is therefore particularly valuable, as it forces one to clarify
protocol specifications by making explicit the underlying security mechanisms.

Authentication protocols are security protocols whose purpose is to enable two en-
tities to achieve mutual and reliable agreement on some piece of information, typically

∗Extended and revised version of [13]. Work partially supported by EU Contract IST-2001-32617 “Mod-
els and Types for Security in Mobile Distributed Systems” (MyThS), MIUR Project COFIN 2004013015
“Abstract Interpretation: Design and Applications” (AIDA), MIUR Project FIRB RBAU018RCZ “Abstract
interpretation and model checking for the verification of embedded systems” (SPY-Mod) and MIUR Project
2005015785 “Logical Foundations of Distributed Systems and Mobile Code”.

1

the identity of the other party, its presence, the origin of a message, its intended destina-
tion. Achieving the intended agreement guarantees is subtle because they typically are
the result of the encryption/decryption of sequences of messages composed of different
parts, with each part providing a “piece” of the authentication guarantee. To illustrate,
consider the following example:

A B
← n−−

−−{B,m,n}Priv(kA)→

Here, and throughout, we write Priv(kA) and Pub(kA) to denote the private and
the public key of entity A. Bob, the initiator, sends to Alice a random challenge (i.e.,
a nonce) n; Alice, the responder, signs the challenge together with a message m and
Bob’s identifier B; the protocol completes with the equality check on the nonce per-
formed by B after decrypting the message with A’s public key. The aim of the protocol
is to guarantee to B that m is authentic from A, i.e., that m has been freshly sent by A
to B. Each message component of the encrypted packet {B,m,n}Priv(kA) has a specific
purpose in the protocol: the nonce n guarantees that the packet is fresh, i.e., it is not
a replay of an old protocol session since n is used only once; the identifier B specifies
the intended receiver of m; the signature guarantees that A is the sender. Collectively,
the exchange of the three components provides the following agreement [29, 35] prop-
erty: (i) the two participants agree on each other’s identity, namely, B is guaranteed
that its responder is A, as it appears to be, and dually, A engages a protocol session with
initiator B; (ii) the two parties agree on the origin and the intended destination of the
message m, i.e., that it was originated by A and intended for B.

Our present approach is based on the following methodology: (1) specify properties
by annotating an executable specification of the protocol with correspondence asser-
tions; (2) annotate the protocol with suitable types and tags; (3) verify the assertions
by running a type checker.

This is the same methodology as the one proposed by Gordon and Jeffrey in [20,
21]. However, the technique we employ is different, as we rely on tags to annotate the
ciphertexts exchanged in the protocol to assist the typed analysis. This is best illustrated
with an example.

Consider again the simple authentication protocol we illustrated earlier. As we ar-
gued, the authenticity properties of the protocol are the result of the combined effect of
specific guarantees conveyed by each of the components of the message {B,m,n}SignA

.
The system of [21] captures these guarantees by assigning the following type to the
private key that signs the message:

Key(B : Principal,
m : Payload,
n : Public Response[end A sending m to B])

The structure of this dependent type renders the intended dependencies among the mes-
sage components: in particular, the nonce type provides a complete specification of the
role of the nonce in the protocol. The safety proof for the protocol is then, essentially,

2

a consequence of the typing rules guaranteeing that the protocol participants manip-
ulate the nonce according to this intended usage. The fairly rich structure of the key
and nonce types makes the approach very flexible, and expressive. On the other hand,
there appear to be trade-offs. First, step (2) of the method (see above) may become
rather complex, for choosing the correct types of nonces and keys may turn out to
be non-trivial. Secondly, the degree of compositionality of the analysis seems to be
slightly undermined by the very structure of the types, which essentially encode much
of the structure of the protocol itself. As a consequence, it seems hardly possible to
factor the authenticity properties proved for the protocol into corresponding properties
established locally for each of the principals, independently of the context.

Our approach is different. We render the inter-dependencies among message com-
ponents directly on terms rather than on their types, by imposing a richer, tagged,
structure to our terms. We identify “minimal” set of authentication patterns based on
corresponding forms of nonce handshakes, and make explicit in the encrypted mes-
sages the pattern they correspond to. For example, message {B,m,n}Priv(kA) is tagged
as {Id(B),Auth(m),VerifPC(n)}Priv(kA) to signal that the nonce n is authenticating m
to the verifier B in a PC nonce handshake: PC stands for Public-Cipher as the nonce
is sent out in clear and is received encrypted in a ciphertext. We will discuss nonce
handshakes in detail in Section 2. Tags are dynamically identified by the recipient of a
message, upon decryption, and employed to achieve/provide authentication guarantees.
Intuitively, the information associated through dependent types in the Gordon-Jeffrey
type system, is conveyed here in the structure of our tagged terms. This allows us to
use simple dynamic types to just enforce the secrecy of keys and secret challenges, and
simple effects to reason about authentication.
The advantages of our approach may be summarized as follows.

It is fully compositional: since the uniform use of tags is imposed by the typing
rules, each party may be checked in isolation, i.e., using an independent typing envi-
ronment. Indeed, all parties do share the same typing assumptions for keys, but such
types only convey information on the principals holding/sharing the keys and, more
importantly, this information is independent of the specific protocol that the entities
will be running (hence, we do not need to include in the type assumptions for keys any
information about the structure of the messages that will be encrypted with such keys).
This is different from the Gordon-Jeffrey approach: as we noted above, in [20, 21] the
types of the keys encode information on the protocol steps, so that different protocols
between the same parties require different typings for the same keys or else, different
keys.

This strong form of compositionality allows us to safely mix different protocols
once their sequential components are type-checked; thus, our tagging discipline natu-
rally scales to multi-protocol settings. Furthermore, the fact that tags correspond to a
small set of a-priori selected patterns, makes the type system quite simple and easy to
use; the human effort required is very small. Notably, even though the set of authenti-
cation patterns we have selected is small, it is expressive enough to capture many of the
protocols in literature; this gives also new insights on which are the basic mechanisms
for guaranteeing authentication.

The ρ-spi semantics provides the environment with long-term keys which are re-

3

garded as trusted by honest principals. Type-checked protocols guarantee authentica-
tion between honest principals even in presence of insider attacks, i.e., attacks carried
out by enemies running protocol sessions with honest principals. Insider attacks are
not considered in [20, 21].

We remark that our safety results rely critically on the assumption that the messages
exchanged in the protocol are tagged: hence our tags play a static as well a dynamic
role, and the safety theorem assumes that the semantics of protocols is itself tagged.
While this may be seen as a limitation, our tagging mechanism turns out to be less
demanding than those employed to resolve message ambiguities in many existing pro-
tocol implementations and protocol analysis techniques (cf. Section 7).

Plan of the paper The rest of the paper is organized as follows: Section 2 overviews
some basic concepts about authentication protocols. Section 3 illustrates the ρ-spi cal-
culus and its operational semantics. In Section 4 we present our type and effect system
and its main properties. In Section 5 we analyze the Splice/AS Protocol. Section 6
discusses how the type and effect system fits the analysis of multi-protocol systems. In
Section 7 we conclude with final remarks and a discussion of other related work.

2 Nonce-Based Authentication Protocols

Challenge-and-response authentication protocols require time-variant parameters like,
e.g., times-tamps or nonces to guarantee message freshness. Here we focus on nonce-
based protocols: a nonce is a value (generally implemented as a random number) used
in just one authentication exchange [33]. Suppose A (the claimant) wants to authenti-
cate with B (the verifier). Nonce-based protocols may be classified into three categories
depending on what is encrypted and what is sent in clear.

Plain-Cipher (PC) B sends out the nonce in clear and receives it back encrypted
together with a message which is authenticated. A proves her identity to B by showing
the knowledge of the encryption key. As an example, let us consider the protocol
illustrated in Section 1:

PC HANDSHAKE

A B
← n−−

−−{B,m,n}Priv(kA)→

This protocol authenticates A sending message m to B, since only A may have generated
the ciphertext. The same effect can be achieved in a symmetric cryptosystem using a
shared key kAB in place of Priv(kA).

Cipher-Plain (CP) B sends out the nonce encrypted and receives it back in clear. A
proves her identity to B by showing the knowledge of the decryption key. For example:

4

CP HANDSHAKE

A B
← {B,m,n}kAB−−

−−n→

where kAB is a symmetric key shared between A and B. This protocol authenticates
A receiving message m from B, since only A may have decrypted the ciphertext. (The
identifier B is used to “break” the symmetry of the key and avoid the so called reflection
attacks: when decrypting the message, A knows that it is not a challenge she generated
for B in a parallel protocol session). A similar effect is achieved with asymmetric keys,
using Pub(kA) in place of the symmetric key kAB.

Cipher-Cipher (CC) The nonce is sent out and received back encrypted. This is use-
ful if both entities want to exchange messages. A proves her identity to B by showing
the knowledge of either the encryption key (as in PC) or the decryption key (as in CP).
For example:

CC HANDSHAKE

A B
← {B,mB,n}Pub(kA)−−
−−{A,mA,n}Pub(kB)→

This protocol authenticates A sending message mA to B and receiving message mB from
B, as only A may have decrypted the first ciphertext. Again, the same effect may be
achieved using either the private keys Priv(kB) and Priv(kA), or a symmetric key kAB

in place of the two public keys used in the displayed narration.

Notice that the above mentioned categories are a generalization of POSH (Public Out
Secret Home), SOPH (Secret Out Public Home) and SOSH (Secret Out Secret Home),
introduced in [21]. We actually relax “Secret” into “Cipher” as handshakes may be
composed of signed messages, guaranteeing integrity rather than secrecy. For exam-
ple, as already noticed, PC includes protocols with a cleartext challenge and a signed
response, which would not “fit well” into the POSH category.

3 The ρ-Spi Calculus

The ρ-spi calculus derives from the spi calculus [5], and inherits many of the features
of Lysa [8], a version of the spi calculus proposed for the analysis of authentication
protocols. ρ-spi differs from both calculi in several respects: it incorporates the no-
tion of tagged message exchange from [12], it provides new authentication-specific
constructs, and offers primitives for declaring process identities and keys.

5

Table 1 The syntax of ρ-spi calculus.

Notation: TAG ∈ {Id,Auth,VerifH ,ClaimH |H = PC,CP,CC?,CC!}
m ∈N ∪V

M ,K ::= Patterns
a,b,k,n names
x,y,z variables
Pub(m) public key
Priv(m) private key
TAG(M) tagged pattern
(M1,M2) pair

P,Q ::= Processes
I .S (principal)
I.!S (replication)
P|Q (composition)
let k = sym-key(I1, I2).P (symmetric-key assignment)
let k = asym-key(I).P (asymmetric-key assignment)

S ::= Sequential Processes
0 (nil)
new(n).S (restriction)
in(M).S (input)
out(M).S (output)
encrypt{M }K as x.S (symmetric encryption)
encrypt{|M |}K as x.S (asymmetric encryption)
decrypt x as {M }K .S (symmetric decryption)
decrypt x as {|M |}K .S (asymmetric decryption)
beginM (I1, I2,M1;M2).S (begin)
endM (I1, I2,M1;M2).S (end)

Table 2 PC Protocol in ρ-spi calculus

Protocol , let kA = asym-key(A) . (B . !Initiator | A . !Responder)

Initiator , new(n).out(n).in(z).
decrypt z as {|Id(B),Auth(x),VerifPC(n)|}Pub(kA).endn(B,A;x).0

Responder , in(x).new(m).beginx(A,B;m).
encrypt {|Id(B),Auth(m),VerifPC(x)|}Priv(kA) as z.out(z).0

6

The syntax is reported in Table 1 and described below. Patterns, denoted by M ,K ,
are recursively defined over names, variables, public and private keys, tagged patterns
and pairs 1. We presuppose two countable sets: N of names and V of variables. We
reserve a,b,k,n for names and x,y,z for variables, with m ranging over both names and
variables. The special name ε, used to denote the empty message, will be always omit-
ted, e.g., primitive beginε(I1, I2,n;ε) will be written as begin(I1, I2,n;). Identities ID
are a subset of names and are ranged over by I and J. Identities are further partitioned
into trusted principals IDP , ranged over A and B, and enemies IDE , ranged over by
E. The pair composed by a public key and the corresponding private one is noted by
Pub(m), Priv(m), similarly to [5]. In the rest of the paper, we will use the following
notation convention: Pub = Priv and vice-versa. Tags, denoted by TAG, are a special
category of names. They specify the role of each message component. Specifically:
all identifiers relevant to authentication are tagged by Id; messages that should be au-
thenticated are tagged by Auth; finally, nonces are tagged by VerifH or ClaimH , with
H ∈ {PC,CP,CC!,CC?}. Such tags specify the role played by the entity tagged by Id

(verifier or claimant) and the kind of nonce handshake. Notice that in CC nonce hand-
shakes we distinguish challenge from response ciphertexts, denoted by CC? and CC!,
respectively.

Processes (or protocols), ranged over by P,Q, are the parallel composition of prin-
cipals. Each principal is a sequential process associated with an identity I, noted I .S.
The replicated form I.!S indicates an arbitrary number of copies of I . S. In order
to allow the sharing of keys among principals, we provide ρ-spi with let-bindings:
let k = sym-key(I1, I2).P declares and binds the long-term key k shared between I1 and
I2 in the scope P. Similarly, let k = asym-key(I).P declares, and binds in the scope P,
the key pair Pub(k), Priv(k) associated to I.

Sequential processes may never fork into parallel components: this assumption
helps assign unique identities to sequential processes, and involves no significant loss
of expressive power as protocol principals are typically specified as sequential pro-
cesses, possibly sharing some long-term keys. The sequential process 0 is the null
process that does nothing, as usual. Process new(n).S generates a fresh name n local to
S. We presuppose a unique anonymous public channel, the network, from/to which all
principals, including intruders, read/send messages. Similarly to Lysa, our input prim-
itive may atomically test part of the message read, by pattern-matching. If the input
message matches the pattern, then the variables occurring in the pattern are bound to
the remaining sub-part of the message; otherwise the message is not read at all. For ex-
ample, process ‘in(ClaimPC(x)).P’ may only read messages of the form ClaimPC(M),
binding x to M in P. Encryption just binds x to the encrypted message, while decryp-
tion checks if the message contained in x matches the form {M }K (or {|M |}K), i.e.,
the payload matches M and is encrypted with the appropriate key. Only in this case
x is decrypted and the variables in the pattern M get bound to the decrypted mes-
sages. Similarly to the input primitive, decryption may also test part of the decrypted
messages by pattern-matching mechanism. Finally, the beginM (I1, I2,M1;M2).S and
endM (I2, I1,M1;M2).S primitives are used to check the correspondence assertions [36]

1For the sake of readability, in the rest of the paper we omit brackets: for instance, the nested pair
((a,b),k) is simplified in a,b,k.

7

in a nonce handshake between I1 and I2 based on nonce M . The former primitive
declares that I1 confirms the reception of message M1 and is willing to authenticate
message M2 with I2; the latter one indicates that I2 gets confirmation from I1 of the
reception of message M1 and authenticates message M2.

It is important to note that we make a distinction between static terms, or patterns,
and dynamic terms, or messages. The former, noted M , define the set of syntactically
legal terms; the latter, noted M,N,K, define the set of terms that may arise at run time
and are formalized in Table 12 of Appendix A. The difference is that messages may
have possibly nested encryptions, while patterns may not: notice, to this regard, that
in the syntax of processes, encryptions may only be formed by means of the encrypt

prefix.

Example 1 To illustrate the use of tags and correspondence assertions, let us consider
the protocols presented so far. The first protocol in Section 1 can be decorated with
tags and correspondence assertions as follows:

PC HANDSHAKE

A B
← n−−

beginn(A,B;m)
−−

{

Id(B),Auth(m),VerifPC(n)
}

Priv(kA)
→

endn(B,A;m)

The tagged structure specifies that that the nonce n is used by the verifier B for authenti-
cating m with A in a PC nonce handshake. According to the correspondence assertions,
at the end of the protocol B authenticates A sending message m.

The second protocol in Section 2 can be decorated as follows:

CP HANDSHAKE

A B
←

{

Id(B),Auth(m),VerifCP(n)
}

kAB
−−

beginn(A,B,m;)
−−n→

endn(B,A,m;)

Indeed, the nonce n is used by the verifier B for authenticating m with A in a CP nonce
handshake. According to the correspondence assertions, at the end of the protocol B
authenticates A receiving message m.

