
In Proceedings of 14 th Nordic Conference on Secure IT Systems (NordSec’09)
Springer LNCS 5838

Blunting Differential Attacks
on PIN Processing APIs?

Riccardo Focardi1, Flaminia L. Luccio1, and Graham Steel2
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Abstract. We propose a countermeasure for a class of known attacks
on the PIN processing API used in the ATM (cash machine) network.
This API controls access to the tamper-resistant Hardware Security
Modules where PIN encryption, decryption and verification takes place.
The attacks are differential attacks, whereby an attacker gains informa-
tion about the plaintext values of encrypted customer PINs by making
changes to the non-confidential inputs to a command. Our proposed fix
adds an integrity check to the parameters passed to the command. It is
novel in that it involves very little change to the existing ATM network
infrastructure.
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1 Introduction

In the international ATM (cash machine) network, users’ personal identification
numbers (PINs) have to be sent encrypted from the PIN entry device (PED) on
the terminal to the issuing bank for checking. Issuing banks cannot expect to
securely share secret keys with every cash machine, and so the PIN is encrypted
under various different keys as it passes through the network. Typically, it will
first be encrypted in the PED under a key shared with the server or switch
to which the ATM is connected. The PIN is then decrypted and re-encrypted
under the key for an adjacent switch, to which it is forwarded. Eventually, the
PIN reaches a switch adjacent to the issuing bank, by which time it may have
been decrypted and re-encrypted several times. The issuing bank has no direct
control over what happens in the intermediate switches, so to establish trust, the
internationally agreed standards ANSI X9.8 and ISO 9564 stipulate the use of
tamper proof cryptographic hardware security modules (HSMs). In the switches,
these HSMs protect the PIN encryption keys, while in the issuing banks, they
also protect the PIN derivation keys (PDKs) used to derive the customer’s PIN
from non-secret validation data such as their personal account number (PAN).
All encryption, decryption and checking of PINs is carried out inside the HSMs.
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The HSMs have a carefully designed API providing functions for translation
(i.e. decryption under one key and encryption under another) and verification
(i.e. PIN correctness checking). The API has to be designed so that even if an
attacker obtains access to the host machine connected to the HSM, he cannot
abuse the API to obtain customer PINs.

In the last few years, several attacks have been published on the APIs in use
in these systems [7, 10, 12]. Very few of these attacks directly reveal the PIN.
Instead, they involve the attacker calling the API commands repeatedly with
slightly different parameter values, and using the results (which may be error
codes) to deduce the value of the PIN. High-profile instances of many PINs
being stolen from a hacked switch has increased interest in the problem [1]. In
April 2009, a Verizon Data Breach report and a subsequent interview with the
report’s author in the press confirmed publicly for the first time that PINs are
being extracted from HSMs on a wide scale, and that organised criminal gangs
are actually implementing attacks “that a year ago were thought to be only
academically possible” [2, 3].

We are concerned with researching improvements to the PIN processing in-
frastructure that could mitigate these attacks. PIN recovery attacks have been
formally analysed before, but previously the approach was to take a particu-
lar API configuration and measure its vulnerability to combinations of known
attacks [16]. In recent work, we proposed an extension to language based in-
formation flow analysis to take account of cryptographic primitives designed to
assure data integrity, in particular MACs [11]. We showed how PIN process-
ing APIs could be extended with MACs to counteract differential attacks, and
showed how this revised API type-checked under our framework. However, that
work was rather theoretical, and did not attempt to explain how our proposal
could be put into practice. In particular, for our proposal to be feasible in the
short term, it needs to be adapted to take into account the constraints of the
existing ATM infrastructure. In this paper we outline what we believe to be a
practical scheme. We assess its impact on security and the amount of changes
that would be required to the ATM network to put it into practice.

The rest of this report proceeds as follows: in section 2 we first review the PIN
processing APIs we are interested in, and then in section 3 the known attacks.
In section 4 we detail our fix, show how it improves security, and discuss the
implementation of our proposal. In section 5 we compare our scheme to other
proposals in the literature, we then conclude in section 6.

2 Background

In this section we first introduce the architectural model and we then revise some
of the security APIs used for financial Personal Identification Number (PIN)
verification. We focus on the ones that have been shown to be critical for PIN
security when the HSM is in operational mode, i.e. when it is processing normal
transactions from ATMs. Most HSMs support a further mode of operation such
as privileged mode or security officer login which is used, e.g., for loading new



cryptographic keys, but generally this mode requires physical access to the HSM
in order to enter codes on a keypad or present smartcards. Attacks at this level
are considered out of scope for this paper.

