
Secure your PKCS#11 token against API attacks!∗

M. Bortolozzo, G. Marchetto, R. Focardi
Università di Venezia, Italy
focardi@dsi.unive.it

G. Steel
LSV, CNRS & ENS de Cachan, France
graham.steel@lsv.ens-cachan.fr

Abstract

PKCS#11 defines a widely adopted API for cryptographic devices such as USB crypto-tokens
and smartcards. Despite its widespread adoption, PKCS#11 is known to be vulnerable to various
attacks that enable the extraction (as plaintext) of sensitive keys stored on the device. These attacks
have been formalized and analyzed via model-checking, so as to automatically find flaws on specific
subsets of PKCS#11 and on given device configurations. The analyses, however, are performed on an
abstract model of the standard and the ‘theoretical’ attacks have to be tried by hand on real devices. In
this paper we shortly describe a new tool, named API attacks!, that aims at automatically performing
the above mentioned analyses on real PKCS#11 devices. We believe this tool might be helpful both to
hardware developers, willing to improve the security of their existing and new devices, and to system
administrators that might want to check their device is configured is a secure way before distributing
it to end-users.

1 Introduction

PKCS#11 defines a widely adopted API for cryptographic devices such as USB crypto-tokens and smart-
cards. As well as providing access to cryptographic functionality, the interface is supposed to preserve
certain security properties, e.g. no matter what sequence of commands is called by the application, the
values of keys stored on the device and marked as sensitive should never become known ‘in the clear’.
However, PKCS#11 is known to be vulnerable to various attacks that compromise this property.

PKCS#11 has been formalized and analyzed via model-checking, allowing the automatic detection
of attacks on specific subsets of the API and on given device configurations [4]. The analyses, however,
are performed on an abstract model of the standard and the ‘theoretical’ attacks have to be tried by hand
on real devices. Particular PKCS#11 compatible devices may implement the standard in subtly different
ways to try to prevent the attacks. What is needed is a way to link the abstract model checking analysis
to the API as implemented on real devices.

In this paper we describe a new tool, named API attacks! [1], that aims at automatically performing
the above mentioned analyses on real PKCS#11 devices. In summary, the tool (i) attempts a set of
known attacks reporting the results; (ii) reads the actual subset of PKCS#11 implemented on the token;
(iii) generates a model of the specific subset of the standard and gives it as an input to the model checkers
NuSMV and SATMC; (iv) parses the results of the model checkers and tries to mount the attacks on the
real token;1 (v) performs custom attacks and static checks on the actual token configuration, pointing out
potential sources of flaws.

We believe this tool might be helpful to hardware developers, willing to improve the security of their
existing and new devices. In order to circumvent the flaws on PKCS#11, hardware developers usually
modify or patch the standard via proprietary extensions. API attacks! could be used to try all the existing
known attacks on new extensions, reporting where the attack possibly fails, and, more interestingly,
could incorporate a model of a new proposed extension so to analyse it via model checking looking for
possible new flaws or variants of existing ones. It might be the case, in fact, that a new patch blocks all

∗Work partially supported by Miur’07 Project SOFT: “Security Oriented Formal Techniques”
1This last feature is currently under development: at the present state the tool just reports the results of (iii) to the user.

1

focardi@dsi.unive.it
graham.steel@lsv.ens-cachan.fr


Secure your PKCS#11 token against API attacks! Bortolozzo, Marchetto, Focardi and Steel

the known attacks but can be circumvented by non trivial variations of the attack sequences. This could
be detected automatically via model-checking, once the proprietary extension is modelled in the tool.

The tool might also be interesting for system administrators, who want to configure tokens in a secure
way before distributing them to end-users. Attacks, in fact, are sometime based on ‘weak’ token config-
urations where, e.g., keys can be used with different, conflicting, roles (see section 2). We thus believe
that having the possibility of automatically checking a specific configuration against known attacks (and
variants of those, via model-checking) could be extremely valuable.