Finally, the third protocol in Section 2 can be decorated as follows:

8

CC HANDSHAKE

A B
←

{

Id(B),Auth(mB),VerifCC?(n)
}

Pub(kA)
−−

beginn(A,B,mB;mA)
−−

{

Id(A),Auth(mA),ClaimCC!(n)
}

Pub(kB)
→

endn(B,A,mB;mA)

Notice that the use of ? and ! in the nonce tag disambiguates whether the ciphertext is
used in a CC handshake as challenge or response. By an inspection of the correspon-
dence assertions, at the end of the protocol B authenticates A receiving message mB and
sending message mA.

Example 2 To illustrate the ρ-spi calculus syntax, let us consider the first protocol in
Example 1. The ρ-spi calculus specification is in Table 2. After declaring the key pair
for A, an unbounded number of instances of B as initiator and an unbounded number of
instances of A as responder are run in parallel. The Initiator B generates a fresh nonce
and sends it in clear on the network. Then it reads a message from the network and tries
to decrypt it with the public key of the responder A and checks that its own identifier
tagged by Id is the first component of the message payload and the nonce tagged by
VerifPC is fresh, i.e., it is the one just generated. If this is the case, B authenticates A
sending message x, namely the message tagged by Auth. The Responder A receives a
nonce from the network, generates a new message m, declares the start of the session
with the initiator B for authenticating message m, signs m together with the responder
identifier and the nonce and sends the obtained ciphertext on the network. Notice that
all message components are tagged.

Operational Semantics. We define the operational semantics of ρ-spi in terms of
traces, after [10]. A trace is a possible sequence of actions performed by a process.
Each process primitive has an associated action and we denote with Act the set of all
possible actions. The dynamics of the calculus is formalized by means of a transition
relation between configurations, i.e., pairs 〈s,P〉, where s∈ Act∗ is a trace, P is a closed
process. Each transition 〈s,P〉 → 〈s :: α,P′〉 simulates one computation step in P and
records the corresponding action in the trace.

Principals do not directly synchronize with each other. Instead, they may receive
from the unique channel an arbitrary message M known by the environment, which
models the Dolev-Yao intruder: the knowledge of the environment is formalized by
a set of deduction rules stating that the environment knows all the identity labels,
the messages sent on the network, the content of ciphertexts whose decryption key
is known, ciphertexts created by its knowledge and all the keys declared as owned by
E together with all the public keys. Finally, the environment may also create new fresh
names. Even though this approach forces us to define the Dolev-Yao rules explicitly,
rather than relying on the standard reduction rules, it allows us to give typing rules

9

only for well-behaved processes, thus simplifying the resulting type and effect system
(cf. Section 4). Furthermore, our notion of safety introduced below does not need to
consider the possibility of events performed by the attacker, since they are not syntac-
tically possible. For more detail on the transition relation and the deductive system
formalizing the knowledge of the environment, please refer to Appendix A.

Definition 1 (Traces) The set T (P) of traces of process P is the set of all the traces
generated by a finite sequence of transitions from the configuration 〈ε,P〉: T (P) =
{s | ∃P′ s.t. 〈ε,P〉 →∗ 〈s,P′〉}

The notion of safety extends the standard correspondence property of [29, 36] by dis-
tinguishing between received and sent messages and pointing out the nonce which the
handshake is based on.

Definition 2 (Safety) A trace s is safe iff whenever s = s1 :: endn(B,A,M1;M2) :: s2,
then s1 = s′1 :: beginn(A,B,M1;M2) :: s′′1 , and s′1 :: s′′1 :: s2 is safe. A process P is safe if,
∀s ∈ T (P),s is safe.

A trace is safe if every endn(B,A,M1;M2) is preceded by a distinct beginn(A,B,M1;M2).
This definition is a natural extension of the standard notion of safety (cf.[20]) to a set-
ting where enemies are provided with keys regarded as trusted by other participants.
intuitively, this guarantees that whenever B authenticates A receiving M1 and sending
M2, then A has received M1 and has sent M2 in a handshake with B based on nonce n.

Example 3 To illustrate the semantics of the calculus and the notion of safety, let
us consider a flawed simplification of the first protocol of Example 1, obtained by
eliminating the nonce.

A B
−−{Id(B),Auth(m)}Priv(kA)→

We report the ρ-spi calculus specification below, decorated with tags and correspon-
dence assertions:

Initiator f lawed , in(z).decrypt z as {|Id(B),Auth(x)|}Pub(kA).end(B,A;x).0
Responder f lawed , new(m).begin(A,B;m).encrypt {|Id(B),Auth(m)|}Priv(kA) as z.out(z).0

This protocol suffers of the following standard replay attack, where E impersonates A
by just replaying a previously intercepted message:

A → B : {Id(B),Auth(m)}Priv(kA)

E(A) → B : {Id(B),Auth(m)}Priv(kA)

The attack mentioned above corresponds to the following execution trace:

asym− key(kA,A) :: new(m) :: begin(A,B;m) ::
encrypt{|Id(B),Auth(m)|}Priv(kA) :: out({|Id(B),Auth(m)|}Priv(kA)) ::
in({|Id(B),Auth(m)|}Priv(kA)) :: decrypt{|Id(B),Auth(m)|}Priv(kA) :: end(B,A;m) ::
in({|Id(B),Auth(m)|}Priv(kA)) :: decrypt{|Id(B),Auth(m)|}Priv(kA) :: end(B,A;m)

10

Notice that the same message {|Id(B),Auth(m)|}Priv(kA) is read twice by two different
instances of the Responder. This causes two ends with just one begin, thus making this
trace unsafe. The presence of the nonce, as discussed in the Introduction, repairs the
protocol avoiding this replay attack.

4 The ρ-Spi Type and Effect System

Our analysis is based on types, regulating the use of nonces and keys, and effects,
tracking protocol behaviour. More specifically, types are mainly used to check that
the secrecy of keys and nonces is preserved: processes should never leak long-term
keys and secret nonces generated for CP and CC encrypted challenges, i.e., nonces
that the claimant is challenged to decrypt for confirming its own identity. Effects,
instead, keep track of nonce freshness, challenges and responses. For example, the
generation of a new nonce is tracked by a specific effect which is removed as soon
as the nonce is checked by the verifier. In this way, we obtain the basic property of
nonces that should be used only once, i.e., only for a single protocol session. The
link between types and effects is established through the type of encrypted messages,
which specifies, in the form of effects, whether the encrypted message is a challenge or
a response. This information is derived by the type of the key and by the tags included
in the encrypted message. Through key types and tags it is possible for the protocol
principals to remotely agree on the encrypted message types, thus allowing a local and
compositional validation in which the only a-priori shared knowledge is the type of
long-term keys.

Our type and effect system is based on some basic notions and rules (Section 4.1).
The analysis exploits the tags for message components, compiling them into static
types for ciphertexts (Section 4.2). Typing invariants based on all of the above de-
scribed nonce handshakes (Section 4.3) draw the typing rules for processes (Section
4.4). Finally, the type and effect system is proved to be sound and strongly composi-
tional (Section 4.5).

4.1 Basic Notions and Rules

In this section, we introduce the basic notions of our analysis: typing judgements, types
and effects, subtyping and typed ρ-spi calculus.

4.1.1 Judgements

The type and effect system relies on the following judgements:

Γ ` � (Good Environment)
Γ `M : T (Message Type)
Γ ` P : e (Process Type)

I;Γ ` S : e (Sequential Process Type)

11

Table 3 Types definitions and basic typing rules

Notation: ` ∈ {Un,Ciph,Priv, Int}
In [?|!]Chal`N(I,J,M) and [?|!]Resp`

N(I,J,M), ` = Un⇒M = ().

Types
T ::= SharedKey(I,J) symmetric key

Key(I) asymmetric seed
PublicKey(I) public key
PrivateKey(I) private key
Un untrusted
Nonce`(I,J) nonce
Enc(e; f) ciphertext

Atomic Effects
t ::= fresh`(n) freshness

[?|!]Chal`N(I,J,M) challenge
[?|!]Resp`

N(I,J,M) response

Effects
e, f ::= [t1, . . . ,tn] multiset of

atomic effects

Typing Environment

EMPTY ENV

� ` �

GOOD ENV
Γ ` � m /∈ dom(Γ)

f n(T)⊆ dom(Γ)

Γ,m : T ` �

PROJECTION
Γ,a : T,Γ′ ` �

Γ,a : T,Γ′ ` a : T

Typing Rules for Asymmetric Keys

PUBLIC KEY
Γ ` k : Key(I)

Γ ` Pub(k) : PublicKey(I)

PRIVATE KEY
Γ ` k : Key(I)

Γ ` Priv(k) : PrivateKey(I)

Typing Rules for Untrusted Terms
Key ∈ {Pub,Priv}.

UN SYMM CIPH
Γ `M : Un Γ ` K : Un

Γ ` {M}K : Un

UN ASYMM CIPH
Γ `M : Un Γ ` Key(K) : Un

Γ ` {|M|}Key(K) : Un

UNTRUSTED PAIR
Γ `M1 : Un Γ `M2 : Un

Γ ` (M1,M2) : Un

UN KEY PAIR
Γ ` K : Un

Γ ` Key(K) : Un

UN TAG
Γ `M : Un

Γ ` TAG(M) : Un

12

The judgement Γ ` � is read as “the typing environment Γ is well-formed”, i.e., Γ is
an ordered set of bindings between names/variables and types such that Γ is a function
and all the names referred by types in Γ have a type in Γ. Judgement Γ `M : T , read
as “M has type T in Γ”, means that either M is bound to T in Γ or type T for M is
derivable by the type bindings in Γ.

The main judgement for our approach is Γ ` P : e, symbolizing that process P
can be typed under Γ with the effect e. This judgement relies on the similar one for
sequential processes I;Γ ` S : e, in which I is the identity of the principal running S.
As mentioned above, Γ regulates the use of terms like keys and nonces, while e is used
to track relevant events assumed to happen before P. For example, sequential process
out(k).S can never be typed if k has a long-term key type in Γ, as long-term keys cannot
be leaked. Moreover, endn(A,B,m1;m2).S type-checks only when the effect requiring
the freshness of n is included in e, since a nonce can be used for concluding just one
protocol session.

4.1.2 Types and Effects

The definitions of the types and effects as well as the rules for deriving basic judgments
are in Table 3. A long-term key shared between I and J has type SharedKey(I,J) and
it can only be used by I and J. A name used for creating a key pair owned by I has type
Key(I); the public and private keys generated by that name have type PublicKey(I)
and PrivateKey(I), respectively. While private keys can only be used by their owners,
public keys are available to every principal. Every untagged term potentially known
by the enemy has type Un. A nonce used by I and J has type Nonce`(I,J), where the
label ` ∈ {Un,Ciph,Priv, Int} specifies secrecy and integrity properties of the nonce:
it is Un when the nonce is sent in clear on the network (in PC challenges and CP
responses), Ciph when the nonce is sent encrypted but it is supposed to be sent back in
clear (CP challenges), Priv when the nonce secrecy is preserved by the handshake (CC
handshakes using public or symmetric keys) and Int when the integrity of the nonce
is guaranteed by signing it (CC handshakes using private keys). Ciphertexts generated
or decrypted by trusted principals are regulated by type Enc(e; f). The effects e and
f depend on the ciphertext semantics. If the ciphertext is a challenge sent by I to J
containing the nonce N and the message M, then e = [Chal`N(I,J,M)], otherwise e = [].
Similarly, if the ciphertext is a response sent by I to J containing the nonce N and the
message M, then f = [Resp`

N(I,J,M)], otherwise f = []. We use square brackets to
denote both multisets of atomic effects (as done above) and optional arguments: for
example, [?|!]Chal`N(I,J,M) denotes the three possible atomic effects Chal`N(I,J,M),
!Chal`N(I,J,M) and ?Chal`N(I,J,M)

The label ` has the same semantics as above. The intuitive meaning of the remain-
ing effects is given below:

• The atomic effect f resh`(n) tracks the freshness of the nonce n. A nonce is fresh
if it is a new name and it has not been used for justifying an end event yet.

• The atomic effect ?Chal`N(I,J,M) tracks the decryption of a ciphertext repre-
senting a challenge, containing the nonce N and the message M, sent by I to J.
Similarly for the atomic effect ?Resp`

N(I,J,M).

13

Table 4 Subtyping rules

SUBSUMPTION
Γ ` N : T ′ T ′ <: T

Γ ` N : T

Enc(eC;eR) <: Un (Trusted Ciphertext)
Un <: Nonce`(I,J) ` ∈ {Priv,Ciph} (Tainted Nonce)
NonceInt(I,J) <: Un (Public Nonce)
PublicKey(I) <: Un (Public Key)
T <: Un and Un <: T T 6= Enc(e; f) f n(T)∩ IDE 6=� (Public Name)

• The atomic effect !Chal`N(I,J,M) tracks the generation of a ciphertext represent-
ing a challenge, containing the nonce N and the message M, sent by I to J.

• The atomic effect !Resp`
N(I,J,M) has different semantics as it enables the gen-

eration of a ciphertext representing a response, containing the nonce N and the
message M, sent by I to J. This asymmetry in the use of effects is discussed in
Section 4.3.

4.1.3 Typing Environment and Basic Rules

Well-Formedness conditions are mostly standard. By (EMPTY ENV), the empty envi-
ronment is well-formed. An environment Γ,m : T is well-formed (GOOD ENV) only
if Γ is well-formed, the type T depends on names defined in Γ and m does not belong
to the domain of Γ. Notice that dependent types require the typing environment to be
ordered. Names and variables always occur free in types and effects.

The typing rules for public and private keys are straightforward. UN SYMM CIPH

and UN ASYMM CIPH give the type Un to ciphertexts built by untrusted terms, thus
typing ciphertexts generated by the enemy. Similarly, UNTRUSTED PAIR says that a
tuple of untrusted terms has type Un, UN KEY PAIR gives type Un to asymmetric keys
built upon untrusted terms and UN TAG says that tagged untrusted terms are of type
Un. The typing rules for Enc(e; f), regulating encryptions and decryptions performed
by trusted principals, are discussed in Section 4.2.

4.1.4 Subtyping

Subtyping introduces the partial order T ′ <: T among types, meaning that T ′ is “more
specific” than T , i.e., what can be done with a term of type T can be done even with
a term of the more specific type T ′. Rule SUBSUMPTION of Table 4 formalizes the
above fact, by stating that if N has type T ′ in Γ and T ′ <: T then N has also type T in Γ.
The intuition behind the subtyping relation is illustrated below: (Trusted Ciphertext)
gives type Un to ciphertexts generated by trusted principals, as they can be sent on
the untrusted network. To motivate (Tainted Nonce), let us consider the asymmetric
version of the second protocol in Example 1, using a CP nonce handshake:

14

A B
←{|Id(B),Auth(m),VerifCP(n)|}Pub(kA)−−

−−n→

Notice that A does not know whether the ciphertext has been created by B or by the
enemy since it is encrypted with A’s public key and the enemy knows all the public
keys. In the former case, the type of the nonce n is NonceCiph(A,B), in the latter it is
Un. Hence, at run-time, the variable with type NonceCiph(A,B) might be substituted by
a term with type Un. The subtyping rule (Tainted Nonce) addresses this issue. Signed
nonces may be read by the enemy thus the type NonceInt(I,J) is subtype of Un. Since
the enemy knows all the public keys, PublicKey(I) is subtype of Un. Finally, the enemy
is provided with long-term keys regarded as trusted by other principals so that he may
start authentication sessions pretending to be trusted. During such protocol sessions,
the enemy may get knowledge of nonces generated by trusted principals: for instance,
A might generate a nonce with type NoncePriv(A,E) for starting a CC handshake with
the enemy. For this reason, by (Public Name), nonce and key types depending on an
enemy identity label are subtypes of Un and vice-versa.

Notice that subtyping is never used in the protocol validation. Instead, it is required
in the proof of type preservation at run-time.

