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Abstract. We study the Mifare Ultralight cards in detail, and we present
a new secure method for the recharge of these RFID disposable tickets
that also extends to the case of multiple resources on a single device. We
specify a formal but yet realistic semantics of these cards, and we also
define a simple imperative language suitable to program secure APIs.
In fact, the language is provided with a type-system enforcing security
properties on resources stored in the card.

1 Introduction

In the last years, Radio Frequency Identification (RFID) systems have been
widely employed in the transport payment systems of different countries. An
example are the Mifare Ultralight cards (MU) [2], which are RFID cards, pro-
duced by NXP Semiconductors, used, e.g., in cheap disposable paper tickets,
for the metro networks of Amsterdam, Rotterdam, Moscow and Venice [1, 6,
8]. Although these RFID cards are still widely used, they have been subject to
many different attacks (see [6, 8, 9]). In particular, these cards are very simple
devices with a small storages and a few security mechanisms. Interestingly, the
attacks in the literature are not due to a flaw in such mechanisms but, instead on
programming errors. In fact, MU cards do not provide any security API to the
programmer, ensuring that the offered mechanisms are used in a correct way.
The card API consists of two operations: read and write, and it is up to the
programmer to execute them so that data are secured as desired.

One of the main motivation of this work is to provide a tool for developing
secure APIs to MU cards. The imperative language we propose is simple, but
still expressive, and can be also type-checked. It is suitable for programming
the API layer between an application and the cards. A theorem proves that
well-typed APIs enforce interesting security properties on the cards, such as
the impossibility of reusing tickets. By understanding more deeply the security
aspects of these devices, we have also found a method to extend the cards from
the typical use-case that consists of a card containing a unique resource, and
no recharging option. These cards use an irreversible counter, named OTP, to
decrement available tickets that prevents any recharge, if used as suggested by
the producer [2]. Here we propose a new way of using the OTP: we use the
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standard read/write area of the card to store the actual (possible multiple)
resource counters. The OTP is instead used only to track the generic event of
consuming a resource, but it does not directly correspond to the number of
resources charged on the card. A Message Authentication Code (MAC), ensures
the integrity of the actual counters with respect to the unique card ID and the
OTP, so to avoid the card cloning or the restoring some already used resources.

In summary, (i) we give a formal semantics of the MU cards which is ex-
tremely close to their real functioning (section 2); (ii) based on this, we propose
a very simple but still expressive language for the construction of realistic APIs
that interface with them (section 3). Moreover, we give some advices on how
a secure application based on MU cards should be built. In our opinion, a key
point is to separate the application from the APIs, and also to use a simple lan-
guage for their representation. This is what we have done in this paper, and this
has permitted us to easily check the security of this API-level; (iii) we propose
a formal typing of this language that permits to prove that the APIs have the
property that the resources stored on the card never exceeds that have been paid
and not yet used, i.e., no attacker can steal or double-use resources (section 4).

Related work. There are many different attacks to the MU cards, many of which
have been presented in [6] and that are here listed. Consider a user travelling
with this card in a metro: at the check-in the card has to be validated at a
ticket counter, then the user travels, finally, he validates again the card at a
counter while checking-out. One vulnerability relies on the fact that, the only
information changed at the check-out is stored in a user-writeable area. A user
could thus save the transaction stored at the purchase, use the ride, check-out
and overwrite the check-out transaction with the saved data. Since there is no
on-line database that checks the card data, thus a user may be able to check-out
an unlimited number of times during the time-frame offered by the check-in.
The authors propose to solve this by adding a check-out counter that has to be
compared with the check-in OTP value (which increases at each ride).

Another vulnerability shown in [6], is due to the operation order. Whenever
a user travels, the system first checks if there are still rides left on the card, it
increments their number, and then stores the check-in transaction on the card.
By storing a backup of some particular pages of the card just before a trip, it
is possible to restore them after the trip so to qualify a user to travel, up to
the card expiration date, at the cost of a unique single ride. Another attack was
presented in 2008 by Roel Verdult, in [9]. He implemented a Ghost device which
was capable of intercepting sensible information (sent in plaintext between the
reader and the MU card) and then emulate and clone MU cards.

The model presented in this paper is the first one that formalizes, via a
linear type-and-effect system, the MU cards, and in particular the consumption
and recharge of resources. Regarding formal models for APIs, we mention two
works in a different setting: Steel [7] proposed the first formal analysis for the
discovery of new attacks and possible patches to the APIs used for the Personal
Identification Number (PIN) processing in the bank cash machine network. In
[4], the authors presented a language-based environment for analysing the PIN



Byte number 0 1 2 3 Page

ID ID0 ID1 ID2 Check1 0

ID ID3 ID4 ID5 ID6 1

Check/Lock Check2 Internal Lock0 Lock1 2

OTP OTP OTP OTP OTP 3

Data user memory user memory user memory user memory 4

Data user memory user memory user memory user memory 5

Data user memory user memory user memory user memory ...

Data user memory user memory user memory user memory 15

Lock0

Lock1

lock7 lock6 lock5 lock4 lock3 block1 block2 blockOTP

lock15 lock14 lock13 lock12 lock11 lock10 lock9 lock8

Table 1. The MU card Memory and Lock bits

processing API, formally modelled existing attacks, proposed some fixes and
proved them correct via a type-system.