2.1 The Architecture

Let us recall the ATM network structure [12]: the customer inserts the card and
keys in the related PIN at and ATM of the acquiring bank. The PIN has to travel
to the issuing bank3, i.e. the bank where the customer has the account. Most of
the time the acquiring bank and the issuing bank do not coincide, and may be
located at great distance. In this case the PIN has to travel along a network of
intermediary switches, encrypted via different symmetric keys: the issuing bank
shares a key with the first neighbouring switch, this switch shares another key
with the next switch, and so on. Thus, messages arriving at a switch have to be
decrypted and re-encrypted with the new key. When messages containing the
PIN arrive at the issuing bank, this bank has to confirm the association between
the PIN and the Personal Account Number (PAN), i.e. an identifying account
number associated with each users account.

2.2 PIN Management APIs

In the previous section we have observed how PINs travelling along the network
have to be decrypted and re-encrypted under a different key: This is done us-
ing a translation API. There is a further complication however: PINs have to
be formatted into 64-bit blocks for encryption under the 3DES cipher used in
the network. Different countries, manufacturers, and banking organisations have
proposed different formats for the block, some of which are now standardised in
ISO 9564. The different block formats reflect the different capabilities of different
nodes in the network (for example, some require the encrypting device to gen-
erate a fresh random number). Not all switches are able (or willing) to support
all known PIN formats. Thus, the translation function might need to reformat
messages under newer or older formats accepted by the next switch. In some
cases, e.g., when the output format is ISO-0, the PAN related to the PIN has
also to be specified. When the PIN reaches the issuing bank, its correspondence
with the PAN is checked via a verification API. Even at the verification API,
several different PIN block formats might be supported.

ISO-1 and ISO-0 formats. We now illustrate ISO-1 and ISO-0 formats, as we
will often refer to them when describing the attacks. We report all the other
commonly used formats in appendix A.

3 Chip based cards now support the possibility of checking the PIN offline, i.e. checking
it on the chip. However, under most schemes, this is intended for point-of-sales
transactions. For cash advances and ATM transactions, an online PIN check is still
required. Furthermore, large countries like the USA do not have chip-based card
schemes in widespread use.



ISO-1 supports PINs from 4 to 12 digits in length. The formatted PIN ap-
pears as follows:

1 L P P P P P/R P/R P/R P/R P/R P/R P/R P/R R R

In particular, 1 identifies the ISO-1 format, L is the length of the PIN, P are the
PIN digits while P/R is either a PIN digit or the pad random value R, depending
on L. The random padding aims at avoiding codebook attacks.

ISO-0 is equivalent to ANSI X9.8, VISA-1, and ECI-1. This format is not
randomized but uses the PAN to prevent codebook attacks. The 4-12 digits PIN
is first formatted as follows:

0 L P P P P P/F P/F P/F P/F P/F P/F P/F P/F F F

0 stands for ISO-0, L is the length of the PIN, P are the PIN digits while P/F
is either a PIN digit or the pad value F, depending on L. To obtain ISO-0, first
the rightmost 12 digits of the PAN are written as follows:

0 0 0 0 PANPANPANPANPANPANPANPANPANPANPANPAN

and then the two numbers above are xored:

P P P/F P/F P/F P/F P/F P/F P/F P/F F F
0 L P P xor xor xor xor xor xor xor xor xor xor xor xor

PANPANPANPANPANPANPANPANPANPANPANPAN

Translate and Verify API. We now specify more in detail the two APIs.

– PIN Translate(kI, kO, formatI, formatO, PANI, PANO, EPBI, EPBO)

This API takes a PIN block EPBI encrypted with the key referred by kI

and formatted as formatI, extracts the PIN, reformats it as formatO and re-
encrypts it with key referred by kO. When one of the two formats is ISO-0,
the PAN is also provided via PANI or PANO.
When the API succeeds, the obtained PIN block is returned in EPBO. Oth-
erwise, an error code is returned.

– PIN Verify(kI, kV, formatI, PANI, EPBI, v data)

This API takes a PIN block EPBI encrypted with the key referred by kI

and formatted as formatI, extracts the PIN and checks its validity via the
verification key referred by kV and the verification data v data. For example,
in the IBM 3624 PIN calculation method [13], v data is the triple 〈offset,
validation data, dec tab〉: a user PIN of length4 l is obtained by decimalising
through dec tab the first l digits of the encryption enc(kV, validation data),
and by digit-wise summing modulo 10 the offset. Once the user PIN is re-
covered, its equality is checked against the received encrypted PIN, i.e. the
one inserted at the ATM.
The API returns the result of the verification or an error code.

