
A Calculus of Challenges and Responses

Michael Backes Matteo Maffei
Saarland University

Computer Science Department
{backes,maffei}@cs.uni-sb.de

Agostino Cortesi Riccardo Focardi
Ca’ Foscari University

Computer Science Department
{cortesi,focardi}@dsi.unive.it

ABSTRACT
This paper presents a novel approach for concisely abstract-
ing authentication protocols and for subsequently analyz-
ing those abstractions in a sound manner, i.e., deriving au-
thentication guarantees for protocol abstractions suffices for
proving these guarantees for the actual protocols. The ab-
stractions are formalized in a process calculus which con-
stitutes a higher-level abstraction of the ρ-spi calculus and
is specifically tailored towards reasoning about challenge-
response mechanisms within authentication protocols. Fur-
thermore, it allows for expressing protocols without hav-
ing to include details on the specific structure of exchanged
messages. This in particular entails that many authentica-
tion protocols share a common abstraction so that a single
validation of this abstraction already gives rise to security
guarantees for all these protocols. Such an abstract valida-
tion can be automatically performed using static analysis
techniques based on an effect system proposed in this pa-
per. Finally, extensions to additional protocol classes enjoy
a soundness theorem provided that these extensions satisfy
certain explicit, easily checkable conditions.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol Verification; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages
—Program Analysis; K.6.5 [Management of Computing
and Information Systems]: Security and Protection—
Authentication

General Terms
Security, Verification

1. INTRODUCTION
Language-based security has proved to be a salient tech-

nique for formally analyzing security protocols, since Abadi’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FMSE’07, November 2, 2007, Fairfax, Virginia, USA.
Copyright 2007 ACM 978-1-59593-887-9/07/0011 ...$5.00.

seminal work on secrecy by typing [1] up to modern tech-
niques based on logics, model-checking and type systems (a
far from being comprehensive list includes [3, 23, 19, 12, 21,
10, 14, 6]). Authentication protocols are known to require
very subtle reasoning about encrypting and decrypting vari-
ous related messages in the presence of a powerful adversary,
with each of these encryptions being meant to contribute
some part of the overall authentication guarantee. Thus
they are strongly vulnerable to attacks originating by a cer-
tain degree of ambiguity in the protocol message, e.g., man-
in-the-middle attacks or attacks where certain encryptions
are re-used by the adversary in another protocol execution
where they suddenly get a different semantics. This turns
authentication protocols into particularly suitable targets of
language-based security, and several current language-based
static analysis techniques [21, 10, 14] for tackling this prob-
lem have been proposed, e.g., based on protocols narrations
formalized in the spi-calculus [4], or in variants thereof such
as Lysa [10] and the ρ-spi calculus [12]. Roughly speak-
ing, these techniques typically rely on some static patterns,
defined on the syntax of the calculus, which suffice for show-
ing that the run-time protocol execution respects certain in-
tended challenge-response schemes which in turn imply the
desired authentication guarantees.

For instance, the type system by Gordon and Jeffrey [21]
relies on some type information provided by the user, which
suffices for identifying nonces and formalizing to which ex-
tent their exchange contributes to achieving authentication.
The generality of the analysis is sometimes paid by sophisti-
cated type definitions that have to be defined manually and
thus require a certain degree of expertise on the part of pro-
grammers. The type system by Bugliesi, Focardi and Maffei
[14] relies on some dynamic information attached to cipher-
texts, in the form of tags, which uniquely determine the
role of messages in the authentication task. An advantage is
that tag and type definitions are automatically inferred [26].
Furthermore, the use of tags makes the analysis composi-
tional, thus naturally fitting the analysis of multi-protocol
systems, where participants engage in different, and possibly
unknown, protocols. Even if the analysis is general enough
to cover several existing protocols, its scope is strictly con-
strained by the set of tagged ciphertexts.

This paper tackles the analysis of authentication proto-
cols from a conceptually more abstract perspective. Start-
ing from protocol narrations expressed in a dialect of the
ρ-spi calculus, we abstract from the specific structure of
messages by solely focusing on the challenge-response com-
ponents that are inherent in the protocols. The resulting

abstractions are formalized in a new process calculus, the
CR calculus, which is tailored to reasoning about challenge-
response mechanisms within authentication protocols.