4.1.5 Typed Calculus and Notation

For easing the presentation, we have given so far an untyped version of the restriction.
Moreover, a cast operator is needed by the type and effect system, as discussed in
Section 4.4. Formally, the syntax of sequential processes is extended as follows:

S ::= . . . as in Table 1
new(n : T).S (typed restriction)
cast M is (x : T).S (cast operator)

The type in the restriction as well as the cast operator have no computational import.
(for more details see Appendix A.) For sake of readability we assume a number of type
and effect equalities:

Un = NonceUn(I,J) (Untrusted Nonce)
SharedKey(J, I) = SharedKey(I,J) (Symmetric Keys)
Chal`(N1,...,Nn)(M) = Chal`N1

(M), . . . ,Chal`Nn
(M) (Multiple Challenge)

Resp`
(N1,...,Nn)(M) = Resp`

N1
(M), . . . ,Resp`

Nn
(M) (Multiple Response)

ChalUn
N () = ChalUn

N (I,J) (Untrusted Challenge)
RespUn

N () = RespUn
N (I,J) (Untrusted Response)

Notice the last two equalities introduce two new atomic effects: ChalUn
N () and RespUn

N ().
In fact, identity labels may be omitted as a nonce sent in clear does not convey any in-
formation regarding principals involved in the handshake. Type and effect equalities
are used in the typing of messages and processes, respectively, by the following rules:

15

TYPE EQUALITY

Γ `M : T ′ T ′ = T

Γ `M : T

EFFECT EQUALITY 1
Γ ` P : e′ e′ = e

Γ ` P : e

EFFECT EQUALITY 2
I;Γ ` S : e′ e′ = e

I;Γ ` S : e

4.2 Typing Trusted Ciphertexts

In this section, we illustrate the typing rules of Table 5 regulating ciphertexts gener-
ated or decrypted by trusted principals. In the following, the order of the terms in a
ciphertext is immaterial and we write _ to denote a tuple of untagged terms. Intuitively,
when generating or decrypting messages of the form {Id(I),RH(N),Auth(M),_}K , the
tagged structure is "compiled" into static ciphertext types of the form Enc(eC;eR). This
dynamic typing is defined by the function Typeofenc(I,RH ,N,M,TK) taking as input the
entity I tagged by Id, the nonce tag RH , the nonce N, the authenticated message M and
the type of the encryption key TK . This function yields the tuple (eC,eR,TN), represent-
ing the challenge and response effects eC and eR associated to the ciphertext and the
type of the nonce TN .

Function Typeofenc is defined through a table whose rows are indexed by the kind
of handshake H and columns by the key type TK . Once a box is identified by the
row and the column, i.e., by H and TK , the value of R is checked and, based on it, a
tuple (eC,eR,TN) is returned. Notice that for shared keys, both cases for R, i.e., Verif

and Claim, are covered. For public and private keys, instead, only one value of R is
possible for each box. Intuitively, this is due to the fact that symmetric cryptography
requires that either the claimant or the verifier is specified in the message in order to
disambiguate the, intrinsically symmetric, use of the key. In asymmetric cryptography,
instead, one of the principals is specified through the key and the other one is included
in the message along with its specific role. If either the identified box is empty or the
constraint on R does not hold, then Typeofenc is undefined.

CIPHERTEXT gives ciphertexts type Enc(eC;eR) if the function Typeofenc yields
the tuple (eC,eR,TN) and the nonce has type TN . Next examples show the use of this
rule and illustrate the intuition behind Typeofenc.

Example 4 Consider the protocols of Example 1. The first one can be typed as follows:

PC HANDSHAKE

A B
← n−−

beginn(A,B;m)
−−

{

Id(B),Auth(m),VerifPC(n)
}

Priv(kA)
→

endn(B,A;m)

Γ ` A : Un,B : Un,m : Un,n : Un

Priv(kA) : PrivateKey(A)

{|Id(B),Auth(m),VerifPC(n)|}Priv(kA) : Enc([]; [RespCiph
n (A,B,m)])

16

Table 5 Typing rules for trusted ciphertexts

Typeofenc(I,RH ,N,M,TK)
rTK

H
SharedKey(I,J) or
SharedKey(J, I)

PrivateKey(J) PublicKey(J)

PC
if R = Verif

[],

[Resp
Ciph
N (J, I,M)],

Un

if R = Claim

[],

[Resp
Ciph
N (I,J,M)],

Un

if R = Verif

[],

[Resp
Ciph
N (J, I,M)],

Un

CP
if R = Verif

[Chal
Ciph
N (I,J,M)],

[],
NonceCiph(I,J)

if R = Claim

[Chal
Ciph
N (J, I,M)],

[],
NonceCiph(J, I)

if R = Verif

[Chal
Ciph
N (I,J,M)],

[],
NonceCiph(I,J)

CC?
if R = Verif

[ChalPriv
N (I,J,M)],

[],
NoncePriv(I,J)

if R = Claim

[ChalPriv
N (J, I,M)],

[],
NoncePriv(J, I)

if R = Claim

[ChalInt
N (J, I,M)],

[],
NonceInt(J, I)

if R = Verif

[ChalPriv
N (I,J,M)],

[],
NoncePriv(I,J)

CC!
if R = Verif

[],
[RespPriv

N (J, I,M)],
NoncePriv(I,J)

if R = Claim

[],
[RespPriv

N (I,J,M)],
NoncePriv(J, I)

if R = Verif

[],
[RespInt

N (J, I,M)],
NonceInt(I,J)

if R = Claim

[],
[RespPriv

N (I,J,M)],
NoncePriv(J, I)

CIPHERTEXT
Γ `M,_ : Un Γ ` N : TN Γ ` K : TK (eC,eR,TN) = Typeofenc(I,RH ,N,M,TK)

Γ ` {Id(I),RH(N),Auth(M),_}K : Enc(eC;eR)
Γ ` {|Id(I),RH(N),Auth(M),_|}K : Enc(eC;eR)

UNTAGGED CIPHERTEXT
Γ ` _ : Un Γ ` K : T

Γ ` {_}K : Enc([]; []) Γ ` {|_|}K : Enc([]; [])

CHALLENGE-RESPONSE
H ∈ {CP,CC?} H ′ ∈ {PC,CC!} Γ ` {Id(I),Auth(M),RH(N),_}K : Enc(eC; ·)

Γ ` {Id(I),Auth(M),R′H ′(N
′),_}K : Enc(·;eR)

Γ ` {Id(I),Auth(M),RH(N),R′H ′(N
′),_}K : Enc(eC;eR)

17

The key Priv(kA) is A’s private key, thus having type PrivateKey(A) (rule PRIVATE

KEY, Table 3). As mentioned before, the nonce tag VerifPC indicates that the cipher-
text is used as a response in a PC handshake. Typing rule CIPHERTEXT computes
Typeofenc(B,VerifPC,n,m,PrivateKey(A)) = ([], [RespCiph

n (A,B,m)],Un), according to
the box in the first row (PC) and second column (PrivateKey(A)), given that the role
of B is Verif. Thus, assumed that the nonce n has type Un, the ciphertext is typed
Enc([]; [RespCiph

n (A,B,m)]) symbolizing that it is an encrypted response from A to B
authenticating m and based on nonce n. Similarly, the second protocol can be typed as
follows:

CP HANDSHAKE

A B
←

{

Id(B),Auth(m),VerifCP(n)
}

kAB
−−

beginn(A,B,m;)
−−n→

endn(B,A,m;)

Γ ` A : Un,B : Un,m : Un

kAB : SharedKey(A,B)

n : NonceCiph(B,A)

{Id(B),Auth(m),VerifCP(n)}kAB : Enc([ChalCiph
n (B,A,m)]; [])

The nonce tag VerifCP and the key type SharedKey(A,B) indicate that the ciphertext is
used in a symmetric key CP challenge. Typeofenc(B,VerifCP,n,m,SharedKey(A,B)) =
([ChalCiph

n (B,A,m)], [],NonceCiph(B,A)) can be computed by looking at the second row
(CP) and first column (SharedKey(A,B)), case R = Verif. Thus the ciphertext has type
Enc([ChalCiph

n (B,A,m)]; []), given that n has type NonceCiph(B,A). This type correctly
identifies the ciphertext as an encrypted challenge from B to A authenticating m and
based on nonce n. We finally give the typed version of the third protocol, leaving as an
exercise to the interested reader the derivation of types.

CC HANDSHAKE

A B

← {Id(B),Auth(mB),VerifCC?(n)}Pub(kA)−−
beginn(A,B,mB;mA)

−−{Id(A),Auth(mA),ClaimCC!(n)}Pub(kB) →
endn(B,A,mB;mA)

Γ ` A : Un,B : Un,mB : Un,mA : Un

Pub(kA) : PublicKey(A),
Pub(kB) : PublicKey(B)
n : NoncePriv(B,A)
{|Id(B),Auth(mB),VerifCC?(n)|}Pub(kA) : Enc([ChalPriv

n (B,A,mB)]; [])
{|Id(A),Auth(mA),ClaimCC!(n)|}Pub(kB) : Enc([]; [RespPriv

n (A,B,mA)])

18

The remaining rules of Table 5 regulate ciphertexts containing no tagged messages and
ciphertexts used both as challenges and responses. The former are typed as Enc([]; []),
by UNTAGGED CIPHERTEXT, since they represent neither challenges nor responses.
The latter, instead, are typed Enc(eC;eR) with both eC and eR non-empty, by the rule
CHALLENGE-RESPONSE. Intuitively, ciphertexts of the form {Id(I),Auth(M),RH(N),
R′H′(N

′),_}K with two nonces, the first used in an encrypted challenge (i.e., H = CP or
H = CC?) and the second used in an encrypted response (i.e., H = PC or H = CC!),
are projected into two submessages {Id(I),Auth(M),RH (N),_}K and {Id(I),Auth(M),
R′H′(N

′),_}K that are separately typechecked. The resulting effects, eC from the chal-
lenge component and eR from the response one, are finally collected into the type
Enc(eC;eR).

We illustrate this typing rule with an example. Let us consider the following
mutual-authentication protocol, where A sends B a message m encrypted with a long-
term key shared between A and B.

A B
← nB−−

−−{A,nB,nA,m}kAB →
← nA−−

At the end of the protocol B authenticates m and A knows that B has received m. The
second message is both the response of a PC handshake, based on nB, and the challenge
of a CP handshake, based on nA. The protocol with types and tags is depicted below.

PC/CP HANDSHAKES

A B
← nB−−

−−{Id(A),ClaimPC(nB),VerifCP(nA),Auth(m)}kAB
→

← nA−−

Γ ` A : Un,B : Un,m : Un

kAB : SharedKey(A,B)
nB : Un

nA : NonceCiph(A,B)

{Id(A),ClaimPC(nB),Auth(m)}kAB
: Enc([]; [Resp

Ciph
nB (A,B,m)])

{Id(A),VerifCP(nA),Auth(m)}kAB
: Enc([Chal

Ciph
nA (A,B,m)]; [])

{Id(A),ClaimPC(nB),VerifCP(nA),Auth(m)}kAB
:

Enc([Chal
Ciph
nA (A,B,m)]; [Resp

Ciph
nB (A,B,m)])

Typing {Id(A),ClaimPC(nB),VerifCP(nA), Auth(m)}kAB requires to project the cipher-
text into a response and challenge component as follows:

{Id(A),ClaimPC(nB),Auth(m)}kAB
and {Id(A),VerifCP(nA),Auth(m)}kAB

The two ciphertexts differ only in the nonces and have type Enc([]; [RespCiph
nB

(A,B,m)])

and Enc([ChalCiph
nA

(A,B,m)]; []), respectively. The type of the whole protocol ciphertext

19

Table 6 Typing nonce handshakes: an example

A B
• new(n : NoncePriv(B,A))
w

w

w

w

w

�

freshPriv(n)

← challenge−−

?ChalPriv
n (B,A,mB)

w

w

w

w

w

�

beginn(A,B,mB;mA) •

!RespPriv
n (A,B,mA)

w

w

w

w

w

�

w

w

w

w

w

w

w

w

w

w

w

w

w

�

freshPriv(n),

!ChalPriv
n (B,A,mB)

−− response→
w

w

w

w

w

w

w

w

w

�

freshPriv(n),

!ChalPriv
n (B,A,mB),

?RespPriv
n (A,B,mA)

• endn(B,A,mB;mA)

challenge = {Id(B),Auth(mB),VerifCC?(n)}Pub(kA)

response = {Id(A),Auth(mA),ClaimCC!(n)}Pub(kB)

Γ ` kA : Key(A)
kB : Key(B)

n : NoncePriv(B,A)

{|Id(B),Auth(mB),VerifCC?(n)|}Pub(kA) : Enc([ChalPriv
n (B,A,mB)]; [])

{|Id(A),Auth(mA),ClaimCC!(n)|}Pub(kB) : Enc([]; [RespPriv
n (A,B,mA)])

Enc([ChalCiph
nA

(A,B,m)]; [RespCiph
nB

(A,B,m)]) collects the challenge and response effects
obtained by separately typing the challenge and response components.

4.3 Typing Nonce Handshakes

In this section, we illustrate through a simple example how the analysis combines types
and effects for type-checking nonce handshakes. Let us consider the CC handshake of
Example 4, allowing the initiator B to authenticate the responder A receiving message
mB and sending message mA. The narration of the protocol, decorated with correspon-
dence assertions, types and effects, is depicted in Table 6.
The initiator B generates a fresh nonce n with type NoncePriv(B,A): the atomic effect
freshPriv(n) tracks the freshness of the nonce. The nonce is encrypted together with
message mB in a challenge sent by B to A having type Enc([ChalPriv

n (B,A,mB)]; []),
as discussed in Section 4.2. The atomic effect !ChalPriv

n (B,A,mB), extracted from the
above type, tracks the generation of the challenge. The ciphertext is received and de-

20

crypted by the responder A, who tracks this event through the effect ?ChalPriv
n (B,A,mB)

extracted, again, from the ciphertext type. This shows how ciphertext types are used to
remotely agree on the challenges (and responses) sent and received.

The following beginn(A,B,mB;mA) assertion requires a challenge containing the
message mB (effect ?ChalPriv

n (B,A,mB)) and justifies a response for authenticating mA

(effect !RespPriv
n (A,B,mA)). This is the reason why effects having the form !Resp`

n(·)
are used for enabling rather than tracking the generation of responses, as mentioned in
Section 4.1.

The atomic effect !RespPriv
n (A,B,mA) enables A to generate a ciphertext with type

Enc([]; [RespPriv
n (A,B,mA)]). Hence this ciphertext is received and decrypted by B,

tracked by ?RespPriv
n (A,B,mA) thanks to the ciphertext type. Since the nonce handshake

has been successfully completed (effects !ChalPriv
n (B,A,mB) and ?RespPriv

n (A,B,mA))
and the nonce is fresh (effect freshPriv(n)), B can assert endn(B,A,mB;mA).

4.3.1 Kinds of Handshakes

In the example above, both the challenge and the response are private. In general, chal-
lenge and response effects justifying an end assertion have the form !Chal`n(B,A,MC)

and ?Resp`
n(A,B,MR), respectively. The relation between ` and ` is determined by the

kind of handshake:

PC the nonce is sent out in clear and received encrypted, thus ` = Un and ` = Ciph;

CP the nonce is sent out encrypted and received in clear, thus ` = Ciph and ` = Un;

CC the nonce may be sent out and received either encrypted (` = ` = Priv) or signed
(` = ` = Int).

If the nonce n is sent as challenge in clear, then the effect tracking such an output
is !ChalUn

n (): notice that no message is associated with the challenge. Analogously,
the input of a challenge in clear is tracked by ?ChalUn

n (). Similar reasoning applies to
responses that are sent and received in clear.