4 The PIN length is either encoded in the format or passed as a further parameter, as
mentioned below.



The above described APIs are slight abstractions and a simplifications of real
ones. For example, referring to [13], we have that PIN Translate(kI, kO, formatI,
formatO, PANI, PANO, EPBI, EPBO) corresponds to Encrypted PIN Translate
except that we have omitted parameters rule array count, rule array, and se-
quence number. The first two are used to specify whether the API should only
translate or translate-and-reformat the encrypted PIN, and in the latter case
a PIN extraction method has to be specified. Here, we are assuming the API
always performs a translate-and-reformat, but we can recover the simpler trans-
late case, e.g., by just passing NULL in the formatO parameter. Finally, the
parameter sequence number is not used and always points to a constant.

PIN Verify(kI, kV, formatI, PANI, EPBI, v data) corresponds to Encrypted
PIN Verify, where we have omitted the parameters rule array count, rule array,
described above, and PIN check length, which is used to specify the length of
the PIN for the format IBM 3624.

3 Known Attacks

In this section, referring to [7, 10, 12, 14], we give a brief overview of known
attacks on cryptographic APIs. We will omit some of the details, mainly concen-
trating on the specification of the API calls involved. All the attacks have the
same scenario: an attacker has obtained access to a host machine at a switch or
verification facility, and is able to call any function of the API with any param-
eters. Additionally he is assumed to be able to intercept some genuine traffic
arriving for processing at the HSM (i.e. encrypted PIN blocks and associated
data from real ATM transactions). However, he is assumed to be unable to ob-
tain, by brute force search or other means, the PIN encryption keys or PIN
derivation keys in use in the system.

3.1 Attacks on Verification API

We now look at attacks on the verification API, which we split into two cate-
gories.

Decimalisation Table Attacks. This family of attacks was discovered by both
Bond and Zieliński, [10], and Clulow, [12, §3.5.5]. Since a proposal by IBM (the
so-called ‘3624 scheme’), many PIN schemes assign initial customer PIN values
by encrypting a customer’s PAN under a secret PIN derivation key (PDK),
and then decimalising the result using a decimalisation table (or ‘dectab’). A
decimalisation table maps each hexadecimal value to a decimal. The ‘standard’
decimalisation table looks like this:

Hex. value 0 1 2 3 4 5 6 7 8 9 A B C D E F
Dec. value 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

So, if the first four digits of the result of encrypting a customer’s PAN under
the PDK are 4A6B hexadecimal, the assigned PIN will be 4061. Not all banks



use the same decimalisation table [6], so the table is passed as a parameter
to the verify command. Some schemes allow the customer to change her PIN
at an ATM. This is achieved by fixing an offset, which when added digitwise
modulo 10 to the original PIN, gives the customer’s chosen PIN. This offset is
not considered to be security critical, since without the original PIN it provides
no help in guessing the correct customer PIN.

Decimalisation table attacks do not determine the PIN digitwise, but rather
determine first what digits are in the PIN, and then where these digits are. Sup-
pose an attacker has an encrypted PIN block which, when supplied along with
the standard decimalisation table and a known offset, correctly verifies inside the
HSM (that is, the HSM reports that the PIN is correct when the PIN Verify(.)
function is called). Now suppose the attacker alters the decimalisation table like
this:

Old value 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
New value 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5

He then calls PIN Verify(.) again, with the modified dectab. If the verification still
passes, then he knows there are no 0s in the PIN. If however the verification now
fails, he knows there must be at least one 0 somewhere in the PIN. The problem
now is to determine how many there are, and where. This can be accomplished
by altering the offset. The attacker advances the offset by one at each position,
and then at every combination of positions, until the PIN is once again reported
as being correct. This reveals the location of the 0s in the PIN. The table below
illustrates the process, for an example where the customer’s PIN is 3060, and
the offset is 0000. We assume the attacker has already tried the modified dectab
shown above, and discovered that there is at least one 0 somewhere in the PIN.