Type-and-effect systems have already been applied in the context of security,
e.g., in [5], however these types are non-linear and they have been used for the
authenticity of security protocols and not for the analysis of security APIs. The
work that is most related to the present one is [3] where the authors propose
a linear type system that combines affine logic, refinement types, and types
for cryptography, in order to support authorization policies, which are used to
determine whether a resource in a system should be accessed or not. Though
there are similarities, the system is applied at the protocol level, moreover it does
not address issues which are very relevant in our context, such as data integrity.
As a future work it would be interesting to integrate the two approaches.

2 Modelling Mifare Ultralight cards

We briefly recall the technical characteristic of the Mifare Ultralight cards. For
more details refer to [2, 6]. MU cards are low cost, contactless RFID smart cards
compatible with the ISO/IEC 14443A standard, used as a single ride or short
term use tickets. These cards do not need batteries as they are recharged by the
electromagnetic field generated by a reader to which they may connect (with
no encryption) in High Frequency, and with Operating frequency of 13.56 MHz,
up to a distance of 100 mm. Different cards may simultaneously connect to the
same reader and are distinguished by an anticollision mechanism that relies on a
distinguished Unique Identifier (ID) assigned to each card, ensuring that no data
corruption occurs during the transactions between each card and the reader.

The memory of these cards contains different type of data, some of which
is only readable. Table 1 describes how this 16 pages for 4 bytes memory is
organized: The card ID is composed of 7 bytes, here denoted by ID0, ID1, ID2,
ID3, ID4, ID5, ID6, and is stored in the first two pages: bytes ID0, ID1, ID2 are
in page 0 followed by a check byte Check1 (a bitwise XOR of ID0, ID1, ID2),
bytes ID3, ID4, ID5, ID6 are in page 1. Another check byte Check2 is placed at



the beginning of page 2, (a bitwise XOR of ID3, ID4, ID5, ID6) followed by an
internal byte (whose use is unknown). This part of the memory is programmed
by the IC manufacturer and is only readable.

The rest of the memory is in a read/write mode. Pages 4 to 15 are data pages.
An exception to the read/write operation is provided by the last two bytes of
page 2, which are called the lock bytes, and are denoted Lock0 and Lock1, and
the four bytes of page 3, called OTP. The bits of these bytes are initially set to 0
and while they are changed to a 1 their value is ‘frozen’ and cannot be reverted
to 0. As we will explain later in detail , this is implemented by executing a write
operation as a bitwise OR between the actual value and the one to be written.
If a 1 is already in one bit, the result of the OR will always be a 1.

Formally, let lock i denote the value of the lock bit for the i-th page, then
lock i = 1 corresponds to the locking of page i, i.e., page i can only be read.
As shown in Table 1, Lock1 is composed of 8 bits, i.e., lock15, . . . , lock8 used
to lock pages from 15 to 8. Lock0 is composed of 5 bits, i.e., lock7, . . . , lock3,
used to lock pages from 7 to 3, and three block-locking bits block1, block2,
blockOTP . These bits are used to freeze also the locking configuration of the 0
bits of pages 15-10, 9-4 and 3, respectively, i.e., preventing some pages from being
locked. Page 3 is the so called One Time Programmable (OTP) area, which is
typically used as a ticket counter. As we have previously said there are 4 bytes,
set to 0 after production. Each bit can only be transformed to a 1. For example,
11111111 11111111 10000000 00000000 represents a ticket with 15 rides on. Each
time the ticket is used the number of 1’s in the OTP is increased.

The model. From the above description we can easily derive that MU cards
C can be modelled as a mapping from a page index to a value. We consider
the values v ::= w | MACk (v1, . . . , vn), i.e., 4-bytes long words w, and terms
representing MACs under key k of values v1, . . . , vn. Keys k are picked from a
special set K, disjoint from values. Formally, C ∈ C is such that C : i 7→ v with
i ∈ [0, 15]. Recall that the card ID is stored in page 0 and 1. Its uniqueness is
ensured by requiring that C ′, C ′′ ∈ C implies (C ′(0) 6= C ′′(0))∨(C ′(1) 6= C ′′(1)).
Notice that the presence of the check bytes (Check1 and Check2) is immaterial
for uniqueness, as they are computed from the ID bytes.

As it is mentioned in previous section, MU cards provide a mechanism to
solve collisions so that, even in the presence of multiple cards in front of the
reader, the application correctly communicates with a single card, i.e., it does
not mix commands directed to different cards. We can thus focus on the only
operations allowed on MU cards: read and write. We model these operations
in a memory-mapped fashion, assuming to have a memory with sixteen special
locations used for I/O with cards. Formally, a memory M : x 7→ v is a mapping
from a variable x to values v. The special variables p0, . . . , p15 are devoted to
I/O with cards meaning that any read/write operation transfers information
between those variables and the card pages.

The semantics of the I/O operations is given in Table 2 in terms of reductions
between configurations 〈c,M,C〉, representing the execution of command c on
memory M and card C. We use ε to represent the ‘consumption’ of the command.