2 Attacks on PKCS#11

In this section, we illustrate some of the attacks checked by the tool. They are all sequences of legal
API invocations that lead to the leakage of sensitive keys, i.e., keys intended to be securely stored in the
token and never extracted, unless encrypted under other suitable keys called key encryption keys. This
latter event is useful, e.g., when we need to share a new key between two devices that already share a
key encryption key kek: the new key k is wrapped under kek obtaining a ciphertext {k}kek. This wrapped
key is exported from the first device and imported in the second one. Only when the ciphertext is inside
the second device, the unwrap occurs: k is security stored and, from now on, it can be used for encrypted
communication between the two devices.

This simple wrap/unwrap mechanism is often source of attacks, if we mix the role of the keys. The
standard, in fact, does not forbid having keys with attributes that specify different uses like, e.g., wrap
and decrypt. Unfortunately this leads to simple attack sequences as the following one. From now on, we
write &k to denote the handle of key k stored in the device.

1. wrap(&k,&k) gives {k}k
2. decrypt({k}k,&k) gives k

This attack is a variant with just one key of the key separation attack presented in [2]. Intuitively, key
k is wrapped under itself, via a call to wrap, and the obtained ciphertext is decrypted with k, by calling
decrypt, obtaining k as plaintext. Notice that this decryption occurs in the token with no knowledge of
k (only the handle &k is needed).

It seems thus important to forbid this double role on the same key. This can be done, e.g. by
‘patching’ the API so that attributes wrap and decrypt are sticky, i.e., once set they cannot be unset, and
can never be set together. However a subtler variant of the attack might be performed as follows. Let ke

be a key generated by the attacker and ku a key, stored in the device, that can be used both to unwrap and
encrypt:

1. encrypt(ke, &ku) gives {ke}ku

2. unwrap({ke}ku , &ku) imports ke in the device returning &ke

3. set wrap(&ke) sets the wrap attribute for ke

4. wrap(k, &ke) gives {k}ke

5. the intruder decrypts {k}ke obtaining k

This attack has been discovered in [4], via model-checking. Intuitively, the intruder encrypts his key
under ku (1). This allows him to import the key via an unwrap call (2). Once the key is in the device, he
sets the wrap attribute (3) and just wraps the sensitive key k with ke (4). The intruder can now decrypt
{k}ke with ke, which he knows, so this last event is performed outside the device.

Even subtler attacks can be mounted by, e.g., unwrapping twice the same key so to obtain two
different instances of the very same key. This allows the intruder to set two conflicting attributes on
the same key by just setting one attribute to each identical copy. This makes it even more difficult

2



Secure your PKCS#11 token against API attacks! Bortolozzo, Marchetto, Focardi and Steel

to circumvent the above attacks since the conflicting attribute policy should extend to all the identical
copies of the very same key. The interested reader is referred to [3, 2, 4] for more detail.

3 The API attacks! tool

The API attacks! tool aims to allow hardware developers and administrators to check the security of their
device and configurations against the attacks described in the previous section. We have, first of all, tried
to give an easy and intuitive interface. Moreover, the tool has been designed to be as portable as possible.
To this aim we have decided to implement it in Java, via the IAIK PKCS#11 wrapper [5], which supports
many existing devices.2

The attack window Figure 1 shows the attack windows of the tool where, using the buttons on the left,
the user can perform six pre-existent attacks, plus custom attacks as described below. When an attack
is successful, i.e., a sensitive key is extracted, the tool double-checks that the value of the extracted key
coincides with the value of the key stored in the device: it encrypts the plaintext ‘PKCS#11’ under the
stored key and then decrypts it with the extracted one, checking that the obtained plaintext is, again,
‘PKCS#11’. The first two buttons on the right can be used to look for conflicting attributes on the keys
stored in the device, and for performing a preliminary (static) test on the feasibility of the known attacks
on such real keys. The third button, ‘Attack test’, tries to perform the six above mentioned attacks
on the device real keys. The six buttons on the left, in fact, create ad-hoc keys for the specific attacks;
while this is interesting for hardware developers, an administrator might only be interested in discovering
weaknesses on the actual device configuration and keys and not just potential attacks on the subset of
the standard the token implements. Button ‘Find attack’ produces the input for the two model checkers
NuSMV and SATMC, via variations of the perl scripts described in [4, 6]: in order to increase the
performance of the analysis, only the actual subset of PKCS#11 implemented on the token is analyzed.