Attacker set offset Result from HSM Knowledge of PIN
0001 Incorrect PIN ????
0010 Incorrect PIN ????
0100 Incorrect PIN ????
1000 Incorrect PIN ????
0011 Incorrect PIN ????
0101 Correct PIN ?0?0

The decimalisation table attack takes an average of 16.145 API calls to de-
termine a four-digit PIN [16, §5].

Check Value Attack. Clulow has described an attack on the PIN verification
API that takes advantage of the ‘check value command’ [12, §3.5.8]. Many APIs
support such a command, used to ensure that a key has been imported correctly.
The function of the command is to return a 64 bit block of 0s encrypted under
a given key.

To make the attack, the attacker must also be able to supply a block of 0s
as validation data to a command for verifying PINs such as the one described
above. The first step is to obtain the check value of the PDK, and decimalise the



first four characters of the result using the standard decimalisation table. Store
this as IPIN. Now, supply a PAN of 000000000000 to the function PIN Verify(.),
along with some encrypted PIN block (EPB) you want to crack. Start with offset
0000. Generally, the command will at first fail. Increase the offset by 1 until the
command reports a successful verification. Store the final offset as OFFSET. Now
we know that the PIN in the block verifies successfully when compared against
IPIN + OFFSET (mod 10 each digit), and so this must be the customer’s PIN.

On average, for a four-digit PIN, this attack would require one call to the
check value command and 5000 calls to the PIN verify function.

3.2 Attacks on the Translate API

We now consider two different attacks on the translate API.

The codebook attack. This attack uses the translation API to get rid of variant
information from the EPBs. This makes EPBs containing the same PIN equal,
thus enabling standard codebook attacks. Notice that if EPBs contain random
padding, as e.g. in the ISO-1 format, or if the PAN is xored to the PIN before
it is encrypted, as happens for ISO-0, equal PINs in general produce different
EPBs.

The attack can be applied both to switches and to verification facilities [7].
The attacker first generates all the EPBs for every possible PIN of a fixed length,
in any ISO format. This can be done, e.g., by a network of attackers trying all of
the 10000 PINs at different ATMs and intercepting the corresponding EPB at
the hacked switch. A smarter method, described in [7], only requires 100 trials
at the ATMs, but we do not describe it here for lack of space. Once the 10000
EPBs have been obtained, the attackers translate, at the switch where they have
been intercepted, all these EPBs into ISO-0 format with a chosen fixed PAN,
say PANA, and create a look-up table with all the EPBs and the associated
PINs. At the arrival of real EPBs, they translate them into an ISO-1 format
(removing the PAN) and then reformat them into an ISO-0 message together
with the chosen PANA. The real PIN can now be revealed by searching this new
encryption in the look-up table.

Wrong-format attack. This attack [12, 16] consists of translating a received en-
crypted message into an ISO-0 format with different PANs, and to acquire infor-
mation depending on the return value of the translate API. More precisely, the
attacker provides different PANs (PANAi), which are xor-ed to the decrypted
value to recover the PIN. When such an xor operation gives non-decimal values,
the API returns an error code. This gives information about the actual PIN
digits. In fact, for an n digits PIN, by repeating this operation 16(n− 2) times
it is possible to recover the n − 2 rightmost PIN digits up to their parity. For
example, for a 4 digits PIN we might discover that the third and fourth digits
are 3 or 4 and 7 or 8, respectively. Notice that the first two digits cannot be
recovered because they are not xor-ed with the PAN.



There is a trick to recover also the first two digits of the PIN: the attacker
first translates a message in ISO-0 (where the PIN starts from the 3rd position)
with a PAN of all 0s, and then claims it is in a VISA3 message format (that
starts with the digits of the PIN ended by a sequence of Fs), and asks to translate
it into ISO-0 with a PAN of all 0s. The result of this operation is that the PIN
is shifted two positions to the right, thus permitting the attacker to use the
previous attack on the entire PIN.

Finally, the choice between the pair of values can be narrowed with 4 more
calls: Assume the pairs of values are {P1, P1 + 1}, {P2, P2 + 1}, {P3, P3 + 1},
{P4, P4 + 1}, i.e. 24 = 16 possible PINs, the attacker can now pass a message
in an ISO-0 format claiming is a VISA3, together with PAN E100000000000,
with E1 = E ⊕ P1. If the HSM outputs an error, the right PIN digit value is
P1, else is P1 + 1. In fact, the given PAN is xored to the PIN and if the PIN
digit value is P1 we obtain P1 ⊕ E1 = P1 ⊕ E ⊕ P1 = E which is non-decimal
and gives an error. To recover the other values P2, P3 and P4, the attacker
provides PANs 0E20000000000, 00E3000000000, 000E400000000, respectively,
where Ei = E ⊕ Pi.