The abstraction enables more abstract and general proofs,
and enjoys some properties constituting a significant advan-
tage over existing type-based approaches. A soundness theo-
rem states that abstractions preserve authentication proper-
ties, i.e., proving authentication for a CR protocol abstrac-
tion suffices for obtaining an authentication proof for the
actual ρ-spi protocol. The analysis is modular and compo-
sitional since each principal is independently validated and
the parallel composition of successfully validated protocols
yields a secure protocol again. This fits very well the analy-
sis of multi-protocol systems. The abstraction from ρ-spi to
CR calculus protocol descriptions and the effect system used
for verifying the safety of the latter are completely indepen-
dent. This independence entails that refining the abstraction
does not affect the soundness of the analysis and viceversa.
The abstraction scheme is extensible in that extensions to
additional protocol classes immediately enjoy a soundness
theorem, given that these extensions satisfy certain explicit,
easily checkable conditions. This is a key difference with
respect to other type-based approaches [2, 21, 14], where
an extension of the analysis requires the soundness and the
safety to be proved from scratch.

Further related work. CPSA (Cryptographic Protocol
Shape Analyzer) [17], a tool based on strand spaces [23],
and ProVerif [7, 3, 8] constitute effective and general frame-
works for the analysis of security protocols: the analysis is
automated, applies to several protocols and deals with differ-
ent security properties. In contrast to dynamic typing, these
techniques prove safety results against participants running
the protocol of interest. However, as discussed in [27], prob-
lems may arise when participants execute different protocols
with the same cryptographic keys. The interaction among
different protocols, possibly unknown or, by contrast, carry-
ing out some common sub-tasks, is particularly interesting
when several security services coexist and are possibly com-
bined together. Interestingly, strand spaces offer some syn-
tactic conditions on protocol specifications for guaranteeing
the compositionality of the analysis [22]. This still assumes
that protocols interacting with each other are known and
requires some constraints on the form of protocols, while
our analysis guarantees that the parallel composition of val-
idated protocols is still safe, possibly relying on message
tags. As opposed to our approach, both CPSA and ProVerif
do not enjoy guaranteed termination, although the analysis
terminates for a large class of protocols [9].

The control-flow analysis for message authenticity pro-
posed by Bodei et al. in [10] and recently extended in [20] to
detect replay attacks is closely related to our approach: both
of the techniques enjoy guaranteed termination but, due to
the undecidability of authenticity, they perform an overap-
proximation that necessarily rules out safe protocols. The
technique proposed in this paper relies on an abstraction
of syntactic cryptographic patterns into challenge-response
components that suffices to guarantee the safety of the pro-
tocol and, notably, to ensure the compositionality of the
analysis. The control flow analysis of [10, 20] works on an
abstraction of the protocol semantics and, consequently, it is
not constrained by the challenge-response paradigm. How-
ever, it does not enjoy immediate compositionality results.

Finally, Datta et al. [19, 16, 15] have recently proposed

the protocol composition logic (PCL), an interesting logic-
based approach to cryptographic protocol analysis. PCL is
designed around a process calculus with actions for possible
protocol steps including generating new random numbers,
sending and receiving messages, and performing decryption
and digital signature verification actions, much in the same
style as ρ-spi calculus. By relying on protocol invariants,
authors develop a modular way of reasoning about security
protocols, ensuring that protocols that are proved to be in-
dividually secure do not interact insecurely when they are
composed with other protocols. As opposed to our approach
and similarly to [22], compositionality results require the
knowledge of the protocols that are concurrently executed.
However, PCL supports compositional reasoning about se-
quential composition of protocol steps, which we do not ad-
dress in this paper. A formal comparison is thus interesting
but, since the analysis technique and the underlying model
are different, it is left as future work.

Outline. Section 2 reviews the ρ-spi calculus and intro-
duces a small novel dialect thereof. Section 3 presents the
new CR calculus. Section 4 introduces the abstraction of ρ-
spi protocol descriptions into CR protocol narrations. Sec-
tion 5 proposes an effect system for checking the safety of
CR protocols. Section 6 concludes and outlines future work.

2. A DIALECT OF ρ-SPI CALCULUS
The ρ-spi calculus [12] derives from the spi calculus [4]

and inherits many of the features of Lysa [10], a dialect
of the spi calculus specifically tailored to the analysis of
authentication protocols. The ρ-spi calculus differs from
both calculi in several respects: it incorporates the notion
of tagged message exchange, associates principal identities
to processes and syntactically binds keys to their owners.
In this paper, we consider a novel dialect of ρ-spi in which
encryptions and decryptions are performed on-the-fly when
sending and receiving messages, respectively. This dialect in
particular links protocol specifications more tightly to their
informal“graphical”descriptions, which only depict sent and
received messages without giving a precise semantics on how
messages are parsed and constructed. Furthermore, the cal-
culus is extended so to deal with hash functions, message
authentication codes (MACs) and session keys.