(read) 〈read(i),M,C〉 → 〈ε,M{pi 7→ C(i)}, C〉 if 0 ≤ i ≤ 15

(write) 〈write(i),M,C〉 → 〈ε,M,C{i 7→ store(M,C, i)}〉 if (i = 2) or
(2 < i ≤ 15 and lock i = 0)

store(M,C, i) =


C(i) | (M(i) & mask1 & mask2 & maskOTP ) if i = 2
C(i) | M(i) if i = 3
M(i) otherwise

mask1 = 00000000 00000000 11111111 00000011 if block1 = 1
mask2 = 00000000 00000000 00001111 11111100 if block2 = 1

maskOTP = 00000000 00000000 11110111 11111111 if blockOTP = 1

= 00000000 00000000 11111111 11111111 otherwise (for each mask)

Table 2. Semantics of read/write operations on MU cards.

Our semantics is very close to the real behaviour of cards. The main difference
is that our cards cannot fail. Failures can nevertheless be observed by the fact
that the card is stuck, e.g., if we try to read out of the page index range.

A read operation 〈read(i),M,C〉 → 〈ε,M{pi 7→ C(i)}, C〉 copies the con-
tent of the device page C(i) of card C into the relative memory variable pi.
Write operations 〈write(i),M,C〉 → 〈ε,M,C{i 7→ store(M,C, i)}〉 are more in-
volved since the way data are written depends on the specific page i. First,
notice that pages 0 and 1 are read-only: writing on those pages is disallowed.
For pages 2 ≤ i ≤ 15, the write operation is formalized through the function
store(M,C, i) which picks the value M(i) from the memory and returns the ac-
tual data to be stored in the card at page C(i), provided (for pages 2 < i ≤ 15)
that lock i = 0, i.e, the page is not locked. For the lock bits in page 2 and
the OTP in page 3, notice that the value is always bitwise or-ed (symbol ‘|’)
with the actual value on the card. This has the effect of making bits set to 1
sticky: once set to 1 they will never be set back to 0. For example, if we ask to
write 00000000 00000000 00000000 00111111 to the OTP which contains value
00000000 00000000 00000000 11110000, the actual value written will be the bit-
wise or of the two, i.e., 00000000 00000000 00000000 11111111 (refer to case
i = 3 of the store function). Symbolic MACs, when appearing in a bit-wise or
operation are considered as value 0, i.e., they do no affect the result. This does
not limit the attacker capabilities as he can choose to write whatever value he
wants to the cards. Well-typed programs will never write MACs in these pages.

Finally, consider the attempt to execute a write on page i = 2. This write
is also prevented by the block-locking bits (that are the last three bits in the
third byte of page 2), which have thus to be checked. This is formalized through
suitable bit-masks that are bitwise and-ed (symbol ‘&’) with the value M(i) to
be stored. All masks contain the first two bytes set to 0 as the write operation
should not change the Check2 and Internal values. Assume now block1 is set,
then the write over the locking bits of pages 10 to 15 will be prevented. This
is captured by the corresponding mask mask1 = 00000000 00000000 11111111
00000011. For example, if we try to lock pages from 3 to 15 by writing the



〈skip,M,C〉 → 〈ε,M,C〉 〈a,M,C〉 aC−→ 〈ε,M,C〉 〈c1,M,C〉 `−→ 〈ε,M ′, C′〉
〈c1; c2,M,C〉 `−→ 〈c2,M ′, C′〉

〈c1,M,C〉 `−→ 〈c′1,M ′, C′〉
〈c1; c2,M,C〉 `−→ 〈c′1; c2,M ′, C′〉

e ↓M v

〈x := e,M,C〉 v̂→ 〈ε,M{x 7→ v}, C〉
e ↓M true

〈if e then c1 else c2,M,C〉 → 〈c1,M,C〉
e ↓M false

〈if e then c1 else c2,M,C〉 → 〈c2,M,C〉

Table 3. Semantics of the API-level language.

following four bytes 00000000 00000000 11111000 11111111 to page 2, this will
be and-ed with the above mask giving 00000000 00000000 11111000 00000011,
i.e., only pages from 3 to 9 will be locked (assuming that block2 is not set).

Note that real read operations return 4 pages. This is useful for performance
but it has no impact on security, we thus prefer to model a much simpler single
page read, however, extending the semantics to 4 pages would be straightforward.

3 The API-level language

We define a simple imperative language for specifying the part of the application
interacting with the cards. It would be desirable to have this part separated from
the actual application, by providing a simple API for recharging and checking
the tickets. In fact, this is the critical part of the application: any flaw in this
code might lead to the possibility of cloning tickets or reversing ticket states, and
consequently allowing malicious users to travel for free [6]. Note that the lan-
guage we define is, on purpose, very simple so to allow formal reasoning but still
allowing to program the relevant APIs needed from the higher-level application.
Since security of the MU cards is completely in charge of the application, this
‘layered’ approach is, in our opinion, necessary to clearly separate the critical
code interacting with the card from the rest of the application.

Our language builds on top of the card API: it admits read and write opera-
tions on cards, assignment of expressions e to variables and if-the-else branches.
Formally c ::= read(i) | write(i) | skip | a | c1; c2 | x := e | if e then c1 else c2

where annotations a ::= produce(R) | consume(R) represent the production and
consumption of a resource R ∈ R. They do not have any semantic import in
the language apart from exhibiting a label, useful to define security properties.
We do not specify the possible expressions in detail. We assume MACs under
key k ∈ K can only be generated by the special expression MACk (. . .) and we
write K(e) to note all MAC keys k syntactically occurring in e. The semantics of
read/write operations is given in the previous section. The semantics of the re-
maining commands is largely standard and is given in table 3. Label v̂ is defined
as MACk (. . .)C if e is MACk (. . .) and is empty otherwise.