Attacks on other APIs Attacks have also been found on the functions used
for customer PIN change [9] and secure messaging [4]. These are out of scope for
the current paper, but we plan to treat them in future work.

4 Our Proposed Fix

To understand the rationale behind our fix, first observe that the attacks ex-
plained in section 3 are ‘differential attacks’ in the sense that they involve an
attacker learning about the value of the PIN by tweaking parameters to the API
commands. The name comes from the similarity to differential attacks on block
ciphers, where certain bits in the inputs to the cipher are changed and the result
observed [8]. One way to prevent these attacks would be to prevent ‘unautho-
rised’ queries to the API. In theoretical terms, we are trying to achieve ‘robust
declassification’ [15]. We know that the functions of the API must declassify
some data, specifically they must tell us whether the encrypted PIN is the cor-
rect one or not. Robust declassification means an intruder cannot influence what
data is declassified. However, the existing APIs have no way of distinguishing a
legitimate query from an illegitimate one.

In another paper [11], we show how in general differential attacks can be coun-
tered by the use of MACs. The idea is to add a MAC of the non-confidential
parameters required for PIN processing to the input to the relevant API com-
mand. The command checks the MAC before performing the PIN operation. If
the MAC check fails, the command halts without processing the PIN. This way
we achieve ‘robust declassification’. However, the infrastructure changes needed
to add full MAC calculation to ATMs and switches are seen as prohibitive by the
banks [6]. We propose here a way to implement a weaker version of our scheme
whilst minimising changes to the existing infrastructure. We lose some security,



since our MACs now have an entropy of only 5 decimal digits (216 < 105 < 217).
We assess the effect of this change in section 4.3.

4.1 CVC/CVV Codes

We observe that cards used in the cash machine network already have an in-
tegrity checking value: the card verification code (CVC), or card verification
value (CVV), is a 5 (decimal) digit number included on the magnetic stripe of
most cards in use. It is, in effect, a MAC of the customer’s PAN, expiry date
of the card and some other data. The current purpose of the CVV is to make
copying cards more difficult, since the CVV is not printed on the card and does
not appear on printed POS receipts5. Below we give the algorithm for calculat-
ing the CVV. This is done at the card issuing facility. CVVs are checked at the
verification facility.

PAN Exp date Service code 0 pad
16 digits max 4 digits 3 digits 9 digits max

Block B1 Block B2

Each decimal digit is encoded in 4 bits. Note the partition of the CVV plaintext
field into two blocks, B1 and B2. To construct the CVV, a two-part DES key is
required. Call the two 64-bit parts key K1 and key K2. The hexadecimal CVV
root is constructed as

CV Vhex := enc(K1, dec(K2, enc(K1, (enc(K1, B1)⊕B2))))

The 5 digit decimal number is constructed using the Visa decimalisation scheme:

1. Extract all decimal digits from CV Vhex, preserving their order from left to
right.

2. Left justify the result
3. Reduce any remaining digits by 10
4. Left justify the result and append it to the result of 2
5. The CVV is the first 5 digits (from left to right) of the result.

4.2 Packing the MAC into the CVC/CVV

Our proposal is to pack more information into the CVV at issue time, and to
use this as a MAC at the verification facility.

In our formal scheme, we included the data of the decimalisation table and
card offset. Observe that with the maximum 16 digits of the PAN being used, we
still have 9 digits of zeros in the final field of block B2. Our idea is to use the CVV
calculation method twice, in the manner of a hashed MAC or HMAC function.
5 The CVV/CVC is not to be confused with the CVC2 or CVV2, which is printed on

the back of the card and designed to counteract ‘customer not present’ fraud when
paying over the Internet or by phone.



We will calculate the CVV of a new set of data, containing the decimalisation
table and offset or PVV and a code for the PIN block format. Then we will insert
the result of the original CVV calculation to produce a final 5-digit MAC.

Our second CVV, which we will call CVV’, contains the following fields:

Dectab Offset/PVV PIN block format original CVV 0 pad
16 digits max 4 digits 1 digit 5 digits 6 digits max

Block B1’ Block B2’

The position of each field is not important (except that it has to be fixed
and agreed). We calculate CVV’ in the same way as the standard CVV. This
makes for easy upgrade from the original infrastructure, because CVV gener-
ation and verification commands are already available in HSMs so will need
minimal changes to the firmware. The PIN Verify command of the HSM must
be changed to check CVV’ before performing a verification test. The PIN test is
only performed if the CVV’ of the inputs matches the supplied CVV’.