2.1 Syntax
The formal syntax of our dialect of the ρ-spi calculus is

depicted in Table 1. We presuppose a countable set N of
names partitioned into two distinct categories: messages
and identities. The set of identities ID, ranged over by I
and J , is further partitioned into trusted principals IDP ,
ranged over by A and B, and enemies IDE , ranged over
by E. Keys are partitioned into symmetric long-term keys
kIJ , shared between I and J , asymmetric long-term keys
k+

I , k−I , representing corresponding public and private keys
belonging to I, and symmetric session keys kIJ , shared be-
tween I and J . Long term keys are assumed to be known
in advance by the respective users and, for this reason, oc-
cur free in the process, i.e., they are not explicitly generated
through the command ‘new(kIJ)’; session keys, instead, are
always freshly generated through the command ‘new(kIJ)’.
Well-formed processes (see below) are such that long-term
keys are never transmitted on the network. For easing the
presentation of the analysis, we isolate a subset of variables,

Table 1 (Our Dialect of) the ρ-spi Calculus

Names

a ::= n, m (Msg)
I, J, A, B, E (Id)

Keys

k ::= kIJ (Sym)
k+

I , k−I (Asym)

Terms

T ::= a (Name)
k (Key)
x, y, z (Var)
?x, ?y, ?z (Input Var)
Tag(T) (Tag)
(T, T) (Pair)
{|T |}K (Enc)
h(|T |) (Hash)
MACK(|T |) (MAC)

Processes
P, Q ::= new(n).P (New Name)

new(kIJ).P (New Session Key)
in(T).P (In)
out(T).P (Out)
beginN (A, I, M, M, K).P (Begin)
endN (A, I, M, M, K).P (End)
A . P (Princ)
P |Q (Par)
!P (Repl)
0 (Stop)

−M, N denote terms without encryptions and tags. K denotes keys and key variables xIJ .

called key variables: these variables represent session keys
received from the network and are labelled by the identity
of the owners: for instance, xIJ denotes a variable that at
run-time should be instantiated with a session key shared
between I and J . Notice that such an ideal behavior is not
checked by the semantics and, in fact, key variables have the
same computational import as variables and can be thus in-
stantiated with any term. However, we prove that for safe
protocols, i.e., protocols successfully validated, key variables
are only replaced at run-time by the intended session-keys.
We also presuppose a set T of tags and terms can be tagged
using a Tag ∈ T , thus determining their role in the authen-
tication task. Moreover, terms contain pairs 1, encryptions,
hashes and MACs. The special name denotes the empty
message and it will be omitted when occurring at the end
of a tuple, e.g., beginN (A, B, M1, M2,) will be written as
beginN (A, B, M1, M2). Such a name allows us to model pro-
tocols that, for instance, do not authenticate either messages
or session keys but just mutually authenticate the agents on
some nonces. In the rest of the paper, we write nm(T),
var(T), and term(T) to denote the set of names, variables
and subterms of T , respectively.

Processes (or protocols), ranged over by P and Q, be-
have as follows: new(n).P generates a fresh name n and
new(kIJ).P generates a fresh session key kIJ , which is in-
tended to be shared between I and J . In both cases, the
restriction is a binder whose scope is the continuation pro-
cess P . We presuppose a unique anonymous public channel,
the network, from/to which all principals, including intrud-
ers, read and send messages. Similarly to Lysa and other
pattern-matching process calculi [29, 24], our input primi-
tive may atomically test part of the read message, by em-
ploying pattern-matching. Notice that in is a binder for the
variables preceded by ‘?’, called input variables, and we for-
bid the occurrence of input variables ?x anywhere else. The
scope of an input variable is the right-hand side of the in-
put pattern and the continuation process. If the input mes-
sage matches the input pattern, then the input variables are
bound to the corresponding sub-part of the input message;
otherwise the message is not read at all. For example, pro-
cess in(?x, ?y).P reads any pair (G, G′) and reduces into pro-
cess P [G/x, G′/y], where the free occurrences of x and y are
replaced by G and G′, respectively; process in(?x, x).P reads
instead only pairs composed of identical messages, since the

1For the sake of readability, in the rest of the paper we
often omit brackets: for instance, the nested pair (a, (b, k))
is simplified in a, b, k.

input variable ?x binds the second occurrence of x in the
input pattern, which is thus pattern-matched. This mech-
anism is also used to decrypt received messages on-the-fly,
and thus constitutes an important novelty compared to the
ρ-spi calculus; of course, in order to immediately match a
message encrypted with asymmetric cryptography, the cor-
rect decryption key has to be specified in the input pattern.
For example, process in({| ?x |}