The attacker model is tailored to the specific setting. We assume a worst-
case scenario where the attacker has control of all the cards C ∈ C and has a
snapshot of all previous card states. The only thing it does not possess is the key



K used for generating/checking MACs. The attacker can thus run whatever code
he wants on the card, meaning that he can delete/copy/modify (writable) card
pages, but he cannot forge new MACs under key K. Of course, read and write
operations will respect card semantics. E.g, the OTP 1’s can never be reverted
to 0. We also assume the attacker can use/recharge the cards (even the one he
has tampered with). This amounts to saying that he can run trusted API code
containing the MAC key K. In real applications, this code is run inside some
secure, protected hardware (think about the validating machines of a metro).
Trusted code, which we will assume to be part of a set T , can be thus arbitrarily
run on the cards but it cannot be tampered with.

An attacker configuration is a pair 〈M, C〉 consisting of a memory M and a set
of cards C. The attacker can execute untrusted code (as far as K and annotations
does not appear in the code), or API code in T on each of the cards:

(attackerAPI)
c ∈ T 〈c,M,Ci〉

γ−→
∗
〈c′,M ′, C′i〉

〈M, {C1, . . . , Ci, . . . , Ck}〉
γ
 T 〈M ′, {C1, . . . , C′i, . . . , Ck}〉

(attackerUn)
K 6∈ K(c) a 6∈ c 〈c,M,Ci〉

γ−→
∗
〈c′,M ′, C′i〉

〈M, {C1, . . . , Ci, . . . , Ck}〉
γ
 T 〈M ′, {C1, . . . , C′i, . . . , Ck}〉

We write 〈M, C〉
γ

 ∗T 〈M ′, C′〉 to note a, possibly empty, sequence of attacker

executions 〈M, C〉 γ1 T 〈M1, C1〉
γ2 T . . .

γn T 〈M ′, C′〉 with γ = γ1γ2 . . . γn.

Example 1 (Double usage of a card ticket). We show a simple example of an
API for consuming tickets and we present an attack to it. We assume that
page 4 contains a counter of the ticket resource RT on the card, pages 5 and
6 respectively contain the bus identifier and a timestamp, while page 7 is a
message authentication code (MAC) of the card ID (p0 and p1), together with
the lock bytes (p2), the OTP (p3), and the timestamp (p6). We let read(i : j)
and write(i : j), with i < j, respectively denote read(i); read(i + 1); . . . ; read(j)
and write(i);write(i+ 1); . . . ;write(j).
We also write consume(RT)n to de-

read(4 : 7);
x4 := p4;x5 := p5;x6 := p6;x7 := p7;

read(0 : 7);
if (MACK (p0, p1, p2, p3, p4, p6) = p7) then

p4 := p4 − n;
p5 := BUS ID();
p6 := TIMESTAMP();
p7 := MACK (p0, p1, p2, p3, p4, p6);
write(4 : 7)
consume(RT)n;

else
skip

p4 := x4; p5 := x5; p6 := x6; p7 := x7;
write(4 : 7)

note n instances of consume(RT).
The attacker first executes its own
code by reading pages 4 to 7 in the
card any by copying them in the
card memory in a read/write area.
Then, it executes an API program
of T . To check card integrity, the
MAC is recomputed and checked on
the value p7 read from the card. Once
the card is known to be valid, fields
p5 and p6 are updated to store the
bus ID and a timestamp, using two
expressions that we do not specify in detail, and the MAC is recomputed.
All the modified pages are written to the device. Finally, the n annotations



consume(RT)n indicate that n resources RT have been consumed from the card,
and the calling application can make use of them, e.g., n travelers are using
n tickets from the same cards. Then the attacker writes again in the memory
the values stored at the beginning, with the original resources. To prevent this
attack, it is necessary that the OTP (p3) is incremented. The OTP, in fact, is
irreversible.

As we have seen, the attacker aims at obtaining more resources than the ones
produced. In order to count such resources we consider the events produce(R)
and consume(R), mentioned above, that are exhibited as labels produce(R)C
and consume(R)C of the semantic reduction →, with C representing the status
of the card on which the API program is running. Intuitively, we count the
number of produce(R) and we subtract the number of consume(R) to obtain
the residual instances of resource R: In the following, we write Id(C) to note
the pair (C(0), C(1)) and Otp(C) to note C(3). We also write γ ↓C to note the
subsequence of γ only containing labels in set {`C′ | Id(C ′) = Id(C)}, i.e., relative
to card C.

Definition 1. Let γ be a sequence of labels. Then, we define count(C, γ,R) =
|{produce(R)C′ ∈ γ ↓C}| − |{consume(R)C′ ∈ γ ↓C}|.

4 Type-based analysis

In order to statically type-check APIs we need to know how card data are orga-
nized and in particular where crucial data such as the counter and the MAC are
stored, and which pages the MAC actually authenticates. In real applications
this is defined once for all, and is used for all MU cards.

We consider types τ ::= Data | • | R | Mac[i0, . . . , im] | Id | Lock | Otp.
Intuitively, type Data is for generic data, • is a special type for variables waiting
to be checked through a MAC and synchronized with the actual values on the
card, R is a resource counter and ranges in the set of resources R, Mac[i0, . . . , im]
is for MACs that take as input the values of pages i1, . . . im, Id is for the 2 pages
containing the unique identifier, Otp and Lock are for the OTP and lock bytes.