4.4 Typing Processes

Processes are typed according to the judgment Γ ` P : e, meaning that the process P
can be typed under the typing environment Γ and the effect e. Judgment I;Γ ` S : e,
for the sequential process S executed by the entity I, has the same intuitive meaning.
For easing the presentation, we introduce some conventions: Γ `M1, . . . ,Mn : T is an
abbreviation of Γ ` M1 : T, . . . ,Γ `Mn : T and we write ![t1, . . . , tn] and ?[t1, . . . , tn] to
denote [!t1, . . . , !tn] and [?t1, . . . ,?tn], respectively. Finally, + and − are the usual union
and subtraction operators on multi-sets: e1 + e2 yields the effect composed of all the
atomic effects in e1 plus the ones in e2, while e1− e2 yields the effect obtained by
removing, if present, an occurrence of each atomic effect in e2 from e1. If an atomic
effect of e2 does not occur in e1 then the subtraction of that atomic effect leaves e1

unchanged.
Process judgments are reported in Table 7 and described below. SYMMETRIC KEY

and ASYMMETRIC KEY type key declarations, binding the key with the appropriate

21

Table 7 Typing processes

ENCRYPT

DECRYPT
:

{

M = {N}K ⇒ Γ ` K : T ∈ {Un,SharedKey(A, I)}
M = {|N|}K ⇒ Γ ` K : T ∈ {PrivateKey(A),PublicKey(I)}

DECRYPT: {M}−1
K = {M}K , {|M|}−1

key(K)
= {|M|}key(K)

BEGIN and END: (`,`) ∈ {(Un,Ciph),(Ciph,Un),(Priv,Priv),(Int, Int)} (cf Section 4.3)

SYMMETRIC KEY

Γ,k : SharedKey(I,J) ` P : []

Γ ` let k = sym-key(I,J).P : []

ASYMMETRIC-KEY

Γ,k : Key(I) ` P : []

Γ ` let k = asym-key(I).P : []

REPLICATION

Γ ` A.S : []

Γ ` A.!S : []

PAR

Γ ` P : eP Γ ` Q : eQ

Γ ` P|Q : eP + eQ

IDENTITY

A;Γ ` S : e

Γ ` A.S : e

NIL

A;Γ ` 0 : []

NEW

` ∈ {Un,Priv,Ciph, Int} A;Γ,n : Nonce`(A, I) ` S : e

A;Γ ` new(n : Nonce`(A, I)).S : e− [fresh`(n)]

INPUT

A;Γ,vars(M) : Un ` S : e

A;Γ ` in(M).S : e− [?ChalUn
M (),?RespUn

M ()]

OUTPUT

Γ `M : Un A;Γ ` S : e

A;Γ ` out(M).S : e− [!ChalUn
M ()]

DOWNCAST TO UNTRUSTED

A;Γ,x : Un ` S : e Γ ` N : NonceCiph(I,A)

A;Γ ` cast N is (x : Un).S : e+[!RespUn
N ()]

ENCRYPT

Γ `M : Enc(eC;eR) A;Γ,z : Un ` S : e+!eC

A;Γ ` encrypt M as z.S : e+!eR

DECRYPT

Γ `M′ : Un

vars(M) = x Γ,x : T `M−1 : Enc(eC;eR) A;Γ,x : T ` S : e+?eC+?eR

A;Γ ` decrypt M′ as M.S : e

BEGIN

A;Γ ` S : e+[!Resp`
N(A, I,M2)] Γ ` N : Nonce`(I,A) Γ `M2 : T

A;Γ ` beginN(A, I,M1;M2).S : e+[?Chal`N(I,A,M1)]

END

A;Γ ` S : e Γ ` n : Nonce`(A, I)

A;Γ ` endN(A, I,M1;M2).S : e+[!Chal`n(A, I,M1),?Resp`
n(I,A,M2), fresh

`(n)]

22

type into the typing context. As we will see later on, if a process type-checks under
empty effect, then that process is safe. Since we type processes for verifying their
safety, and key declarations are at the beginning of each process, typing a key dec-
laration is useful only if the effect is empty. For this reason, SYMMETRIC KEY and
ASYMMETRIC KEY require the process effect to be empty. Similarly, REPLICATION

types the replication of a principal under empty effect, if that principal is in turn typed
under empty effect.

PAR types the parallel composition of two processes under the union of their effects.
Intuitively, a parallel composition of two processes is safe if both of the processes are
safe: since an effect represents the assumptions under which a process is safe, a parallel
composition of two processes is safe if both of the assumptions required to type them
hold.

IDENTITY makes the typing of a sequential process dependent on the identity label
I of the principal running it through the judgement I;Γ ` S : e.

NIL types process 0 under empty effect since typing the null process does not re-
quire any specific assumption on the principal’s behavior. Notice that the typing of a
process is defined by induction on its structure and the null process is the base case:
since each typing rule univocally determines an effect from the one of the continuation
process, the effect of type-checked processes is unique.

Restriction is typed by NEW: the name n is inserted into the typing environment
with the declared type. The restriction justifies, through the atomic effect fresh`(n), at
most one use of n as fresh nonce with integrity/secrecy property ` in the continuation
process. Subtracting an atomic effect fresh`(n) in the thesis allows the continuation
process to type-check with or without fresh`(n), thus admitting processes that make no
use of the freshly generated nonce.

INPUT gives type Un to the read messages as they come from the untrusted network.
Typing in(M) justifies in the continuation process that M has been received in clear
either as challenge (effect ?ChalUn

M ()) or response (effect ?RespUn
M ()).

OUTPUT says that a term can be sent on the network only if it has type Un. Typing
out(M) justifies in the continuation process that M has been sent in clear as challenge
(effect !ChalUn

M ()).
As mentioned in Section 4.1, nonce types regulate secrecy and integrity properties

of nonces. A type cast is needed only in CP handshakes as the nonce is sent back in
clear and its secrecy is lost. DOWNCAST TO UNTRUSTED casts the type of N from
NonceCiph(I,A) to Un. This cast requires the atomic effect !RespUn

N (), namely the
permission to send the nonce in clear on the network. Notice the use of the effect union
+ in the thesis for extending the assumptions required for type-checking the process;
these assumptions have to be justified by previous actions.

ENCRYPT types the generation of a ciphertext M, relying on the judgement Γ `
M : Enc(eC;eR): the generation of a challenge is tracked in the continuation process
(effect !eC), while the generation of a response has to be justified in the process’ effect
(effect !eR), as discussed in Section 4.3. Adding the effect !eC in the hypothesis forces
the continuation process to use the generated challenge. The idea is to only type-
check protocols that really need all the specified tagged messages for completing the
authentication task; in other words, protocol specifications are required to be minimally
tagged.

23

DECRYPT types the received messages according to the type of the ciphertext. In
practice, finding these types is trivial, since it amounts to giving type Un to all the
variables except the one with tag RH which is given type Nonce`(I,J) returned by
Typeofenc (cf. Section 4.2). For instance, typing decrypt z as {Id(A),VerifCP(x),
Auth(y)}k.P, with k of type SharedKey(A,B), gives x the type NonceCiph(A,B) and
y the type Un as Typeofenc(A,VerifCP,x,y,SharedKey(A,B)) = ([ChalCiph

x (A,B,y)], [],
NonceCiph(A,B)). Notice that in the case of ciphertexts decrypted through asymmetric
cryptography, in order to type the ciphertext that one expects to decrypt at run-time,
we need to substitute the decryption key with the corresponding encryption one. For
example, typing decrypt z as {|Id(A),VerifCP(N),Auth(M)|}Priv(k) requires to type the
ciphertext {|Id(A),VerifCP(N),Auth(M)|}Pub(k). This is formalized through the func-
tion ·−1, inverting the top-level asymmetric key. Once the ciphertext is typed, the
reception of challenges and responses is tracked in the continuation process (effects
?eC and ?eR).

As illustrated in Section 4.3, a beginN(A, I,M1;M2) by A (rule BEGIN) requires the
reception of a challenge from I, containing the nonce N and the message M1 (effect
?Chal`N(I,A,M1)), and justifies the generation of a response to I, containing the same

nonce and the message M2 (effect !Resp`
N(A, I,M2)). Finally, an endN(A, I,M1;M2) by

A (rule END) requires the freshness of the nonce n (effect fresh`(n)), the generation of a
challenge to I, containing the same nonce and the message M1 (effect !Chal`n(A, I,M1)),
and the reception of a response from I, containing the same nonce and the message M2

(effect ?Resp`
n(I,A,M2)).

4.5 Safety Theorem

Our main result states that if a process can be typed with empty effect and empty typing
environment, then every trace generated by that process is safe.

Theorem 1 (Safety) Let P be a process. If I : Un ` P : [], where I are the identities in
P, then P is safe.

Interestingly, our analysis is strongly compositional, as stated by the following theo-
rem. Let keys(k1, . . . ,kn) denote a sequence of key declarations.

Theorem 2 (Strong Compositionality) Let P be the process keys(k1, . . . ,kn).(I1.!S1|
. . . |Im.!Sm) and I1, . . . , Im be the identities in P. Then I1, . . . , Im : Un ` P : [] if and only
if I1, . . . , Im : Un ` keys(k1, . . . ,kn).Ii.!Si : [],∀i ∈ [1,m].

Intuitively, a protocol is safe if so are all the protocol participants. In addition, judging
a participant safe only requires knowledge of the long-term keys it shares with other
participants. This is a fairly mild assumption as the information conveyed by the keys
is relative to identities of the parties sharing them, not to the protocol they are running.
This flexibility is paid in ρ-spi in terms of the dynamic checks required on the struc-
ture of messages to validate the tags used in the different handshakes. Indeed, we do
not regard the dynamic checks as limiting or inconvenient: instead, our contention is

24

that the ρ-spi tagging of ciphertexts is a good specification practice which helps doc-
ument the intended semantics of the ciphertexts and yields strong compositionality to
the handshakes. We remark that tagged messages generated by trusted principals are
protected by cryptography while being in transit on the network, so that their integrity
is always guaranteed with the exception of public-key encrypted messages that might
be generated even by the enemy; this is handled by means of the subtyping relation
discussed in Section 4.1.

5 Example

We illustrate our system with a slightly modified version of the SPLICE/AS Protocol
(see the remark at the end of this section):

A B
(Msg 1) ← B,nB−−
(Msg 2) −−A,B,{B,nB,{nA}Pub(kB)}Priv(kA)→
(Msg 3) ←{B,nA}Pub(kA)−−

This protocol should mutually authenticate A and B. In the first two messages, B ex-
ploits a PC nonce handshake to authenticate A, as nB is sent in clear and received en-
crypted. In the second message, A sends a (nested) challenge to B using a CC scheme.
However, this second part is flawed as shown by the following (man-in-the-middle)
attack sequence:

A (B)E B
1.b | ← B,nB−−
1.a ← B,nB−− |
2.a −−A,B,{B,nB,{nA}Pub(kB)}Priv(kA)→ |

2.b | −−E,B,{B,nB,{nA}Pub(kB)}Priv(kE)→

3.b | ← {B,nA}Pub(kE)−−

3.a ← {B,nA}Pub(kA)−− |

There are two parallel sessions: a and b. Session b is between E and B, and E exploits
such a session to impersonate B with A in session a. In particular, the enemy uses B
as an oracle to decrypt message {nA}Pub(kB) (messages 2.b and 3.b). The projection on
input, output and correspondence assertions of the trace corresponding to the attack is

1.b out(B,nB) ::
1.a in(B,nB) ::
2.a beginnB(A,B) :: out(A,B,{|B,nB,{|nA|}Pub(kB)|}Priv(kA)) ::
2.b in(E,B,{|B,nB,{|nA|}Pub(kB)|}Priv(kE)) :: endnB(B,E) ::
3.b beginnA(B,E) :: out({|B,nA|}Pub(kE)) ::
3.a in({|B,nA|}Pub(kA)) :: endnA(A,B)

25

Looking at correspondence assertions we have an endnA(A,B) (session a) which does
not match beginnA(B,E) (session b). Notice that this attack is similar to the well known
one on the Needham-Schroeder public-key protocol [28]. In ρ-spi calculus, we capture
these attack sequences thanks to the possibility of providing the enemy with long-term
keys. Indeed, the environment decrypts the ciphertext sent by A in 2.a as it knows A’s
public key and in 2.b generates a new ciphertext by its own private key. Similarly, the
environment decrypts by its own private key the ciphertext sent by B in 3.b and in 3.a
generates a new ciphertext encrypted with A’s public key.
Since the protocol is unsafe it cannot be type-checked. We give the intuition of why
this happens. A may be specified as follows:

(Msg 1) in(B,x) .
(Msg 2) new(nA) . encrypt {|nA|}Pub(kB) as z .

encrypt {|B,x,z|}Priv(kA) as w . out(A,B,w) .
(Msg 3) in(y).decrypt y as {|B,nA|}Priv(kA).endnA(A,B)

There is no tagging that makes the sequential process above type-check. Indeed, the
challenge effect !ChalPriv

nA
(A,B), required by endnA(A,B), is not justified by any en-

cryption. In order to justify that effect, the identity label A has to be inserted in the first
ciphertext. As a matter of fact, by changing message 2 into

(Msg 2) A → B : A,B,{B,nB,{A,nA}Pub(kB)}Priv(kA)

we obtain the repaired protocol suggested by Gavin Lowe in [30]. To see how this
protocol is checked using our type and effect system, consider the following tagged
version:

A B
(Msg 1) ← B,nB−−
(Msg 2) −−A,B,{Id(B),VerifPC(nB),{Id(A),VerifCC?(nA)}Pub(kB)}Priv(kA)→

(Msg 3) ←{Id(B),ClaimCC!(nA)}Pub(kA)−−

In (Msg 2), A communicates to B that B is the verifier of the current authentication
session by a PC handshake on nB and asks B to confirm whether or not he is willing to
start an authentication session with her using a CC handshake on nA. Thus, we tag nB

by VerifPC and nA by VerifCC?. In the second ciphertext, B completes the CC handshake
and nA is tagged by ClaimCC!.

The proof derivation for the ρ-spi calculus specification of the protocol is reported
in Table 8 (protocol definition), Table 9 (initiator) and Table 10 (responder): for each
primitive π followed by the process P, we indicate both the effect e (right column) and
the environment Γ (left column) for typing the process π.P. (in Table 9 and Table 10
we omit the principal I executing the sequential process.) The environment is specified
incrementally, by just indicating the type binding added by the current primitive π.
Notation ‘. . .’ is a shorthand for the environment used in the previous typing judgement
(previous row in the table).

Notice that we analyze an unbounded number of sessions, where A and B play both
the initiator and the responder role.

26

Table 8 Proof Derivation for the protocol definition of the SPLICE/AS protocol

A : Un,
B : Un,
E : Un

` ProtocolSplice/AS , : []

. . . ` let kA = asym-key(A). : []

. . . ,kA : Key(A) ` let kB = asym-key(B). : []

. . . ,kB : Key(B) ` let kE = asym-key(E). : []

. . . ,kE : Key(E) `

(| ∀I ∈ {A,B}
∀J ∈ {A,B,E}

I.!InitiatorSplice/AS(I,J,Priv(kI),Pub(kJ)) |

I.!ResponderSplice/AS(I,J,Priv(kI),Pub(kJ))

)

: []

The proof for initiator and responder processes is shown for two arbitrary princi-
pals I and J. Notice, however, that typing rules are defined on arbitrary identities with
the only constraint that sequential processes are executed by trusted principals. Thus,
typability of sequential processes is closed under identity substitutions as far as the
executing principal is trusted. This is why we can analyze an unbounded number of
sessions where A and B play both the initiator and the responder role, possibly com-
municating with E. This is achieved, in Table 8, by simply instantiating I to A or B and
J to A, B or E. Since A,B,E : Un ` ProtocolSplice/AS : [], by Theorem 1 the protocol is
safe.
We remark that the specification can be easily generalized to an arbitrary number m of
entities, acting both as initiator and as responder and arbitrarily replicated.

ProtocolSplice/AS , letmi=1kIi = asym-key(Ii).

(|mi, j = 1
Ii 6∈ IDE

Ii . !InitiatorSplice/AS(Ii, I j,Priv(kIi),Pub(kI j))|

Ii . !ResponderSplice/AS(Ii, I j,Priv(kIi),Pub(kI j)))

Here kIi represents the asymmetric key owned by entity Ii. Typability is proved, as be-
fore, by observing that the running principal Ii is only instantiated to trusted identities.

Remark 1 In the original version of the SPLICE/AS protocol, the format of (Msg 2)
is

A,B,{A,nB,{nA}Pub(kB)}Priv(kA)

with A, rather than B, as the entity identifier of the top-level encrypted packet. With our
present system, there is no tagging for this message enabling a successful validation of
the protocol. We believe the problem can be circumvented, and the protocol verified,
by enhancing the system to allow (messages encrypted by) public keys to be treated as
entity identifiers, and to be tagged as such.