One could use the same keys for calculating the CVV’ as for the CVV, or
one could use different keys. Either way, the verifying HSM needs access to these
keys. The use of different keys could be motivated by a desire to be able to check
CVVs, and so to an extent to verify card authenticity, at other points in the ATM
network, without giving these nodes the keys used to create CVV’s.

4.3 Security of the CVV Based Scheme

In our formal scheme we gave a proof of security by typing [11]. We proved that
the modified version of the PIN Verify function, implementing the MAC check
before checking the PIN, gives robust declassification of the correctness of the
PIN, subject to the following assumptions: 1) the MAC is unforgeable, 2) the
attacker only has one encrypted PIN block to test, containing the correct PIN
for a single given PAN, 3) encryption is perfectly secure (though not necessarily
randomised). In proposing a scheme with a 5-digit MAC value, we are admitting
the possibility of brute-force attacks, and thus breaking assumption 1). However,
to guess the CVV’ for a given set of parameters should take an average of 50 000
trials. So, an attack like the dectab attack which previously required 15 calls to
the API will now take 750 000 calls. HSMs typically perform something of the
order of 1000 PIN verifications per second, so this change moves the attack time
for a single PIN from 0.015 seconds to 750 seconds, or 12.5 minutes.

Of course, the security of the scheme depends on the attacker not being able
to calculate CVV’s by any other means that brute force. For example, the API
of the HSM must not make available the functionality to allow the creation of
CVV’s on arbitrary data. However, one would imagine this functionality only
being available at an issuing facility (much like the functionality that prints PIN
mailers to send to customers).

4.4 Practicalities of Deploying our Proposal

Sources close to the banking industry have told us the hardest (i.e. most costly)
things to change in the ATM network are the network itself and the messaging



formats. Our proposal has the advantage of requiring neither of these to change.
ATMs and switches generally already send the CVV from the ATM to the issuing
bank, so can easily be adapted to send CVV’. In fact, many ATMs blindly send
all the ‘Track 2 data’ from the magnetic card - this includes the PAN, expiry
date, and CVV. Under most schemes there is still space on the magnetic stripe
for a further 5 digit code. Chip based cards should have no problem storing
a further 20 bits of data. So, we could use CVV’ and the original CVV, thus
allowing old style CVVs to be checked separately if required.

The next most costly thing to change is the software in the bank that calls
the HSM. Our proposal requires some small changes here, since the verification
command will now have extra parameters (the CVV’ and a handle for the CVV’
key). Changing the firmware in the HSM is not considered to be a prohibitive
expense, and we require only minor changes, since HSMs can already verify
CVVs.

A further advantage of our proposal to put the MAC onto the magnetic stripe
is that it does not require any changes to the firmware of the PED. No MACs
need to be calculated at the ATM, and no MAC keys need to be distributed to
ATMs.

A particular feature of our scheme is that it does not require banks not
adopting the scheme to change anything. A bank can unilaterally decide to add
CVV’s to its cards and require them at its verification facilities. The CVV’ will
pass through the network along with the rest of the track 2 data. The bank
will thereby gain assurance of security at its verification facilities. However, it
is known that PINs are not always verified at the issuing bank. There are also
‘stand-in’ verification centres run by, e.g., Visa and Mastercard, deployed to
assure availability or to deal with foreign ATM transactions in certain cases.
Upgrading these will be more complex, since even if the new ‘Verify with CVV”
command is made available at the facility, if an intruder can still access the old
command, he can a priori still make the old attacks. A facility could work around
this by partitioning the verification keys (PDKs) such that PDKs designated for
use in the new scheme can only be used under the new command. Features for
this kind of key separation are already implemented in many HSMs, since it is
known to be dangerous to allow, for example, a key for IBM PIN verification to
be used for VISA PVV verification [12, §3.5.7].

4.5 Addressing Translation Attacks

So far, our proposal only addresses the problem of attacks at the verification
facility. By preventing queries with altered dectabs, PANs, or offsets, we blunt
the attacks given in section 3.1. However, the CVV’ cannot be used to ensure
integrity of parameters at translation nodes, in order to address the attacks of
section 3.2. This is because firstly, we do not envisage distributing the CVV’
keys to all the nodes in the network, and secondly, we need to add a parameter
giving the format of the PIN block to the MAC to protect against ‘wrong format’
attacks, and this parameter will change as the EPB makes its way through the



network, requiring the MAC value to be recalculated. The CVV’ is therefore not
suitable for this purpose.