In order to track linear production and consumption of resources or events
such as the increment of the OTP we use effects e ::= R | iOtp | W0 | . . . | W15.
In particular, R represents the effect of producing a resource R, effect iOtp the
increment of the OTP, and effect Wi requires page i-th to be written and it is
used to track the change of variable pi that has to be written back to the card.

A typing environment Γ is an unordered list of effects e and of bindings x : τ
and i : τ among variables and their types, and page indexes and their types,
respectively. Bindings must be unique, that is we can never have x : τ and x : τ ′

simultaneously in Γ . Effects, instead, may appear in multiple instances. When
this holds we say that the environment is well-formed, written Γ ` �. Mixing
types and effects into the same environment is useful in order to simplify the
typing rule notation. We will write Γ(z) to note the (unique) type of variable/in-
dex z in Γ, and Γ{x : τ ′} to change the binding of x to the new type τ ′ in Γ.
Finally, we will write eff (Γ) to denote the unordered list of all the effects in Γ.



Types of card page indexes are subject to the following constraints.

Definition 2 (card page types). Let Γ ` �. We say that Γ is a valid card
page typing environment, written Γ `C �, if the following properties hold:

1. Γ(i) 6= • for i = 0, . . . , 15 and Γ(i) 6= Id, Lock,Otp for i = 4, . . . , 15
2. Γ(i) = R implies @k 6= i such that Γ(k) = Γ(i)

3. Γ(i) =

 Id if i = 0, 1
Lock if i = 2
Otp if i = 3

4. Let i1, . . . , ik be the set of indexes {i | Γ(i) ∈ R} ordered from the smallest to
the biggest. Then, Γ(i) = Mac[. . .] implies Γ(i) = Mac[0, 1, 2, 3, i1, . . . , ik, . . .]

Intuitively, (1) forbids the use special type • for card pages and ensures that
only the first 4 pages can be typed Id, Lock,Otp; (2) states that each R ∈ R can
be given to a unique page; (3) as expected, types Id, Lock,Otp are given to the
first four pages; (4) any MAC is required to at least contain the card ID, the
lock bytes and the OTP, and any resource counter R ∈ R on the card. Without
loss of generality, we assume that these special values appear in any MAC in the
very same positions. This will ease the treatment of MACs at runtime as there
will be no ambiguity about the position of relevant values.

We write R(Γ) to note the set of all the resources on the card, i.e., the ones
that have a counter in Γ. Formally R(Γ) = {R ∈ R | ∃i.Γ(i) = R}.

Example 2 (Typing card pages). Consider again the simple card structure pre-
sented in Example 1. Recall that page 4 containes a counter of the ticket resource
RT on the card, pages 5 and 6 contain data such
as the bus identifier and a timestamp, while page i Γ(i)

0 Id
1 Id
2 Lock
3 Otp
4 RT

5 Data
6 Data
7 Mac[0, 1, 2, 3, 4, 6]

7 is for a message authentication code (MAC) of
the card ID (pages 0 and 1), together with the
lock bytes (page 2), the OTP (page 3), the resource
counter, and the timestamp (pages 4 and 6). Pages
from 8 to 15 are not used (we do not report them
but they can safely be given type Data). We can
thus give the types reported on the right to the
card pages. Finally, since there is only one resource
on this card we have R(Γ) = {RT}.

When reading values whose integrity needs to be checked by recomputing a MAC
we want to avoid that these values are changed before their integrity has been
actually verified. To force the program to do so, we temporarily give type • to
the variables containing such values. After the MAC has been checked we can
safely give the actual types. To formalize this step we use a transformation of
Γ, noted Γ̂, that gives type • to all the pages that are arguments of at least one
MAC and are not themselves MACs. Formally:

Γ̂(i) =

{
• if Γ(i) 6= Mac[. . .] and ∃j, z.Γ(j) = Mac[i0, . . . , im] ∧ iz = i
Γ(i) otherwise



(empty) ` Γ JεK Γ (skip) ` Γ JskipK Γ

(assign)
Γ(x) = Data x 6= pi K 6∈ K(e)

` Γ Jx := eK Γ
(c-assign)

Γ(pi) = Data K 6∈ K(e)

` Γ Jpi := eK Γ + Wi

(inc-res)
Γ(pi) = R

` Γ,Rn Jpi := pi + nK Γ + Wi
(dec-res)

Γ(pi) = R

` Γ Jpi := pi − nK Γ,Rn + Wi

(inc-otp)
Γ(p3) = Otp

` Γ Jp3 := incOTP(p3)K Γ + iOtp + W3

(create-mac)
Γ(pi) = Mac[i0, . . . , im] ∀j = 1, . . . ,m.Γ(pij) = Γ(ij) W3 6∈ Γ

` Γ Jpi := MACK (pi0 , . . . , pim)K Γ + Wi

(seq)
` Γ Jc1K Γ′ ` Γ′ Jc2K Γ′′

` Γ Jc1; c2K Γ′′
(if-then-else)

` Γ Jc1K Γ′ ` Γ Jc2K Γ′

` Γ Jif e then c1 else c2K Γ′

(MAC-check)