27

Table 9 Proof derivation for InitiatorSplice/AS

I : Un,
J : Un,

kI : Key(I)
kJ : Key(J)

` InitiatorSplice/AS(I,J,Priv(kI),Pub(kJ)) , : []

. . . ` new(nI : NonceUn(I,J)). : []

. . . ,nI : NonceUn(I,J) ` out(I,nI). : [freshUn(nI)]

. . . ` in(J, I,y). :

[

freshUn(nI),
!ChalUn

nI
()

]

. . . ,y : Un ` decrypt y as {|Id(I),VerifPC(nI),z′|}Pub(kJ) :

[

freshUn(nI),
!ChalUn

nI
()

]

. . . ,z′ : Un ` endnI (I,J). :

freshUn(nI),
!ChalUn

nI
(),

?RespCiph
nI

(J, I)

. . . ` decrypt z′ as {|Id(J),VerifCC?(x)|}Priv(kI). : []

. . . ,x : NoncePriv(J, I) ` beginx(I,J). : [?ChalPriv
x (J, I)]

. . . ` encrypt {|Id(I),ClaimCC!(x)|}Pub(kJ) as z′′. : [!RespPriv
x (I,J)]

. . . ,z′′ : Un ` out(z′′). : []

. . . ` 0 : []

28

Table 10 Proof derivation for ResponderSplice/AS

I : Un,
J : Un

kI : Key(I)
kJ : Key(J)

` ResponderSplice/AS(I,J,Priv(kI),Pub(kJ)) , : []

. . . ` new(nI : NoncePriv(I,J)). : []

. . . ,
nI : NoncePriv(I,J)

` in(J,x). : [freshPriv(nI)]

. . . ,x : Un ` beginx(I,J). :

[

freshPriv(nI),

?ChalUn
x ()

]

. . . ` encrypt {|Id(I),VerifCC?(nI)|}Pub(kJ) as z. :

[

freshPriv(nI),

!RespCiph
x (I,J)

]

. . . ,z : Un ` encrypt {|Id(J),VerifPC(x),z|}Priv(kI) as z′ :

freshPriv(nI),

!ChalPriv
nI

(I,J),

!RespCiph
x (I,J)

. . . ,z′ : Un ` out(I,J,z′). :

[

freshPriv(nI),
!ChalPriv

nI
(I,J)

]

. . . ` in(y). :

[

freshPriv(nI),

!ChalPriv
nI

(I,J)

]

. . . ,y : Un ` decrypt y as {|Id(J),ClaimCC!(nI)|}Priv(kI). :

[

freshPriv(nI),
!ChalPriv

nI
(I,J)

]

. . . ` endnI (I,J) :

freshPriv(nI),
!ChalPriv

nI
(I,J),

?RespPriv
nI

(J, I)

. . . ` 0 : []

29

6 Multi-Protocol Systems

Theorem 2 may be directly applied to the verification of multi-protocol systems. The
interaction among different protocols, possibly carrying out some common sub-tasks,
is considered an open issue [32], and it is particularly interesting in a global computing
setting, where several security services coexist and are possibly combined together.
However, as discussed by Syverson and Meadows in [31], “problems can arise when
a protocol is interacting with another protocol that does not use a tagging scheme, or
tags data in a different way”. As an example, let us consider the two simple protocols
below:

A B A B
(msg 1.a) ← n−− (msg 1.b) ← n−−
(msg 2.a) −−{A,m,n}kAB

→ (msg 2.b) −−{B,m,n}kAB
→

The two protocols exploit PC hand-shakes based on symmetric cryptography. They
differ from each other because of the identity label inside the ciphertext: in the protocol
on the left-side (protocol a) it is A, i.e. the claimant identity, while in the protocol on
the right-side (protocol b) it is B, i.e. the verifier’s one. At the end of the protocol B
authenticates the message m from A. The two protocols are safe when all participants
run the same protocol. Unfortunately, safety is broken when participants run both the
protocols. Specifically, the following attack can be mounted by the enemy when B is
running protocol a as initiator and protocol b as responder:

E B
(msg 1.b) ← n−−
(msg 1.a) −−n→
(msg 2.a) ← {B,m,n}kAB

−−
(msg 2.b) −−{B,m,n}kAB

→

Interestingly, the attack above cannot be mounted on the tagged version of the proto-
cols, reported below.

A B
(msg 1.a) ← n−−
(msg 2.a) −−{Id(A),Auth(m),ClaimPC(n)}kAB

→

A B
(msg 1.b) ← n−−
(msg 2.b) −−{Id(B),Auth(m),VerifPC(n)}kAB

→

Notice that the two ciphertexts differ because of the nonce tag that disambiguates
whether the identity label should be intended as claimant or verifier of the authenti-
cation session. In other analyses (e.g. [21]) bad interactions among different protocols
are prevented assuming ciphertexts belonging to a protocol to be tagged differently
from ciphertexts belonging to any other protocol. The drawback of this approach is to
prevent all the interactions among different protocols. Our tagging mechanism is less

30

demanding as ciphertexts conveying the same authentication guarantees, even if orig-
inated by different protocols, are tagged in the same way. Theorem 2 proves that any
interaction among different protocols does not break safety. This result makes our sys-
tem suitable for the analysis of complex protocols, possibly composed of sub-protocols
interacting one with each other: each of the sub-components can be analyzed in isola-
tion and, by Theorem 2, the safety of all the sub-components implies the safety of the
protocol as a whole.

7 Conclusion and Related Work

We have proposed a type and effect system for authentication protocols. We have
tested our analysis on several protocols and some results are reported in Table 11: in
all cases, the analysis provide safety proofs for the correct versions of the protocols,
while it consistently fails to validate the flawed versions. The main advantages of our
proposal are

• scalability: since the authentication guarantees are local, safe sequential pro-
cesses (possibly modeling different protocols) may be safely composed together;

• limited human effort: tagging is simple as it just requires to disambiguate the
meaning of identifiers and nonces in some encrypted messages;

• simplicity: the type and effect system is simple yet expressive enough to verify
many existing protocols.

The set of rules presented here and in [14] is general enough for analyzing many of the
authentication protocols presented in literature. Specifically, we can analyze protocols
combining the three kinds of nonce handshakes discussed in Section 2. Notice that the
tagged ciphertexts that are typable, i.e., the ones in the domain of Typeofenc, strictly
determine the class of protocols that the type and effect system can analyze. These
ciphertexts cover many kind of commonly used handshakes, but of course, they are
not the only way to safely achieve authentication. For instance, the fixed version of
the SPLICE/AS authentication protocol, proposed by Gavin Lowe and discussed in
Section 5, does not type-check because of the use of public keys in place of identities.
Another class of protocols being out of the scope of the present system is the one of key-
exchange protocols, using the exchanged session key to authenticate other messages.
In [15] we discuss how the type and effect system might be extended to also cover this
class of protocols. Indeed, the class of typable ciphertexts is, in principle, extendable
to new cases of handshakes, but this requires to reprove the safety theorem. We are
thus currently studying easy-to-verify conditions on such class, that imply the safety
with no need of reproving the whole theorem.

Since the definition of tags and types may require some expertise on the part of
programmers, we have developed a type-checker providing tag and type inference [19],
thus further reducing the human effort required by the analysis and leaving to the user
only the job to translate the protocol in ρ-spi calculus .

Related Work Tagging is not a new idea and it is proposed and used for verification
purposes in [6, 7, 20, 21, 27]. Typically, tagging amounts to add a different label to

31

Table 11 Some Case Studies

Protocols Correct Flawed
CCITT X.509 (3) X
Ban Modified Version of CCITT X.509 (3) X
SPLICE/AS X
Lowe’s fixed version of SPLICE/AS X
Needham-Schroeder Public Key Protocol X
Lowe’s fixed version of Needham-Schroeder Public Key Protocol X
ISO’s Symmetric Key Three Pass Mutual Authentication Protocol X
Private Authentication Protocols [4] X

each encrypted protocol message, so that ciphertexts cannot be confused. Our tagging
is less demanding, as we do not require that every message is unambiguously tagged
since we tag only certain components. In particular, for protocols implemented with
stronger tagging techniques, our tags can be safely removed without compromising the
protocols’ safety.

Our analysis can verify authentication in presence of a fixed, yet unbounded, num-
ber of enemies provided with long-term keys regarded as trusted by honest principals;
in [3], Abadi and Blanchet prove a similar result for a type system for secrecy protocols.
In a recent paper [22], Gordon and Jeffrey propose a type and effect system to check
conditional secrecy, namely a refinement of secrecy where a message is unknown to
the adversary unless particular messages or principals are compromised. Interestingly,
the population of enemies is not fixed in advance and may dynamically grow. Authors
claim that it should be possible to combine that type and effect system with the one for
authentication [21] in order to check authentication even in presence of a dynamically
growing set of enemies engaging as regular participants in protocol sessions.

The Strand Spaces formalism [23, 24, 25, 34] is an interesting framework for study-
ing authentication. There are interesting similarities between our analysis and the way
the three kinds of nonce-handshakes are checked in Strand Spaces. It would be inter-
esting to explore how our type system could be applied in such a framework, in order
to provide mechanical proofs of safety.

The recent work by Bodei et al. on a control-flow analysis for message authenti-
cation in Lysa [8, 9] is also strongly related to our present approach. The motivations
and goals, however, are different, since message authentication concerns the origin of a
message while agreement provides guarantees about the presence in the current session
of the claimant and its willingness to authenticate with the verifier.

As far as compositionality is concerned, we find interesting to mention a logic-
based approach [16, 17] to cryptographic protocol analysis proposed by Datta and oth-
ers: relying on some protocol invariants, authors develop a modular reasoning for se-
cure protocol composition, ensuring that protocols that are proved to be individually
secure do not interact insecurely when they are composed with other protocols. In [26],
Hasebe and Okada refine this approach for proving that a certain ordering among ac-
tions performed by principals holds in every protocol execution. A comparison with

32

these works is left as future work.
In [15], we compare our type and effect system with the one by Gordon and Jeffrey,

drawing on a translation of tagged protocols, validated by our system, into protocols
that type check with Gordon and Jeffrey’s system; this work shows that our tags can
be compiled even in the static types of [21]. This allows the tag inference procedure of
[19] to be exploited for inferring such types.

References

[1] M. Abadi. Secrecy by typing in security protocols. JACM, 46(5):749–786, 1999.

[2] M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. Theor.
Comput. Sci., 298(3):387–415, 2003.

[3] M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. Theo-
retical Computer Science, 298(3):387–415, 2003.

[4] M. Abadi and C.Fournet. Private authentication. In Proceedings of the 2002
Workshop on Privacy Enhancing Technologies, Lecture Notes in Computer Sci-
ence, pages 27–40. Springer-Verlag, 2003.

[5] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148(1):1–70, 1999.

[6] M. Abadi and R. Needham. Prudent engineering practice for cryptographic pro-
tocols. IEEE Transactions on Software Engineering, 22(1):6–15, 1996.

[7] B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging
enforces termination. In Proceedings of Foundations of Software Science and
Computation Structures, pages 136–152, 2003.

[8] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Automatic
validation of protocol narration. In Proceedings of the 16th IEEE Computer Secu-
rity Foundations Workshop (CSFW’03), pages 126–140. IEEE Computer Society
Press, June 2003.

[9] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Control flow
analysis can find new flaws too. In Proceedings of the Workshop on Issues on the
Theory of Security (WITS’04), ENTCS. Elsevier, 2004.

[10] M. Boreale. Symbolic trace analysis of cryptographic protocols. In Proceedings
of ICALP 01, volume 2076, pages 667–681. LNCS 2076, Springer Verlag, 2001.

[11] M. Boreale, R. De Nicola, and R. Pugliese. Proof techniques for cryptographic
processes. In Logic in Computer Science, pages 157–166, 1999.

[12] M. Bugliesi, R. Focardi, and M. Maffei. Principles for entity authentication. In
Proceedings of 5th International Conference Perspectives of System Informatics
(PSI 2003), volume 2890 of Lecture Notes in Computer Science, pages 294–307.
Springer-Verlag, July 2003.

33

[13] M. Bugliesi, R. Focardi, and M. Maffei. Authenticity by tagging and typing.
In FMSE ’04: Proceedings of the 2004 ACM workshop on Formal methods in
security engineering, pages 1–12, New York, NY, USA, 2004. ACM Press.

[14] M. Bugliesi, R. Focardi, and M. Maffei. Compositional analysis of authentica-
tion protocols. In Proceedings of European Symposium on Programming (ESOP
2004), volume 2986 of Lecture Notes in Computer Science, pages 140–154.
Springer-Verlag, 2004.

[15] M. Bugliesi, R. Focardi, and M. Maffei. Analysis of typed-based analyses of
authentication protocols. In Proceedings of 18th IEEE Computer Security Foun-
dations Workshop (CSFW 2005), pages 112–125, 2005.

[16] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system for
security protocols and its logical formalization. In CSFW, pages 109–125, 2003.

[17] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Secure protocol composition.
In FMSE ’03: Proceedings of the 2003 ACM workshop on Formal methods in
security engineering, pages 11–23, New York, NY, USA, 2003. ACM Press.

[18] N. Durgin, J. Mitchell, and D. Pavlovic. A compositional logic for proving secu-
rity properties of protocols. Journal of Computer Security, 11(4):677–721, 2004.

[19] R. Focardi, M. Maffei, and F. Placella. Inferring authentication tags. In WITS
’05: Proceedings of the 2005 workshop on Issues in the theory of security, pages
41–49, New York, NY, USA, 2005. ACM Press.

[20] A. Gordon and A. Jeffrey. Authenticity by typing for security protocols. Journal
of Computer Security, 11(4):451–519, 2004.

[21] A. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic proto-
cols. Journal of Computer Security, 12(3/4):435–484, 2004.

[22] A. Gordon and A. Jeffrey. Secrecy despite compromise: types, cryptography, and
the pi-calculus. In Proceedings of Concur 2005, pages 186–201. Springer-Verlag,
September 2005.

[23] J. D. Guttman and F. J. Thayer. Authentication tests and the structure of bundles.
Theoretical Computer Science, 283(2):333–380, 2002.

[24] J.D. Guttman, F.J. Thayer, J.A. Carlson, J.C.Herzog, J.D. Ramsdell, and B.T.
Sniffen. Trust management in strand spaces: a rely-guarantee method. In Pro-
ceedings of European Symposium on Programming (ESOP 2004), volume 2986
of Lecture Notes in Computer Science, pages 325–339. Springer-Verlag, 2004.

[25] Joshua D. Guttman and F. Javier Thayer. Protocol independence through dis-
joint encryption. In Proceedings of 13th IEEE Computer Security Foundations
Workshop (CSFW’00), pages 24–34. IEEE Computer Society Press, July 2000.

34

[26] K. Hasebe and M. Okada. Non-monotonic properties for proving correctness in
a framework of compositional logic. In Proceedings of Foundations of Computer
Security Workshop (FCS’04), pages 97–113, July 2004.

[27] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on
security protocols. In Proceedings of 13th IEEE Computer Security Foundations
Workshop (CSFW’00), pages 255–268. IEEE Computer Society Press, July 2000.

[28] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1055 of Lecture Notes in Computer Science, pages 147–166.
Springer-Verlag, 1996.

[29] G. Lowe. “A Hierarchy of Authentication Specification”. In Proceedings of the
10th Computer Security Foundation Workshop (CSFW’97), pages 31–44. IEEE
Computer Society Press, 1997.

[30] G. Lowe. A family of attacks upon authentication protocols. Technical Report
1997/5, Department of Mathematics and Computer Science, University of Le-
icester, 1997.

[31] C. Meadows and P. Syverson. Formal specification and analysis of the group
domain of intrepretation protocol using npatrl and the nrl protocol analyzer, 2003.
to appear in Journal of Computer Security.

[32] Catherine Meadows. Open issues in formal methods for cryptographic protocol
analysis. Lecture Notes in Computer Science, 2052:21–36, 2001.

[33] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 1996.

[34] J. Thayer, J. Herzog, and J. Guttman. Strand spaces: Proving security protocols
correct. Journal of Computer Security, 1999. 7(2/3).

[35] Thomas Y. C. Woo and Simon S. Lam. A lesson on authentication protocol de-
sign. Operating Systems Review, 28(3):24–37, 1994.

[36] T.Y.C. Woo and S.S. Lam. “A Semantic Model for Authentication Protocols”. In
Proceedings of 1993 IEEE Symposium on Security and Privacy, pages 178–194,
1993.

A The ρ-Spi Semantics

The dynamics of ρ-spi is formalized by means of a transition relation between con-
figurations, i.e., pairs 〈s,P〉, where s ∈ Act∗ is a trace, P is a (closed) process. Each
transition 〈s,P〉 ` 〈s :: α,P′〉 simulates one computation step in P and records the corre-
sponding action in the trace. The transitions involving a sequential process preserve the
identity identifiers associated with the process, as in 〈s, I .π.S〉 ` 〈s :: α, I .S〉, where
α is the action corresponding to the primitive π.