Point-to-point MACs. There are other ways to upgrade the network to protect
against the translation attacks. For example, we can demand that each switch
shares a MAC key with every switch to which it might send an EPB, just as it
currently shares a PIN encryption key with every such node. It can then calculate
a MAC for every outgoing block, and verify a MAC for every incoming block.
This is the scheme we proposed in our theoretical paper [11]. In practice, we
cannot assume that all switches in the network will be upgraded at once. As
a consequence, there will be a time when there are some switches which can
calculate MACs, and some that cannot. As a consequence there will be edges
in the network (i.e, some communicating pairs of switches) that can deal with
MACs and share a key, along with some that cannot. PINs travelling through
non-upgraded switches will, of course, still be vulnerable to translation attacks,
even if they come from, or travel to, upgraded nodes. In fact, once they reach
non-upgraded switches, i.e. switches whose translation function is not MAC-
enabled, all the old attacks will be possible. This is, in a sense, natural as we
cannot guarantee the security of PINs passing through insecure subnetworks.

Note that even if a PIN does not travel through non-upgraded switches, it
might reach a MAC-enabled switch that is in contact with non-upgraded ones
(see figure 1). This ‘borderline’ switch will have to offer both MAC-enabled and
standard translate functions in order to communicate with the old protocol. This
leaves the door open for attacks as an intruder might just disregard the MAC
and call the old translate function in order to mount all the old translate attacks.
A switch, in fact, only becomes secure once the old translate command can be
disabled. A way to mitigate this problem is to add new special (temporary) bor-
derline switch (see figure 2) with the only aim of interfacing upgraded and non-
upgraded subnets. This nodes would only be reached by EPBs going to/coming
from an insecure, non-upgraded, subnetwork. In this way EPBs travelling inside
an upgraded network are not exposed to attacks on borderline nodes.6

Single format. Since translation attacks are based on reformatting the EPB,
another possibility to prevent them would be to enforce the use of one single
block format. In this way a translate would only consist of decrypting and re-
encrypting the PIN block. Even in this case, upgrading the whole network would
require time, leading to the same situation discussed above.

This solution does not require any new modified HSMs and protocols, since
it only aims at reducing the existing functionalities so to operate on a single for-
mat thus it is, in principle, very appealing. However there are some difficulties
that have to be carefully considered: (i) the ‘political’ decision on which format
should be elected as ‘the one’ is far from being easy to take since many differ-
ent standards exist, proposed by different entities; (ii) the choice of the format

6 There might be attacks on the PIN routing that force them to reach untrusted part
of the networks. They are of course relevant but out of the scope of this work.
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might require upgrading some old HSMs or PEDs so to support it, especially
for randomized formats like ISO1 or ISO3 which require good random number
generators not present in old hardware.

5 Comparison to Other Proposals

Attacks on PIN processing APIs have been known for years [5, 7, 10, 12, 16], yet
as other authors have observed, “proposals to counter such attacks are almost
non-existent in the literature” [14]. In their decimalisation table attack paper,
Bond and Zielinski suggest that the “decimalisation table input must be crypto-
graphically protected so that only authorised tables can be used” [10, §6], though
they do not give a scheme for doing so. Our proposal is in essence just such a
scheme, though it additionally protects the other non-confidential inputs to the
PIN verification command. Clulow includes the issue of ‘Parameter integrity’
in his discussion of solutions to the problem of PIN recovery attacks [12, §3.8].



He writes, “perhaps the most logical solution is to include the use of MACs (or
similar methods) to ensure data integrity. For example, a decimalization table
is supplied to a function call along with a MAC and the key for verifying that
MAC.” Our scheme achieves the same objective with a single MAC for all the
non-confidential parameters. Clulow notes that “These solutions are fairly ob-
vious. The challenge comes in ensuring interoperability between devices from
different manufacturers”. By basing our MAC around an existing standardised
algorithm already in use in HSMs, and by putting the MAC onto the card rather
than requiring it be calculated elsewhere in the network, we hope to address this
challenge.