Γ(pi) = Mac[i0, . . . , im] Γ(pi0), . . . ,Γ(pim) = •
` Γ{pi0 : Γ(i0), . . . , pim : Γ(im)} Jc1K Γ′ ` Γ Jc2K Γ′

` Γ Jif MACK (pi1 , . . . , pim) = pi then c1 else c2K Γ′

(produce) ` Γ Jproduce(R)K Γ,R (consume)
iOtp ∈ Γ W3 6∈ Γ

` Γ,R Jconsume(R)K Γ

(read)
Γ, pi : Γ̂(i) ` �

` Γ Jread(i)K Γ, pi : Γ̂(i)
(write)

Γ(pi) = Γ(i) i 6= 0, 1

` Γ Jwrite(i)K Γ−Wi

(dec-trust)
` Γ JcK Γ′ Γ′(pi) = Γ(i) Wi 6∈ Γ′

` Γ JcK Γ′{pi : Γ̂(i)}
(iOtp)

` Γ JcK Γ′

` Γ JcK Γ′ − iOtp

Table 4. Type and effect system for secure APIs.

Example 3 (Transformation Γ̂). If we compute Γ̂ of Example 2 we have that all
the types of pages 0,1,2,3,4,6 are transformed into • as they are MAC arguments.

Operations on the OTP. In order to deal with the OTP we need a function to
increment its value against a given one, that we call incOTP : Bytes4 → Bytes4.
Recall that the OTP is 32 bits long and is such that once a 1 is written it cannot
be restored to 0. Thus, the way the OTP is incremented is by changing to 1 a
0, which gives, at most, 33 different values. incOTP takes the OTP word and
returns a new value with one of the 0s changed into a 1. The property that
we want is that either incOTP(v) > v or incOTP(v) is undefined (e.g., when
the OTP has reached the maximum possible value). An example of efficient
implementation is a left shift and a bitwise or with 1, i.e., (v << 1) | 1, if
v < 231 and undefined otherwise.

The type and effect system. Typing rules are reported in Table 4. Judgements
have the form ` Γ JcK Γ′ meaning that program c typechecks under trusted key
K and typing environment Γ and transforms it into Γ′. As we will see, this is
useful to add/remove effects and to update types, for examples after a MAC



check. We add/remove effects in two ways: we use the list notation Γ, e to note
that e is appended to Γ, meaning that multiple instances of e can be in the
resulting environment. We write Γ + e, instead, to add e in Γ only if it is not
already there and Γ− e to remove it is already in Γ. The former notation is used
for linear effects R while the latter for effects related to events such as iOtp and
Wi, that are added/removed once.

Intuitively, rules (ε) and (skip) state that the empty command ε and skip
always typecheck with no modification of Γ. Rule (assign) admits any assignment
of any expression to variables of type Data different from the card variables pi,
as soon as the expression does not compute any MAC under the trusted key
K. For these variables, rule (c-assign) and the following ones, also track that
they need to be written back to the card, via the effect Wi. More interestingly,
rule (inc-res) regulates an increment of n resources of type R: this consumes n
instances of R from the environment. Dually, rule (dec-res) adds n instances of
effect R. Intuitively, effect R compensates for the increments and decrements of
variables of type R. Rule (inc-otp) increments the OTP using the ad-hoc incOTP
function presented above and adds the corresponding effect iOtp.

Rule (create-mac) is for computing new MACs and requires that the argu-
ments are exactly the variables pi specified by the MAC type and that they are
typed accordingly to the card page type Γ(i), meaning that they have been au-
thenticated by a MAC check. Rule (seq) makes sure that sequential commands
are typed using the environment produced by the previous command, while (if-
then-else) typechecks both branches under the same environment Γ and produces
the same environment Γ′.

Rule (MAC-check) regulates MAC checks: a MAC can be recomputed by
value of type •. This type is temporarily given to the value that needs to be
checked with a MAC when they are read from the card (see rule (read) below),
and freezes any update of such values until the MAC is actually checked. When
this happens, the command in the if branch c1 can be typed using the actual
types of checked pages, i.e., Γ(i1), . . . ,Γ(im) which are updated in Γ and Γ′. We
also require that modified variables have all been written back to the cards by
checking the absence of the corresponding Wi effects. Notice that this makes the
resulting environment different from the one used to type the MAC check and
the else branch. (dec-trust) below will fix this anomaly.

Rules (produce) and (consume) respectively produce and consume one re-
source R by adding/removing the relative effect R from Γ. Additionally, rule
(consume) requires that the OTP has been incremented (presence of iOtp) and
written back to the card (absence of W3). This is crucial to guarantee that re-
sources cannot be consumed twice. Rule (read) add the type of the read variable
using Γ̂, which transforms into • all the types of arguments of MACs. Rule (write)
removes, if present, the non-linear effect Wi requiring page writing.

Rule (dec-trust) updates the resulting environment Γ′ by changing the type of
variables pi from Γ(i) to Γ̂(i). This is safe if the value stored in pi is not different
from the value C(i) on the card. Recall, in fact, that Γ̂(i) might be •, meaning
that the variable is ‘frozen’ and its value corresponds to the one on the card.



Finally, (iOtp) removes effect iOtp from Γ′. These two last rules are used when
exiting a MAC-check branch, to bring types and effects to the original status.