35

Table 12 Transition System for ρ-spi

Transition rules: We omit the symmetric rule of PAR.
M,N,K ranges over terms: M ::= n,x,(M,N),{M}K ,{|M|}Key(K),key(M),TAG(M)

PAR
〈s,P〉 → 〈s′,P′〉

〈s,P|Q〉→〈s′,P′|Q〉

REPLICATION

〈s, I.!S〉→〈s, I .S|I.!S〉
OUTPUT

〈s, I .out(M).S〉 → 〈s :: out(M), I .S〉

BEGIN

〈s, I .beginN(I,J,M1;M2).S〉 → 〈s :: beginN (I,J,M1;M2), I .S〉

END

〈s, I .endN(I,J,M1;M2).S〉 → 〈s :: endN (I,J,M1;M2), I .S〉

INPUT
s `M′ σ = m.g.u.(M′,M) 6=↑

〈s, I . in(M).S〉 → 〈s :: in(M′), I .Sσ〉

DECRYPT
σ = m.g.u.(M′,M) 6=↑

〈s, I .decrypt M′ as M.S〉 → 〈s :: decrypt M′, I .Sσ〉

ENCRYPT

〈s, I .encrypt M as x.S〉 → 〈s :: encrypt M, I .S[M/x]〉

RES
n /∈ bn(s)∪ fn(s)

〈s, I .new(n).S〉→〈s :: f resh(n), I .S〉

SYMMETRIC KEY
k /∈ bn(s)∪ fn(s)

〈s, let k = sym-key(I1, I2).P〉→〈s :: sym− key(k, I1, I2),P〉

ASYMMETRIC KEY
k /∈ bn(s)∪ fn(s)

〈s, let k = asym-key(I).P〉→〈s :: asym− key(k, I),P〉

36

Table 13 Most General Unifier
M is a ground term, while N may be composed of variables.

Most General Unifier

m.g.u.(M,M) = []
m.g.u.(TAG(M),TAG(N)) = m.g.u.(M,N) if M 6= N
m.g.u.({M}K ,{N}K) = m.g.u.(M,N) if M 6= N
m.g.u.({|M|}key(K),{|N|}key(k)) = m.g.u.(M,N)

m.g.u.(M,x) = [M/x] if M = n,{M′}K ,{|M′|}K ,Pub(K),Priv(K)
m.g.u.((M,N),(M′,N′)) = m.g.u.(M,M′)]m.g.u.(N,N′)
m.g.u.(M,N) =↑ otherwise

Union

σ1]σ2 = σ1∪σ2 x ∈ dom(σ1)∩dom(σ2)⇒ σ1(x) = σ2(x)
σ1]σ2 =↑ otherwise

Table 14 Message Manipulation Rules

OUT
out(M) ∈ s

s `M

PAIR
∀i ∈ [1,2] s `Mi

s ` (M1,M2)

PAIR DES
s ` (M1,M2)

s `Mi ∀i ∈ [1,2]

ENV
n /∈ bn(s)

s ` n

TAG
s `M

s ` TAG(M)

TAG DES
s ` TAG(M)

s `M

KEY PAIR
s ` n

s ` Pub(n),Priv(n)

SYMMETRIC ENCRYPTION
s `M s ` K

s ` {M}K

ASYMMETRIC ENCRYPTION
s `M s ` Key(K)

s ` {|M|}Key(K)

SYMMETRIC DECRYPTION
s ` {M}K s ` K

s `M

ASYMMETRIC DECRYPTION
s ` {|M|}key(K) s ` key(K)

s `M

PUBLIC KEYS
asym− key(k, I) ∈ s

s ` Pub(k)

ENEMY KEYS
asym− key(k,E) ∈ s∨ sym− key(k,E, I) ∈ s

s ` k

37

The set of all possible actions, noted Act, includes the action out(M) generated
by output, beginN(I,J,M1;M2) and endN(I,J,M1;M2) by ‘begin’ and ‘end’, in(M) by
input, decrypt M by decryption, encrypt M by encryption, f resh(n) by restriction and
sym-key(k, I1, I2) and asym-key(k, I) by symmetric and asymmetric key assignment.

Some transitions apply substitutions to processes: formally, a substitution σ : x 7→
M is a function from variables to ground terms. Often substitutions are written ex-
plicitly by [N1/x1, . . . ,Nn/xn]. The application of the substitution σ to the process S is
denoted by Sσ and applies only to free occurrences of the variables in S.

The transitions, in Table 12, are mostly standard: PAR interleaves two different pro-
tocol executions, REPLICATION arbitrarily replicates a principal and OUTPUT allows
a process to send a message on the network. BEGIN and END are self-explanatory.
INPUT requires messages read from the network to be computable by the environment:
the environment knowledge is defined by the message manipulation rules (reported in
Table 14 and discussed below). Moreover, input messages are either bound to variables
or tested by pattern-matching (explained below), a capability that is also available upon
decryption (cf. DECRYPT). ENCRYPT behaves as expected. Notice that the generation
of both names (RES) and keys (SYMMETRIC and ASYMMETRIC KEY) are formal-
ized as semantic transitions in which the freshly generated name/key is required to be
different from all the already used names.

Pattern-matching is formalized by the notion of most general unifier, defined in
Table 13: the most general unifier takes as input a ground term and a term possibly
containing variables and yields a substitution. Specifically, the most general unifier
yields the empty substitution when applied to equal terms and the most general unifier
between M and N when applied to TAG(M) and TAG(N), where the tag TAG is the
same: the side condition M 6= N makes the function m.g.u. deterministic.

The most general unifier between two ciphertexts is more elaborate, as pattern-
matching means decrypting and this requires the decryption key in the second cipher-
text to correspond to the encryption key in the first one. If this happens, then the result
is the most general unifier between the two ciphertext contents; otherwise, the most
general unifier is undefined. It is worth noting that in ρ-spi calculus signature and
encryption are the inverse function of each other.

The most general unifier between a ground term M and a variable x yields the
substitution [M/x]. Notably, we prevent variables to be substituted by tagged terms,
since tags are crucial patterns for authentication and we require them to be explicitly
indicated. Also key-pairs cannot be bound to variables as to prevent private keys to
be deduced by the corresponding public key. The most general unifier between the
pairs (M,N) and (M′,N′) returns the union] of the most general unifier between M
and N and the one between M′ and N ′. In all the other cases the most general unifier
is undefined. The union between two most general unifiers is just the union of the
substitutions yielded by each of them if the two most general unifiers substitute the
same variable with the same term, otherwise their union is undefined.

We use a number of notation conventions. The restriction operator new(n).S is a
binder for name n, the key declarations let k = sym-key(I1, I2) and let k = asym-key(I)
are binders for k, while the input and decryption primitives are binders for the variables
that occur in components Mi; finally, encryption is a binder for variable x. In all cases
the scope of the binders is the continuation process. Similarly, f resh(n), sym−key(k, I)

38

and asym−key(k, I1, I2) are binders for names and their scope is the continuation trace.
The notions of free/bound names and variables, both for processes and traces, arise as
expected. As in companion transition systems, see, e.g. [11], we identify processes up
to renaming of bound variables and names, i.e., up to α-equivalence.

The message manipulation rules, in Table 14, formalize the environment actions.
Rule OUT says that every message sent on the network is known by the environment.
By PAIR and PAIR DES, the environment may construct and destruct pairs. ENV al-
lows the environment to generate a new bound name, not occurring in the trace. TAG

and TAG DES allow the environment to tag and untag messages. By KEY PAIR, given
a term M, the environment can build the private and public component of M. By
SYMMETRIC ENCRYPTION, if the environment knows M and K, then it can encrypt
M with K; by ASYMMETRIC ENCRYPTION, the environment may encrypt messages
using asymmetric cryptography. SYMMETRIC DECRYPTION and ASYMMETRIC DE-
CRYPTION formalize the capability of the environment to decrypt ciphertexts, whose
decryption key is known. By PUBLIC KEYS, all the public keys are known by the
environment. Moreover, by ENEMY KEYS, the environment may be provided with
own key pairs and with long-term keys shared among the other participants. This gives
the possibility to the enemy to start authentication sessions and, generally speaking,
to interact with the other participants by pretending to be a trusted principal. with the
corresponding public one and vice-versa As an example, let us consider the following
transitions :

〈s,A. in(y).decrypt y as {|n|}Priv(kA).0〉 →
〈s :: in({|n|}Pub(kA)),A.decrypt {|n|}Pub(kA) as {|n|}Priv(kA).0〉 →
〈s :: in({|n|}Pub(kA)) :: decrypt{|n|}Pub(kA),0〉

where asym− key(kA,A) ∈ s. A reads the message {|n|}Pub(kA) from the environment
and the most general unifier for input is [{|n|}Pub(kA)/y]. Hence A decrypts the cipher-
text by her own private key Priv(kA). The operation is successful only if the ciphertext
is encrypted with the corresponding public-key and the encrypted message is equal to
n (by pattern-matching).

A.1 Typed ρ-spi calculus

As discussed in Section 4, ρ-spi calculus is equipped with two typed primitives, namely
a typed restriction and a cast operator. These primitives are needed by the type and
effect system but have no significant computational import:

TYPED RES

n /∈ bn(s)∪ fn(s)

〈s, I .new(n : T).S〉→〈s :: f resh(n), I .S〉

CAST

〈s, I . cast M is (x : T).S〉→〈s :: cast(M),S[M/x]〉

TYPED RES behaves as RES while the process cast M is (x : T).S reduces to S[M/x].

39

B Soundness of the ρ-Spi Type and Effect System

In Section B.1 and Section B.2, we prove the soundness and the safety, respectively, of
the ρ-spi type and effect system.

B.1 ρ-Spi Soundness

In the following, the substitution Γ[n : T/n : T ′] denotes the cast of n’s type in Γ from
T ′ to T . If n is not present in Γ or it has type different from T ′, then such a substitution
does not influence Γ. Moreover, J ranges over {�,M : T,P : e,S : e} so that [I;]Γ ` J
denotes an arbitrary judgement.

The Weakening Lemma states that if a typing environment Γ proves a judgement
J , then every well-formed extension of Γ still proves J . Intuitively, if Γ proves J , then
Γ contains all the typing assumptions needed for proving J : hence extending the set of
typing assumptions means extending the set of provable judgements.

Lemma 1 (Weakening) If [I;]Γ,Γ′′ ` J and Γ,Γ′,Γ′′ ` �, then [I;]Γ,Γ′,Γ′′ ` J .

Proof. Trivial as the only typing rule checking the absence of a term in the typing
environment is GOOD ENV and, by hypothesis, Γ,Γ′,Γ′′ ` �. The proof is by straight-
forward induction on the length of the typing derivation of [I;]Γ,Γ′′ ` J .

The Substitution Lemma is a standard tool for proving the preservation of types at run-
time. In fact, as long as a process evaluates, variables are instantiated to dynamic terms:
the Substitution Lemma states that typing judgements are preserved by the substitution
of variables with terms having the same type.

Lemma 2 (Substitution) If [I;]Γ,x : T ` J and Γ `M : T , then [I;]Γ[M/x] ` J [M/x]

Proof. Trivial as typing rules rely on judgements having the form Γ `M : T , where
M is an arbitrary term (not necessarily a variable) and T is the type derived for M (not
necessarily the exact type of M in Γ). The proof is by straightforward induction on the
length of the typing derivation of [I;]Γ,x : T ` J .

In the following, we write names(N) to denote the names in the term N. Similarly,
we write names(e) and var(e) to denote the set of names and variables in the effect
e, respectively. The following rule says that an effect e is well-formed according to a
typing environment Γ, if the names and the variables which e depends on are in the
domain of Γ.

GOOD EFFECT

names(e)∪ var(e)⊆ dom(Γ)

Γ ` e

The following lemma says that if a judgement can be proved according to a typing
environment, then the same judgment can be proved even if a cast from NonceCiph(I,J)
to Un occurs into the typing environment.

40

Lemma 3 (Typability under DownCasting) If [I;]Γ,n : NonceCiph(I,J),Γ′ ` J , then
[I;]Γ,n : Un,Γ′ ` J .

Proof. Trivial, by SUBSUMPTION and by straightforward induction on the length of
the typing derivation of [I;]Γ,n : NonceCiph(I,J),Γ′ ` J .

Moreover, we write N ∈ terms(M) if M is built upon N: for instance, Auth(m) ∈
terms({Auth(m),M}k), n∈ terms(Verif(n)) and k ∈ terms({M}k). Similarly, we write
terms(s) and terms(P) to denote the set of terms in the trace s and the process P,
respectively. The only subtlety regards encryptions and decryptions: indeed, we de-
fine terms(encrypt {M}K as z.S) and terms(decrypt z as {M}K .S) as terms(M) ∪
terms(K)∪ terms(S), thus not considering {M}K as a term. Similar reasoning ap-
plies to encryptions and decryptions through asymmetric cryptography. There is a bit
of overloading in the notation {M}K : in encryptions and decryptions it should be un-
derstood as a piece of syntax specifying the ciphertext content M and the decryption
key K, while in all the other contexts it is a previously generated dynamic term. For
instance, {n}k ∈ terms(s :: encrypt{n}k) but {n}k /∈ terms(encrypt {n}k as z.0). For
easing the presentation we bear this overloading as the context makes clear the meaning
of {M}K .

Definition 3 (Traces and Typing Environment Consistency) Let s be an execution
trace and Γ a typing environment. We say that s and Γ are consistent, written s≺ Γ, if
the following conditions hold:

1. dom(Γ) = bn(s)∪ f n(s)∪{I1, . . . , Im}

2. n ∈ f n(s)∪{I1, . . . , Im} ⇒ Γ(n) = Un

3. s ` N ⇒ Γ,m : Un ` N : Un, with m = names(N)\dom(Γ).

Intuitively, an execution trace s and a typing environment Γ are consistent if:

1. The domain of Γ is composed of the names in the trace s plus some identity
labels.

2. Both the free names in s and the identity labels have type Un.

3. Every term in the knowledge of the environment (namely the set of terms derived
from s according to the rules in Table 14) has type Un once untagged. This item
says that the environment may guess only untrusted terms, i.e., the secrets in Γ
are not leaked out.

Notice that, for typing a term N in the knowledge of the environment, Γ is extended
with a set of untrusted names. Indeed, the environment may generate fresh names and
use free names not in s, thus not belonging to the domain of Γ.

The following lemma states that if s and Γ are consistent, then they are consistent even
after the output of untrusted terms.

41

Lemma 4 (Output and Environment Knowledge) Let Γ be a typing environment, s
a trace and M a term such that s≺ Γ and Γ `M : Un. Then s :: out(M)≺ Γ.

Proof. For proving s :: out(M) ≺ Γ, we need to prove the third condition, namely
s :: out(M) ` N⇒ Γ,m : Un ` N : Un, with m = f n(N)\dom(Γ). Indeed, the first and
second conditions are trivially satisfied. Let s′ = s :: out(M) and Γ′ = Γ,m : Un. The
proof follows by induction on the length of the derivation of s′ ` N. We divide the base
case according to the message manipulation rule applied:

Env Hence N = n, i.e., N is a name. By ENV, s′ ` n and n /∈ bn(s′). Thus n /∈ bn(s)
and, by ENV, s ` n. By induction hypothesis, Γ′ ` n : Un. The proof for PUBLIC

KEYS and ENEMY KEYS follows from a similar reasoning.

Out Let us suppose by contradiction that Γ′ 0 N : Un. Since s ≺ Γ, we get N = M,
i.e., N is the last name sent on the network. By hypothesis, Γ `M : Un and, by
Lemma 1, Γ′ `M : Un. Since N = M, Γ′ ` N : Un, giving a contradiction.

The proof of the induction step proceeds by cases according to the last message ma-
nipulation rule applied (we just discuss some interesting cases):

Asymmetric Decryption We reason by contradiction: let us suppose

s′ ` {|M|}Key(K) s′ ` Key(K) Γ′ 0 M : Un

The judgement Γ′ ` {|M|}Key(K) : Un may be proved either by CIPHERTEXT (via
SUBSUMPTION) or by UNTAGGED CIPHERTEXT (via SUBSUMPTION) or by
UN ASYMM CIPH. Only the former typing rule is interesting, as the other ones
require Γ′ `M : Un, giving a contradiction.

By CIPHERTEXT, M = (RH(N),M′), where M′ has type Un but N might have not
such type. Let us suppose H = CC?: the other cases are similar. We distinguish
two cases depending on whether the encryption key is public or private.

Key = Pub According to CIPHERTEXT, Γ′ `N : NoncePriv(I,J) and Γ′ `Key(K) :
PublicKey(J). Let us suppose I,J /∈ IDE , otherwise Γ′ ` N : Un by SUB-
SUMPTION (Public Names). Since Γ′ ` Key(K) : PrivateKey(J), by induc-
tion hypothesis, s′ 0 Key(K), giving a contradiction.