Finally, Mannan and van Oorschot have presented a scheme for ‘salting’ PINs
[14]. The idea is to have banks fix a 128-bit salt value for each customer. This
is written in plaintext to the bank card and stored encrypted at the verification
facility. When a customer types her PIN at an ATM, the ATM generates a 12
(decimal) digit number as a pseudorandom function of the typed PIN and the
salt. This is called the Transport Final PIN (TFP). This is sent in the EPB to
the verification facility, where the process can be duplicated using the customer’s
true PIN, offset and encrypted salt and a comparison made to see if the PIN
was correct. The main advantage of this is that at translation nodes, the known
attacks reveal only the salted PIN, not the real one. Given the entropy of the
salt, this is of little use to an attacker.

The Mannan/van Oorschot scheme shares some of the advantages of our
proposal in that it does not require a change to messaging formats in the network,
nor does it require changes to HSMs used in switches. However, their scheme does
require that ATM PEDs are changed to be able to calculate a particular pseudo-
random function, and also that verification HSMs have access to a database of
all encrypted salts. Their proposals are primarily aimed at blunting the attacks
of Berkmann and Ostrovsky [7], and do not seem to prevent, e.g., decimalisation
table attacks at the verification facility. One could in fact deploy their scheme
in conjunction with ours to provide effective protection against a larger set of
attacks.

6 Conclusions

We have described a version of a MAC based scheme for ensuring integrity of
queries to PIN processing APIs that is easy to implement and does not require
wholesale changes to the ATM infrastructure. This ease is at the cost of some
security, since the CVV codes can be cracked by brute force, but its implemen-
tation in the short term would make attack scenarios far less profitable. In the
medium term we feel that the full MAC scheme should be used. The cost of
this should be weighed against the cost of a complete overhaul of the way PIN
processing is carried out in the ATM network.
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A Some standard 64-bit PIN block formats

IBM 3624 This format supports PINs from 1 to 16 digits in length. P are the
PIN digits. Depending on the PIN length, P/X can be a PIN digit or a pad
value, i.e. a value different from all the PIN digits and fixed a-priori.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P P/X P/X P/X P/X P/X P/X P/X P/X P/X P/X P/X P/X P/X P/X P/X



ISO-0, ANSI X9.8, VISA-1, ECI-1 Supports PINs from 4 to 12 digits in length.

0 L P P P P P/F P/F P/F P/F P/F P/F P/F P/F F F

0 identifies the format, L is the length of the PIN, P are the PIN digits while
P/F is either e PIN digit or the pad value F, depending on the PIN length. Then
the rightmost 12 digits of the PAN are written as follows:

0 0 0 0 PANPANPANPANPANPANPANPANPANPANPANPAN

and we now just xor the two numbers:

P P P/F P/F P/F P/F P/F P/F P/F P/F F F
0 L P P xor xor xor xor xor xor xor xor xor xor xor xor

PANPANPANPANPANPANPANPANPANPANPANPAN

ISO-1 Supports PINs from 4 to 12 digits in length.

1 L P P P P P/R P/R P/R P/R P/R P/R P/R P/R R R

1 identifies the format, L is the length of the PIN, P are the PIN digits while
P/R is either e PIN digit or the pad random value R, depending on the PIN
length.

ISO-2 Supports PINs from 4 to 12 digits in length.

2 L P P P P P/F P/F P/F P/F P/F P/F P/F P/F F F

2 identifies the format, L is the length of the PIN, P are the PIN digits while
P/F is either e PIN digit or the pad value F, depending on the PIN length.

ISO-3 Supports PINs from 4 to 12 digits in length. It is the same as ISO-0
except that the PIN is padded with random digits.

3 L P P P P P/R P/R P/R P/R P/R P/R P/R P/R R R

3 identifies the format, L is the length of the PIN, P are the PIN digits while
P/R is either e PIN digit or the pad random value R, depending on the PIN
length. As for ISO-0, the rightmost 12 digits of the PAN are written as follows:

0 0 0 0 PANPANPANPANPANPANPANPANPANPANPANPAN

and we now just xor the two numbers:

P P P/R P/R P/R P/R P/R P/R P/R P/R R R
3 L P P xor xor xor xor xor xor xor xor xor xor xor xor

PANPANPANPANPANPANPANPANPANPANPANPAN

VISA-3 Supports PINs from 4 to 16 digits in length. P are the PIN digits while
P/F is either e PIN digit or the pad value F, depending on the PIN length.

P P P P P/F P/F P/F P/F P/F P/F P/F P/F P/F P/F P/F P/F