Example 4 (A type-checkable travelling API). We first show that the (insecure)
code given in Example 1 does not typecheck as it performs resource consump-
tion without incrementing the OTP. As we have seen, this allows for resuming
the state the ticket had before the trip and to reuse it an unbound number of
times (similarly to what happened to real systems [6]). We let Γ be the typing
environment defined in Example 2, and consider Γ′(pi) = Γ(i) and Γ′′(pi) = Γ̂(i):

i Γ

0 Id
1 Id
2 Lock
3 Otp
4 RT

5 Data
6 Data
7 Mac[0, 1, 2, 3, 4, 6]

Γ′ Γ′′

p0 Id •
p1 Id •
p2 Lock •
p3 Otp •
p4 RT •
p5 Data Data
p6 Data •
p7 Mac[0, 1, 2, 3, 4, 6] Mac[0, 1, 2, 3, 4, 6]

Notice that Γ′′{p0 : Γ(0), p1 : Γ(1), p2 : Γ(2), p3 : Γ(3), p4 : Γ(4), p6 : Γ(6)} = Γ′.
For the sake of readability we abbreviate Wi,Wj with Wi,j .

`Γ Jread(0 : 7); KΓ,Γ′′

`Γ,Γ′′ Jif (MACK (p0, p1, p2, p3, p4, p6) = p7) K
`Γ,Γ′ J p4 := p4 − n; KΓ,Γ′,RnT,W4

`Γ,Γ′,RnT,W4 J p5 := BUS ID(); KΓ,Γ′,RnT,W4,5

`Γ,Γ′,RnT,W4,5 J p6 := TIMESTAMP(); KΓ,Γ′,RnT,W4,5,6

`Γ,Γ′,RnT,W4,5,6 J p7 := MACK (p0, p1, p2, p3, p4, p6);KΓ,Γ′,RnT,W4,5,6,7

`Γ,Γ′,RnT,W4,5,6,7 J write(4 : 7) KΓ,Γ′,RnT
`Γ,Γ′,RnT J consume(RT)n; K???

Here the type-check fails as rule (consume) requires effect iOtp in the environ-
ment, i.e., that the OTP has been incremented. To get a type-checkable API we
just need to increment the OTP and write it back to the card, as follows:

`Γ Jread(0 : 7); KΓ,Γ′′

`Γ,Γ′′ Jif (MACK (p0, p1, p2, p3, p4, p6) = p7) K
`Γ,Γ′ J p3 := incOTP(p3); KΓ,Γ′, iOtp,W3

`Γ,Γ′, iOtp,W3 J write(3) KΓ,Γ′, iOtp
`Γ,Γ′, iOtp J p4 := p4 − n; KΓ,Γ′,Rn,W4

`Γ,Γ′,Rn, iOtp,W4 J p5 := BUS ID(); KΓ,Γ′,Rn, iOtp,W4,5

`Γ,Γ′,Rn, iOtp,W4,5 J p6 := TIMESTAMP(); KΓ,Γ′,Rn, iOtp,W4,5,6

`Γ,Γ′,Rn, iOtp,W4,5,6 J p7 := MACK (p0, p1, p2, p3, p4, p6);KΓ,Γ′,Rn, iOtp,W4,5,6,7

`Γ,Γ′,Rn, iOtp,W4,5,6,7 J write(4 : 7) KΓ,Γ′,Rn, iOtp
`Γ,Γ′,Rn, iOtp J consume(R)n; KΓ,Γ′′

` Jelse K
`Γ,Γ′′ J skip KΓ,Γ′′

Notice that consume(RT) is typed by n applications of rule (consume), then by
six applications of (dec-trust) to bring Γ′ back to Γ′′ and by one final application



of (iOtp) to remove iOtp. The fact RT does not appear in the final environment
guarantees that the resources RT have a 0 final balance. In fact, n such resources
have been removed from the card and n consume(RT) have been performed,
allowing the calling application to use such resources. The attack of Example 1
is no more effective: since the OTP is incremented and irreversible, when the
attacker copies back the initial values, the MAC would result to be invalid.

4.1 Security of well-typed APIs

We now prove that well-typed programs guarantee interesting security proper-
ties. Intuitively, for such programs: (i) Whenever resources are consumed from
a card, the OTP is always incremented; this is fundamental to avoid that cards
are restored to states with more resources than the expected ones (Theorem 1);
(ii) the number of resources on a card, during its lifetime, never exceeds the dif-
ference between the resources produced and the ones consumed; for example if
we charge 3 tickets and we consume 2, we can at most have 1 ticket on the card.
This is crucial to guarantee that resources are never double-used (Theorem 2);
(iii) resources can never be consumed by a card with no valid MACs; this is
crucial to avoid the attacker can freely forge cards without knowing the MAC
key K (Theorem 3). Notice that for lack of space proofs are omitted.

Valid cards. Our starting point is the concept of valid cards. A card is valid if
it contains at least a valid MAC. Recall that resource counters are required to
appear as argument of all MACs on a card together with the ID, the lock bytes
and the OTP (item 4 of Definition 2). Thus, if a card has at least one valid MAC
we can safely recover the number of different resources on the card. Moreover,
the valid MAC cannot be copied on a different device as the different ID would
break the MAC check. This is the standard security mechanism to avoid cloning
RFID devices. We formalize the notion of valid cards as follows:

Definition 3 (Valid cards). Let Γ `C �. A card C ∈ C is Γ-valid, written
Γ ` C, if ∃i.Γ(i) = Mac[i0, . . . , im] and MACK (C(i1), . . . , C(im)) = C(i).