The custom attack window Figure 2 shows the interface for custom attacks. This window allows
users to perform all the typical operations performed during attacks: users can create keys, convert
keys to byte streams and vice-versa, perform wrap/unwrap and encrypt/decrypt plus extra functions on a
different windows, test extracted keys against stored ones. When creating new keys (see the windows on
the right), it is possible to try to set their attributes. Since proprietary extensions of the standard restrict
the setting of some attributes, the tool reports whether the requested setting has been successfully stored
in the device.

Current and future work We are currently testing the tool on a number of commercial devices. So
far, we have have found that many devices are indeed vulnerable to some or all of these attacks. We will
publish more details after due notice has been given to the manufacturers in question. Meanwhile, the
tool is still under development, and is partially supported by the MIUR Italian project SOFT: “Security
Oriented Formal Techniques. In particular, we are making attack sequences more adaptable to the specific
device; an attack may fail because one needed cryptographic primitive is not supported by the device,
but a slight variant of the attack might still be possible using a different, supported, functionality. As a
trivial example, think of using AES instead of DES. We are studying a graphical interface for custom
attacks, so that attack logic can be more intuitively represented in terms of information flows from/to
the device. We are extending the model-checking functionality so that the actual configuration, referring

2Compatibility has been reported with Giesecke & Devrient, Utimaco, Oberthur, SeTec, Orga, IBM, Safenet, Schlumberger,
Gemplus, Dallas, Rainbow, ActivCard, A-Trust, A-Sign, Eracom, Aladdin, Mozilla, Eutron, TeleSec, nCipher.

3



Secure your PKCS#11 token against API attacks! Bortolozzo, Marchetto, Focardi and Steel

Figure 1: The attack window

Figure 2: The custom attack window with key generation

to the real keys stored in the device, is included in the model. This might be useful to model-check a
specific configuration of the device, instead of assuming the presence of weakly configured keys. We
are also writing a parser for the output of model-checkers so that the theoretical attacks can be directly
tested on the real devices. Finally, we intend to formalize the static analyses we already perform on the
key attributes, to see if they can be used to statically validate specific device and configurations. This
might complement the model checking analysis, by providing an additional tool for the static validation
of real PKCS#11 devices.

4



Secure your PKCS#11 token against API attacks! Bortolozzo, Marchetto, Focardi and Steel

References
[1] M. Bortolozzo and G. Marchetto. Vulnerabilità dello standard PKCS#11: dalla teoria alla pratica. Master’s

thesis, University of Venice, Italy, 2009.
[2] J. Clulow. On the security of PKCS#11. In 5th International Workshop on Cryptographic Hardware and

Embedded Systems (CHES 2003), pages 411–425, 2003.
[3] J. Clulow. The design and analysis of cryptographic APIs for security devices. Master’s thesis, University of

Natal, Durban, 2003.
[4] S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11. In Proceedings of the 21st IEEE Computer

Security Foundations Symposium (CSF’08), pages 331–344, Pittsburgh, PA, USA, June 2008. IEEE Computer
Society Press.

[5] Institute for Applied Information Processing and Communication (IAIK) of the Graz University of Technol-
ogy. The IAIK Provider for the Java Cryptography Extension (IAIK-JCE) . http://jce.iaik.tugraz.at/.

[6] S. Fröschle and G. Steel. Analysing PKCS#11 Key Management APIs with Unbounded Fresh Data. In
Joint Workshop on Automated Reasoning for Security Protocol Analysis and Issues in the Theory of Security
(ARSPA-WITS’09), 2009.

5

http://jce.iaik.tugraz.at/

	Introduction
	Attacks on PKCS#11
	The API attacks! tool