Key = Priv By CIPHERTEXT, Γ′ ` N : NonceInt(I,J) and Γ′ ` N : Un by SUB-
SUMPTION (Public Nonce). By PAIR, Γ′ `M : Un, giving a contradiction.

Pair Des Let us suppose by contradiction that s′ ` (M,N) and Γ′ 0 N : Un. Indeed, the
reasoning for Γ′ 0 M : Un is the same. By induction hypothesis Γ′ ` (M,N) : Un

and, by the typing rule UNTRUSTED PAIR, Γ′ ` N : Un, thus giving a contradic-
tion.

Intuitively, the following lemma says that if the environment knows a term containing a
ciphertext that cannot be generated by the environment, then such a ciphertext appears
in the execution trace. For sake of readability, in the rest of the proof we do not distin-
guish between ciphertexts originated through symmetric and asymmetric cryptography,
namely we write {M}K to denote both the kinds of ciphertexts.

42

Lemma 5 (Ciphertexts and Traces) If s `M, {N}K ∈ terms(M) and either s 0 N or
s 0 K, then {N}K ∈ terms(s).

Proof. By induction on the length of the derivation of s `M. We divide the base case
according to the message manipulation rule applied:

Env Trivial, as M = n and 6 ∃N,K such that {N}K ∈ terms(n). The reasoning for
PUBLIC and ENEMY KEYS is the same.

Out s contains the action out(M) and, since {N}K ∈ terms(M), {N}K ∈ terms(s) as
desired.

The inductive step proceeds by cases, according to the last message manipulation rule
applied. We just discuss the most interesting cases:

Pair The rule proves s ` M = (M1,M2). Let us suppose that {N}K ∈ terms(M1). If
{N}K ∈ terms(M2), then the reasoning is the same. By PAIR, s ` M1 and, by
induction hypothesis, {N}K ∈ terms(s).

Symmetric Decryption The rule proves s`N ′, given that s`K ′ and s` {N ′}K′ . Since
either s 0 N or s 0 K, {N}K 6= {N ′}K′ . Let us suppose that {N}K ∈ terms(N ′) (if
{N}K ∈ terms(K ′), then the reasoning is similar). Thus {N}K ∈ terms({N ′}K′)
and, by induction hypothesis, {N}K ∈ terms(s).

Symmetric Encryption The rule proves s ` {N ′}K′ , if s ` N ′ and s ` K ′. Hence, we
get {N}K 6= {N ′}K′ . Thus either {N}K ∈ terms(N ′) or {N}K ∈ terms(K ′): by
induction hypothesis, {N}K ∈ terms(s).

Here and for the rest of the paper, we write |α|s to denote the number of occurrences of
the action α in the trace s. Similarly, we write |t|e to denote the number of occurrences
of the atomic effect t in the effect e.
The following definition provides some invariants on traces, processes, typing envi-
ronments and effects. Theorem 3 (Subject Reduction) proves that the evaluation of
well-typed processes preserve these invariants and Theorem 1 (Safety) exploits this
result in order to prove that well-typed processes are safe.

Definition 4 (Balanced Configuration) Let I,J be identity labels in IDP and s be an
execution trace. Let Γ be a typing environment, P a process and e an effect such that
Γ ` P : e. We say that s, P, Γ and e are balanced iff the following conditions hold:

1. s≺ Γ

2. |fresh`(n)|e + |endn(·)|s ≤ 1

3. If N is either {M}K or {|M|}K and N ∈ terms(P), then N ∈ terms(s)

4. P = P1|P2⇒∃e1,e2 s.t. e1 + e2 = e ∧ s,Pi,Γ,ei are balanced, ∀i ∈ [1,2]

5. If ?RespUn
N () ∈ e, then Γ ` N : Un.

43

6.

[?|!]eR ∈ e ∨∃MR ∈ terms(s) s.t. Γ `MR : Enc(·;eR)
⇒

∧

(

beginN(J, I,M1;M2) ∈ s
∃MC ∈ terms(s) s.t. Γ `MC : Enc(eC; ·)

)

Γ(N) = Nonce`(I,J)
` ∈ {Priv, Int}

eR = Resp`
N(J, I,M2)

eC = Chal`N(I,J,M1)

7.

∨

(

freshCiph(N) ∈ e∧Γ ` N : Un

!eR ∈ e

)

⇒

∧

(

beginN(J, I,M) ∈ s
∃MC ∈ terms(s) s.t. Γ `MC : Enc(eC; ·)

)

Γ ` N : NonceCiph(I,J)

eC = Chal
Ciph
N (I,J,M)

eR = RespUn
N ()

8. [!|?]eR ∈ e∨∃MR ∈ terms(s) s.t. Γ `MR : Enc(·;eR)
⇒ beginN(J, I;M) ∈ s

Γ ` N : NonceUn(I,J)

eR = Resp
Ciph
N (J, I,M)

9.

?eC ∈ e
⇒ ∃MC ∈ terms(s) s.t. Γ `MC : Enc(eC; ·)

fresh`(N) ∈ e ∧ ∃MC ∈ terms(s) s.t. Γ `MC : Enc(eC; ·)
⇒ !eC ∈ e

Γ(N) = Nonce`(I,J)
` ∈ {Ciph,Priv, Int}
eC = Chal`N(I,J,M)

The intuitive reading of the balancing conditions is as follows:

1. The execution trace and the typing environment are consistent.

2. Either a nonce is fresh or one end(·) has been asserted by checking its freshness.

3. Every ciphertext in the terms of P appears in the trace.

4. Balancing is propagated through parallel composition.

5. If a term has been received in clear, then it has type Un.

6. J I
←MC−−

MC : Enc(ec; ·)
MR : Enc(·;eR)

eC = Chal`N(I,J,M1)

eR = Resp`
N(J, I,M2)

N : Nonce`(I,J), ` ∈ {Priv, Int}

w

w

w

w

w

w

w

w

w

w

w

w

�

beginN (J, I,M1;M2) •

!eR

w

w

w

w

w

�

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

�

−−MR →
w

w

w

w

w

�

?eR

• endN(I,J,M1 ;M2)

This balancing condition provides an invariant on CC handshakes. If a response
with nonce N and message M2 is either received (?eR ∈ e), or justified (!eR ∈
e), or sent on the network (MR ∈ terms(s)), then beginN(J, I,M1;M2) has been
asserted and a challenge with nonce N and message M1 has been sent on the
network (MC ∈ terms(s)).

44

7. J I
←MC−−

MC : Enc(ec; ·)
eC = Chal

Ciph
N (I,J,M)

eR = RespUn
N ()

N : NonceCiph(I,J)

w

w

w

w

w

w

w

w

w

w

�

beginN(J, I,M) •

!eR

w

w

w

w

w

w

�

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

�

−−N→
w

w

w

w

w

�

• endN(I,J,M)

This balancing condition provides an invariant on CP handshakes. If either the
nonce is fresh (freshCiph(N) ∈ e) and has type Un (Γ ` N : Un) or the output in
clear of the nonce N is justified (!eR ∈ e), then beginN(J, I,M1) has been asserted
and a challenge with nonce N and message M1 has been sent on the network
(MC ∈ terms(s)).

8. J I
← N−−

MR : Enc(·;eR)

eR = Resp
Ciph
N (J, I,M)

N : NonceUn(I,J)

w

w

w

w

w

w

w

w

w

w

w

w

�

beginN(J, I;M) •

!eR

w

w

w

w

w

�

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

�

−−MR →
w

w

w

w

w

�

?eR

• endN(I,J;M)

This balancing condition provides an invariant on PC handshakes. If a response
with nonce N and message M is either received (?eR ∈ e), or justified (!eR ∈ e),
or sent on the network (MR ∈ terms(s)), then beginN(J, I;M) has been asserted.

9. J I
←MC−−

MC : Enc(ec; ·)
eC = Chal`N(I,J,M)

N : Nonce`(I,J)
` ∈ {Ciph,Priv, Int}

?eC

w

w

w

w

w

w

�

w

w

w

w

w

w

w

�

fresh`(n),
!eC

This balancing condition is composed of two implications. The former states
that if a challenge with nonce N and message M has been received (?eC ∈ e),
then such a challenge has been sent on the network (MC ∈ terms(s)). The latter
states that if the nonce N is fresh (fresh`(N) ∈ e) and a challenge with nonce N

45

and message M is sent on the network (MC ∈ terms(s)), then such a challenge
has been generated by an honest principal (!eC ∈ e).

Condition 2 is used in the proof of Theorem 1 for verifying the freshness of end as-
sertions, while conditions 5, 6, 7, 8 and 9 are used for proving that each end assertion
is preceded by the corresponding begin assertion. The other conditions are needed in
the proof of Theorem 3 in order to show that the previous ones are preserved during
process reduction.

The Subject Reduction Theorem proves that typability and balancing conditions are
preserved at run-time.

Theorem 3 (Subject Reduction) Let P and Q be processes, Γ a typing environment,
s a trace and e an effect such that

• Γ ` � and Γ ` e

• 〈s,Q〉 → 〈s :: α,P〉

• Γ ` Q : e

• s,Q,Γ,e are balanced

then it is possible to find an environment Γ′ and an effect e′ such that

• Γ′ ` � and Γ′ ` e′

• Γ′ = Γ,names(α)\names(s) : T or
Γ[n : Un/n : NonceCiph(I,J)]

• Γ′ ` P : e′

• s :: α,P,Γ′,e′ are balanced

Proof. We reason by induction on the length of the derivation for 〈s,Q〉 → 〈s :: α,P〉
(if Q is a parallel composition of processes, then such a derivation is composed of more
than one step). The proof of the base case proceeds by cases, according to the semantic
rule applied.

REPLICATION Γ ` I.!S : [] → Γ ` I.!S|I .S : []

REPLICATION proves Γ ` I.!S : [] only if Γ ` I .S : []. Since the type and effect
system is syntax directed, typing rules can be read upside-down. Thus, from
Γ ` I.!S : [] we derive Γ ` I .S : [] and, by PAR, Γ ` I.!S|I .S : [].

SYMMETRIC KEY Γ ` let k = sym−key(I1, I2).P : [] →
Γ,k : SharedKey(I1, I2)`P : []

The typed reduction depicted above follows from SYMMETRIC KEY.

46

ASYMMETRIC KEY Γ ` let k = asym−key (I).P : [] →
Γ,k : Key(I) ` P : []

The typed reduction depicted above follows from ASYMMETRIC KEY.

NEW Γ ` A.new(n : Nonce`(A, I)).S : e− [fresh`(n)] →

Γ,n : Nonce`(A, I) ` A.S : e

By IDENTITY and NEW, A;Γ ` new(n : Nonce`(A, I)).S : e− [fresh`(n)] and
A;Γ,n : Nonce`(A, I) ` S : e. Applying IDENTITY, Γ,n : Nonce`(A, I)`A.S : e.

Let e′ ∈ {e,e+[fresh`(n)]}. We need to prove that the target configuration com-
posed of s :: f resh(n),A.S,Γ,n : Nonce`(A, I),e′ is still balanced.

Conditions 1 We need to prove that s :: f resh(n) ≺ Γ,n : Nonce`(A, I). We
prove each of the conditions in Definition 3.

1. By hypothesis s ≺ Γ. Hence dom(Γ) = f n(s)∪ bn(s)∪ {I1, . . . , Im}.
The result follows from observing that n ∈ bn(s :: f resh(n)).

2. Trivial, by observing that s≺Γ and n /∈ f n(s :: f resh(n))∪{I1, . . . , Im}.

3. Trivial, by the balancing of the source configuration and by observing
that s :: f resh(n) ` N⇒ s ` N.

Condition 2 By the semantic rule RES, n /∈ f n(s)∪ bn(s) and |endn(·)|s = 0.
Since Γ` e, n /∈ names(e) and |fresh`(n)|e = 0. Thus we obtain the equality
|fresh`(n)|e′ + |endn(·)|s:: f resh(n) = 1, as desired.

Condition 9 Let us suppose by contradiction that condition 9 does not hold on
the target configuration, i.e., let us suppose that ∃MC ∈ terms(s) s.t. Γ `
MC : Enc(Chal`n(I,J,M);) and !Chal`n(I,J,M) /∈ e. Thus n ∈ f n(s)∪bn(s).
By the semantic rule RES, n /∈ f n(s)∪bn(s), giving a contradiction.

BEGIN Γ ` A.beginN(A, I,M1;M2).S : e+[?Chal`N(I,A,M1)] →

Γ ` A.S : e+[!Resp`
N(A, I,M2)]

By IDENTITY and BEGIN, A;Γ ` beginN(A, I,M1;M2).S : e+[?Chal`N(I,A,M1)]

and A;Γ ` S : e+[!Resp`
N(A, I,M2)]. The result follows from IDENTITY.

We need to check that conditions 6, 7 and 8 still hold on the target configuration
composed of s :: beginN(A, I,M1;M2),A.S,Γ,e+[!Resp`

N(A, I,M2)]. (the proof
for the other ones follows directly from observing that the source configuration
is balanced.)

Conditions 6 and 7 Since the source configuration is balanced and the effect in
the source configuration contains ?Chal`N(I,A,M1), condition 9 proves that
∃M ∈ terms(s) such that Γ `M : Enc([Chal`N(I,A,M1)]; ·), as desired.

47

Condition 8 Let us suppose by contradiction that condition 8 does not hold on
the target configuration. Thus beginN(A, I;M2) /∈ s :: beginN(A, I,M1;M2),
with Γ(N) = NonceUn(I,A). Hence, M1 6= (). The contradiction arises as,
by syntactic restriction on the challenge effect, M1 = ().

INPUT Γ ` A. in(M).S : e− [?ChalUn
M (),?RespUn

M ()] →
Γ,m : Un ` A.S[U] : e[U]
where σ = m.g.u.(M′,M), α = in(M′) and m = f n(M′)\dom(Γ)

IDENTITY and INPUT prove A;Γ` in(M).S : e− [?ChalUn
M (),?RespUn

M ()] and A;Γ,
vars(M) : Un ` S : e. By the semantic rule INPUT, s ` M′. By the balancing
condition 1, s ≺ Γ. Thus Γ,m : Un `M′ : Un, where m are the names originated
by the enemy by the message manipulation rule ENV (in Table 14), namely m =
f n(M′)\dom(Γ). By Lemma 2 (the Substitution Lemma) and IDENTITY, Γ,m :
Un ` A.Sσ : eσ.

We need to prove that the target configuration is still balanced. The insertion
of both ?ChalUn

M () and ?RespUn
M () may break only condition 5. Furthermore, the

trace and the process are modified and conditions 3, 6, 8 and 9 might fail.

Condition 3 The input may increase the set of terms in S. Since they appear in
the action in(M′), condition 3 holds.

Condition 5 Trivial as every input message has type Un.

Conditions 6 and 8 Let us suppose by contradiction that condition 6 does not
hold on the target configuration, i.e., ∃MR ∈ terms(s :: in(M′)) such that Γ`
MR : Enc(·; [Resp`

N(J, I,M2)]), with Γ(N) = Nonce`(I,J) and `∈{Priv, Int},
and @MC,M1 such that beginN(I,J,M1;M2) ∈ s, MC ∈ terms(s) and Γ `
MC : Enc([Chal`N(I,J,M1)]; ·). Since, by hypothesis, condition 6 holds on
the source configuration, MR /∈ terms(s).
By an inspection of the typing rules for ciphertexts MR = {RH(N),M′}K .
We prove that either s 0 N or s 0 K: by Lemma 5, this implies MR ∈
terms(s), giving a contradiction. We distinguish two cases:

Γ(K) ∈ {SharedKey(I,J),PrivateKey(I)} By hypothesis, s ≺ Γ and, by
the third condition of Definition 3, s 0 K.

Γ ` K : PublicKey(J) By an inspection of Typeofenc, ` = Priv. Hence
Γ(N) = NoncePriv(I,J). By hypothesis, s≺ Γ and, by the third condi-
tion of Definition 3, s 0 N.

The reasoning for condition 8 is the same.

Condition 9 Let us suppose by contradiction that ∃MC ∈ terms(s :: in(M′)) such
that Γ `MC : Enc([Chal`N(I,J,M)]; ·), fresh`(N) ∈ e and !Chal`N(I,J,M) /∈
e′, with Γ(N) = Nonce`(I,J) and ` ∈ {Ciph,Priv, Int}. Since condition 9
holds on the source configuration, MC /∈ terms(s).
By an inspection of the typing rules for ciphertexts, MC = {RH(N),M′}K .
As in the previous item, it is easy to prove that either s 0 N or s 0 K. By

48

Lemma 5, this implies MC ∈ terms(s), giving a contradiction.