Given that a valid card ensures the integrity of every resource counter, for valid
cards we can safely lookup the number of resources. This is done by looking up
the maximum number of resources validated by MACs.

Definition 4 (MAC and card resources). Let Γ `C � such that Γ(i) =
Mac[i0, . . . , im] and Γ(ij) = R. The number of resources R in MACK (v0, . . . , vm),
denoted with R(MACK (v0, . . . , vm))Γ, is vij . Let Γ ` C thanks to MACs m1, . . . ,
mz. The number of resources R on C is R(C)Γ = max{R(m1)Γ, . . . ,R(mz)Γ}.

Security of well-typed programs. First theorem proves that whenever resources
are consumed by a well-typed API program, the OTP has been incremented.

Theorem 1 (Consuming affects OTP). Let Γ `C � and ` Γ JcK Γ′′ with

eff (Γ) = ∅. Then, 〈c,M,C〉 γ−→
∗
〈c′,M ′, C ′〉 consume(R)C′−→ 〈c′′,M ′′, C ′′〉 implies

Otp(C ′) > Otp(C).



Based on this theorem and on a subject reduction result that we omit for lack of
space, we can prove our main technical result: any valid card that the attacker
can obtain will never contain a number of resources exceeding the expected ones,
i.e., the one recharged and not yet used.

From now on, we consider initial attacker configurations 〈M0, C0〉 such that
M0 does not contain any MAC under K, i.e., the attacker does not initially know
any secure MAC; moreover, all cards C0 in C0 are such that R(C0) = 0, for any
resource R, and Otp(C0) = 0, i.e., they contain 0 resources and have an empty
OTP. We write Γ ` T to note that Γ `C � and c ∈ T implies ` Γ JcK Γ′′ with
eff (Γ) = ∅ and Γ(x),Γ(pi) 6 ↓.

Theorem 2 (Security of valid cards). Let Γ ` T and 〈M0, C0〉
γ

 ∗T 〈M, C〉
and C ∈ C such that Γ ` C. Then, R(C)Γ ≤ count(C, γ,R).

The above theorem shows that the attacker can never obtain a valid card with
more resources than the expected ones. Note that, if a card forged by the attacker
is invalid, then the type system guarantees that resources will never be consumed
from it by well-typed APIs, that is, an invalid card is useless.

Theorem 3 (Resistance against invalid cards). Let Γ ` T and 〈M0, C0〉
γ

 ∗T

〈M, C〉 γ
′

 T 〈M ′, C〉 and C ∈ C such that Γ 6` C. Then, @C ′ such that Id(C ′) =
Id(C) and consume(R)C′ ∈ γ′.

5 Conclusion

We have modelled and analysed Mifare Ultralight cards giving a type-and-effect
system that can be used to develop and check an API which is resistant to
double-usage of resources and card forging.

Note that there are other interesting properties that one would expect from
an electronic ticket, e.g., cards of legitimate users should not be corrupted. This
is, in fact, impossible to prevent since the attacker can overwrite card pages,
including the OTP, and make the MAC check fail. This problem can be mitigated
using centralized information about purchases and usages of tickets on a specific
MU card: a user could be then refunded in case her card is corrupted.

In the introduction we have mentioned the possibility of creating devices that
emulate MU cards with arbitrary IDs. This of course would allow an attacker
to clone cards and to arbitrarily reuse tickets. In fact, security of MU cards is
based on the assumption that the ID is unique and the OTP cannot be reversed.
However, note that cards might be inspected or observed at gates and such
devices are far from being physically identical to real cards. In order for this
attack to be effective, it would be necessary to produce fake, emulating cards
that looks like the real ones and this seems to be not cost-effective at the moment.

Regarding the length of the MACs, note that being 32-bits long are, in gen-
eral, insecure. It is important to notice, however, that to forge a MAC it would
be necessary to interact with a legitimate validation or recharging machine for



a long time without being noticed. In fact, transactions are rather slow taking
at least about 7ms to solve collisions and perform one read operation [2]. Trying
231 MACs would then take ≈174 days. A valid MAC should be forged for any
single trip, which makes this attack inconvenient. Finally, it is of course possible
to use longer MACs at the price of consuming more memory from the cards.

The OTP mechanism is such that at most 32 ticket rides can be loaded.
This could seem a limitation even in the recharging solution we have proposed.
However, there are some issues to consider. First a 32 rides ticket could be used
to store, e.g., 3 types of tickets (metro, bus and boat), each of which could, e.g.,
be recharged up to 10 single rides. MU cards are very cheap, however, given that
the number of users can be millions, and that each ticket costs to the seller a
few cent of Euros, 32 recharges in replace of 32 single ride tickets are already
a big saving. It is also reasonable to assume the production of new cheap cards
with a bigger memory and thus OTP, on which the same solution would apply.

As a future work, we intend to investigate on how our analysis can be gener-
alized to other disposable cards from different producers. It would be desirable
to have a generic semantics and type-system that is ‘configurable’ by specifying
which security mechanisms are offered by the analysed card. We also intend to
implement our type-and-effect system on a simple fragment of a real program-
ming language in order to try to type-check real APIs.
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