OUTPUT Γ ` A.out(N).S : e− [!ChalUn
N ()] → Γ ` A.S : e

By IDENTITY and OUTPUT, A;Γ ` out(N).S : e− [!ChalUn
N ()] and A;Γ ` S : e.

By IDENTITY, Γ ` A.S : e. The only interesting condition for the balancing of
the target configuration is condition 1, which is trivially proved by Lemma 4.

DECRYPTION
Γ ` A.decrypt {|M′|}key(K) as {|M|}key(K).S : e →

Γ ` A.Sσ : e+?eC+?eR[U] where U = m.g.u.(M,M′)

Let us suppose the decryption to be performed by asymmetric cryptography.
(the reasoning for symmetric cryptography is similar.) Let vars(M) = x. By
IDENTITY and DECRYPT, A;Γ,x : T ` S : e+?eC+?eR, where Γ,x : T ` M−1 :
Enc(eC;eR). Types are assigned according to function Typeofenc in Table 5.
We show that Lemma 2 (the Substitution Lemma) can be applied in the case of
ciphertexts originated in CC challenges. (the reasoning for ciphertexts originated
in other kinds of nonce handshakes is similar.)

By CIPHERTEXT, M′ = RCC?(N), We distinguish two cases, depending on
whether the encryption key is public or private:

Key = Pub and Γ ` Pub(K) : PublicKey(A) All the free variables in M are typed
by Un, but the one tagged by RCC? which is typed by NoncePriv(I,A).
By DECRYPT, the received ciphertext has type Un. The judgment can
be proved either by CIPHERTEXT (via SUBSUMPTION) (and N has type
NoncePriv(I,A)) or by UN ASYMM CIPH as, by SUBSUMPTION (Public
Key), the encryption key is untrusted, i.e., Γ ` Pub(K) : Un. In this case,
Γ ` N : Un and, by the subtyping rule (Tainted Name), we get Γ ` N :
NoncePriv(I,A). All the other terms in the received ciphertext, once un-
tagged, have type Un as well as the corresponding variables in M.

Key = Priv and Γ ` Priv(K) : PrivateKey(I) The free variables in M are typed
by Un, but the one tagged by RCC? which is typed by NonceInt(I,A). By
DECRYPT, the received ciphertext has type Un. If I /∈ IDE , then the judg-
ment is proved by CIPHERTEXT (via SUBSUMPTION) and, according to
this rule, N has type NonceInt(I,A). If I ∈ IDE , then the judgement can
be proved even by UN ASYMM CIPH and N might have type Un: by SUB-
SUMPTION (Public Names), if I ∈ IDE , then Un <: NonceInt(I,A). All the
other terms in the received ciphertext, once untagged, have type Un as well
as the corresponding variables in M.

Hence Lemma 2 can be applied and Γ ` A.Sσ : e+?eC+?eRσ.

The application of σ to S does not break the balancing condition 3 as every
ground term substituted to variables in S appears in α. We need to prove that
adding challenge and response effects keeps balanced the target configuration.

49

eC 6= [] We need to check that condition 9 still holds on the target configuration.
Let us suppose by contradiction that it does not. Since the source configu-
ration is balanced, {|M′|}key(K) /∈ terms(s). Since condition 3 holds on the
source configuration, {|M′|}key(K) ∈ terms(s), thus giving a contradiction.

eR 6= [] We need to check that condition 6 and 8 hold on the target configuration.
Let us suppose by contradiction that condition 8 does not hold. (the rea-
soning for condition 6 is the same.) Thus beginN(I,J;MR) /∈ s, with eR =

Resp
Ciph
N (I,J,MR). By hypothesis, condition 3 holds on the source config-

uration. Hence {|M′|}key(K) ∈ terms(s). Since Γ ` {|M′|}key(K) : Enc(·;eR),
by condition 8, beginN(I,J;MR) ∈ s, thus giving a contradiction.

ENCRYPTION Γ ` A.encrypt M as z.S : e+!eR → Γ ` A.S[M/z] : e+!eC

The judgement Γ ` A . S[M/z] : e+!eC, where Γ ` M : Enc(eC;eR), is proved
applying the subtyping rule (Trusted Ciphertext), Lemma 2 (the Substitution
Lemma) and IDENTITY. The only interesting point is the balancing of the target
configuration:

eC 6= [] We need to check that condition 9 still holds on the target configuration.
Let us suppose that eC = Chal`N(A, I,MC) and Γ(N) = Nonce`(A, I). The
proof for the first implication is trivial and follows from the balancing of the
source configuration. Since Γ`M : Enc(eC;eR), M ∈ terms(s :: encrypt M)
and !eC belongs to the effect in the target configuration, the second one
holds as well.

eR 6= [] We need to check that conditions 6 and 8 still hold on the target configu-
ration. Let us suppose by contradiction that condition 8 does not hold: then
begin(A, I;MR) /∈ s with eR = Resp

Ciph
N (A, I,MR). By hypothesis, condition

8 holds on the source configuration. Since !eR belongs to the effect in the
source configuration, begin(A, I;MR) ∈ s, giving a contradiction. The proof
for condition 6 is similar.

CAST Γ ` A. cast N is (x : Un).S : e+[!RespUn
N ()] → Γ ` A.S[N/x] : e

We distinguish two cases: if Γ ` N : Un (and Γ ` N : NonceCiph(I,A) by SUB-
SUMPTION (Tainted Nonce)), then the result follows from IDENTITY and Lemma
2 (the Substitution Lemma). If Γ(N) = NonceCiph(I,A), then the result follows
applying IDENTITY, Lemma 3 and Lemma 2.

END
Γ ` A. endn(A, I,M1;M2).S : e+ e′ → Γ ` A.S : e

e′ = [fresh`(n), !Chal`n(A, I,M1),?Resp`
n (I,A,M2)]

50

By IDENTITY and END, A;Γ ` endn(A, I,M1;M2).S : e+e′. and A;Γ ` S : e. The
result follows from IDENTITY. We need to check that the target configuration is
still balanced.

Condition 2 Trivial, by the balancing of the source configuration and an inspec-
tion of the target one.

Condition 9 The second implication might fail if fresh`(n) ∈ e. However, by
condition 2, fresh`(n) /∈ e.

The inductive step regards the parallel composition of processes:

PAR Γ ` P1|P2 : e1 + e2 → Γ′ ` P′1|P2 : e′1 + e2

By PAR, Γ ` Pi : ei, with i∈ [1,2]. Let us suppose 〈s,P1〉→ 〈s :: α,P′1〉. (the sym-
metric case is analogous.) By inductive hypothesis, we can find an environment
Γ′ and an effect e′1 such that Γ′`P′1 : e′1.

If Γ′ = Γ,names(α)\names(s) : T , then, by Lemma 1 and PAR, Γ′`P′1|P2 : e′1 +

e2. If Γ′ = Γ[n : Un/n : NonceCiph(I,J)], then, by Lemma 3 and PAR, Γ′`P′1|P2 :
e′1 + e2.

We need to prove that the target configuration is balanced. By hypothesis the
source configuration is balanced and, by condition 4, s,Pi,Γ,ei are balanced,
∀i∈ [1,2]. By induction hypothesis, even s :: α,P′1,Γ

′,e′1 are balanced. It remains
to prove that s :: α,P′1|P

′
2,Γ′,e′1 + e2 are balanced.

Condition 1 Since Γ′,s :: α,P′1,e
′
1 are balanced, s :: α≺ Γ′ as desired.

Condition 2 We just discuss the two interesting cases, i.e., α = f resh(n) and
α = endn(·).

α = f resh(n) By the semantic rule RES, n /∈ names(s) and, by condition
1, n /∈ dom(Γ). Since Γ ` e, n /∈ names(e1)∪ names(e2) and the in-
equality trivially holds.

α = endn(·) By the typing rule END, fresh`(n) ∈ e1. By condition 2, we
get endn(·) /∈ s and fresh`(n) /∈ e2.
By induction hypothesis s :: endn(·),P′1,Γ

′,e′1 are balanced: by condi-
tion 2 and the typing rule END, fresh`(n) /∈ e′1.
Hence |fresh`(n)|e′1+e2

= 0 and |endn(·)|s::endn(·) = 1, getting 0+1≤ 1
as desired.

Condition 3, 6, 7 and 8 Trivial, by the balancing of s,P1|P2,Γ,e1 + e2, condi-
tion 4 and induction hypothesis.

Condition 4 Trivial, by the balancing of the source configuration and by induc-
tion hypothesis.

Condition 9 The first implication is trivially proved by the balancing of the
source configuration and induction hypothesis. Let us suppose by con-
tradiction that the second implication does not hold, i.e., fresh`(n) ∈ e′1 +

51

e2 and ∃M ∈ terms(s :: α) such that Γ ` M : Enc(Chal`n(I,J,M1); ·) and
!Chal`n(I,J,M1) /∈ e′1 +e2. The only interesting case is when α = endn(I,J,
M1;M2) with fresh`(n) ∈ e2 as the atomic effect !Chal`n(I,J,M1) is re-
moved by the typing rule END, i.e., e1 = e′1 +[fresh`(n), !Chal`n(I,J,M1),

?Resp`
n(J, I,M2)]. Since the source configuration is balanced and fresh`(n)

belongs to e1, by condition 2, fresh`(n) /∈ e′1 + e2, giving a contradiction.

B.2 ρ-Spi Safety

In the following, we formalize the concept of proof-tree for process judgements. Intu-
itively, a proof-tree for Γ ` P : e has the form

Γm ` �

I;Γm ` 0 : []
NIL

....
Γ1 ` P1 : e1 side conditions

Γ ` P : e
RULE

Each leaf is labeled by NIL as it is the only rule whose hypothesis does not contain
any process judgement. Notice that branching in the proof tree may happen because
of PAR, whose hypothesis is composed of two process judgements. More formally, we
define a proof-tree τ according to the following grammar:

τ = ρ.τ | (τ1|τ2)
ρ = (RULE,Γ ` P : e) | (RULE, I;Γ ` S : e)

We denote a path λ in τ from a node ρ1 to a descendant ρn by ρ1 → . . .→ ρn or by
ρ1→

∗ ρn when we are not interested in showing the intermediate nodes.
Let us consider the path λ = ρ1→

∗ ρi→ ρi+1→
∗ ρn, with ρi ∈ {(RULEi,Γi ` Pi :

ei),(RULEi, I;Γi ` Si : ei)} and ρi+1 ∈{(RULEi+1,Γi+1 `Pi+1 : ei+1),(RULEi+1, I;Γi+1 `
Si+1 : ei+1)}.

We say that the atomic effect t is inserted along λ if t /∈ ei and t ∈ ei+1. Similarly,
we say that t is removed along the path λ if t ∈ ei and t /∈ ei+1. Analogously, we say
that the name n is inserted into the typing environment along λ if n /∈ dom(Γi) and
n ∈ dom(Γi+1).

Lemma 6 (Proof Trees and Effects) Let τ be a proof tree for Γ `P : e and λ be a path
in τ leading from the root to a leaf. Then every atomic effect in e is removed along the
path λ.

Proof. Trivial as the null process is type-checked only under empty effect.

The following lemma says that the domain of the typing environment monotonously
increases along a path in a proof-tree.

Lemma 7 (Environment Monotonicity) Let λ be the path (RULE,Γ ` P : e)→∗ ρ′,
with ρ′ ∈ {(RULE’,Γ′ ` P′ : e′),(RULE’, I;Γ′ ` S : e′)}, in the proof-tree τ. Then
dom(Γ)⊆ dom(Γ′).

52

Proof. Trivial by an inspection of the typing rules in Table 7.

Intuitively, the following lemma states that if a process type-checks with effect e, then
e cannot contain more than one challenge atomic effect for every nonce.

Lemma 8 (Uniqueness of Challenges) Let P be a process, Γ a typing environment
and e an effect s.t.

1. Γ ` P : e

2. e = e′+[!Chal`N(I,J,M)]

3. Γ ` e

4. e = e′′+ |fresh`(N)| ⇒ fresh`′(N) /∈ e.

Then @`′ s.t. !Chal`
′

N(·) ∈ e′.

Proof. Let τ be the proof tree for Γ ` P : e and λ be a path leading from the root to
a leaf. By Lemma 6, the atomic effect !Chal`N(·) is removed along λ. The only typing
rule achieving this task is END, which removes fresh`(N) as well.

Let us suppose by contradiction that ∃`′ such that !Chal`
′

N(·) ∈ e′. Thus either the
atomic effects fresh`(N) and fresh`′(N) are in e, or at least one of them is inserted in
λ by RES. The former case is not possible because of condition 4 in the hypothesis.
Even the latter case gives rise to a contradiction as typing new(n : T) requires that N
is not in the domain of the typing environment and, by Lemma 7 , N /∈ dom(Γ). Since
Γ ` e, N ∈ dom(Γ) giving a contradiction.

The Safety Theorem exploits the preservation of the balancing conditions under pro-
cess evaluation for proving the safety of well-typed processes.

Theorem 1 (Safety) Let P be a process. If I : Un ` P : [], where I are the identities in
P, then P is safe.
Proof. We need to show that every trace generated by P is safe. We reason by
induction on the length of the derivation of 〈ε,P〉 →∗ 〈s,Q〉. The base case is the null
derivation which trivially holds as the null trace ε is safe.

Let 〈ε,P〉 →∗ 〈s, I .endn(I,J,M1;M2).S|Q〉 → 〈s :: endn(I,J,M1;M2), I .S|Q〉 be a
semantic derivation leading to an end assertion.

The proof is divided in two steps. First, we prove that beginn(J, I,M1;M2) ∈ s,
thus showing that every endn(I,J,M1;M2) in s is preceded by a beginn(J, I,M1;M2)
(Non-Injective Agreement). Then, we prove that s does not contain actions having the
form endn(·): this implies that every endn(I,J,M1;M2) in s is preceded by a distinct
beginn(J, I,M1;M2) (Agreement).

Non-Injective Agreement By Theorem 3, ∃Γ,e such that Γ ` I .endn(I,J,M1;M2).S|
Q : e. By an inspection of the typing rules, that judgement is proved by PAR and
END. Hence, fresh`(n) ∈ e, !Chal`n(I,J,M1) ∈ e and ?Resp`

n(J, I,M2) ∈ e. We
proceed by cases according to `: each of these cases correspond to a kind of
nonce handshake.

53

` = Un (PC handshakes) By syntactic restriction, M1 = (). By the balancing
condition 8, we get beginn(J, I;M2) ∈ s, as desired.

` = Ciph, (CP handshakes) By syntactic restriction, M2 = (). Since ?RespUn
n (J, I)∈

e, by the balancing condition 5, Γ ` n : Un. Since freshCiph(n) ∈ e, by the
balancing condition 7, beginn(J, I,M′1) ∈ s and ∃M ∈ terms(s) such that
Γ′ `M : Enc([ChalCiph

n (I,J,M′1)]; ·). By condition 9, !ChalCiph
n (I,J,M′1) ∈ e

and by Lemma 8, M1 = M′1. Hence beginn(J, I,M1) ∈ s, as desired.

` ∈ {Priv, Int}, (CC handshakes) Since fresh`(n)∈ e, n has been generated with
type Nonce`(I,J) and, by Theorem 3, the type of n does not change, i.e.,
Γ(n) = Nonce`(I,J). By condition 6, beginn(J, I,M′1;M2) ∈ s and ∃M ∈
terms(s) such that Γ ` M : Enc([Chal`n(I,J,M

′
1)]; ·). By condition 9, we

get !Chal`n(I,J,M
′
1) ∈ e and, by Lemma 8, M1 = M′1. Hence we have that

beginn(J, I,M1;M2) ∈ s, as desired.

Non-Injective Agreement By condition 2, endn(·) /∈ s.

Theorem 2 (Strong Compositionality) Let P be the process keys(k1, . . . ,kn).(I1.!S1|
. . . |Im.!Sm) and I1, . . . , Im be the identities in P. Then I1, . . . , Im : Un ` P : [] if and only
if I1, . . . , Im : Un ` keys(k1, . . . ,kn).Ii.!Si : [],∀i ∈ [1,m].
Proof. Trivial, by an inspection of rule PAR.

54