k−
A

).P reads any message en-

crypted with A’s public key k+
A , i.e., messages of the form

{G}
k+

A
, decrypts them on the fly, and binds all the free oc-

currences of x to G in process P . The semantics is for-
mally introduced in Section 2.2. Note that we distinguish
between the static cryptographic terms T of the calculus,
and the actual sent and received run-time terms G. En-
cryption, hashing and MAC generation for terms is denoted
{|T |}k, h(|T |) and MACk(|T |), respectively, while encrypted
messages, hashes and MACs are denoted {G}k, h(G) and
MACk(G), respectively. This is crucial in the calculus se-
mantics to distinguish, e.g., between the simple reception
and the reception-with-decryption of an encrypted message.
For instance, in(?x).P and in({| ?y |}kAB).Q can both read
message {G}kAB but the first process just reads it, denoted
in({G}kAB), while the second one reads and decrypts it, de-
noted in({|G |}kAB). In particular, x is bound to {G}kAB

while y is bound to G. This makes it possible to express
protocols where part of a message is unknown to the re-
cipient, as also done, e.g., in symbolic model checking and
constraint solving [5, 11, 28]. Finally, we remark that during
protocol execution output terms may contain both encryp-
tion patterns and run-time terms, resulting from variable in-
stantiation. We let R range over such terms and write [[R]]
to denote the run-time term obtained from R by replacing
all the occurrences of {| . . . |}k, MACk(| . . . |), and h(| . . . |) into
{. . .}k, MACk(. . .), and h(. . .), respectively.

We use the two primitives beginN (A, B, M1, M2, K) and
endN (B, A, M1, M2, K) to check the correspondence asser-
tions [30] in a nonce handshake between A and B based
on nonce N . The former declares that A is willing to au-
thenticate with B, while the latter declares that B is au-
thenticating A. The terms M1 and M2, when specified, are
messages sent by B to A in the challenge and by A to B in
the response, respectively; K is a session key sent by A to B.
Process A . P represents principal A executing process P ;
process P |Q is the parallel composition of P and Q; process
!P indicates an arbitrary number of parallel instances of P ,
and 0 is the null process that does nothing. We always omit
0 from protocol specifications. Finally, we remark that the

Table 2 Example protocol in ρ-spi

Resp , Init ,
new(m).new(nB).

in(?x, {|B, ?y |}
k−

A
). oo m,{B,nB}

k
+
A

out(m, {|B, nB |}k+
A

).

new(nA).new(kAB).
beginy(A, B, , , kAB).
out({| y, kAB , A |}

k+
B

, nA). {nB ,kAB ,A}
k
+
B

,nA // in({|nB , ?xAB , A |}
k−

B
, ?y).

endnB
(B, A, , , xAB).

beginy(B, A, , m).
in({|h(|x |), nA, A |}kAB). oo {h(m),nA,A}kAB out({|h(|m |), y, A |}xAB).
endnA

(A, B, , x).
System , !B . Init | !A . Resp

ρ-spi calculus comes with a notion of well-formedness check-
ing that (i) identity declarations do not nest; (ii) the first
identity in begin and end assertions refers to the principal
running the process; (iii) principals only use their own long-
term keys; (iv) session keys are the only keys that can be sent
or received on the network; and (v) each key variable xIJ is
authenticated before being used for encryption, i.e., each in-
put and output of terms of the form {|T |}xIJ is preceded by
an end assertion of the form endn(J, I, M1, M2, xIJ). This
last condition requires the authentication of session keys be-
fore their actual use in the protocol. Well-formedness is
trivially verifiable by a syntactic inspection of processes and,
from now on, we will implicitly assume it.

Example 1. Consider the mutual authentication protocol
reported in Table 2 along with the ρ-spi specification. The
goal of the protocol is to allow B to authenticate message
m with A, through a session-key freshly generated by A. In
the first message, B encrypts a fresh nonce nB and his own
identifier with A’s public-key, while the message to authen-
ticate is sent in clear. Since the attacker can manipulate
messages in transit on the network, A cannot check the ori-
gin or the integrity of message m. A proves her identity by
decrypting the ciphertext and by replying with a ciphertext
encrypted by B’s public key and containing the nonce nB ,
a fresh session-key kAB and A’s identifier. Additionally, A
sends B a fresh nonce nA. After receiving the second mes-
sage and checking the freshness of nB , B authenticates A
and kAB . In the third message, B’s encrypts the hash of
m, nA and A’s identifier with kAB : after decrypting the ci-
phertext and checking the freshness of nA, A authenticates
B and message m. In the ρ-spi protocol specification, no-
tice that B authenticates the session key received from A in
the second message (endnB

(B, A, , , x)) and, before sending
the third message, he declares his intention to authenticate
m with A (beginy(B, A, , m)). Dually, A starts the proto-
col to exchange an authenticated session key kAB with B
(beginy(A, B, , , kAB)) and then authenticates the message
received from B (endnA

(A, B, , x)).

2.2 Operational Semantics
We define the operational semantics of our dialect of ρ-

spi in terms of traces, following [11]. A trace is a possible
sequence of actions performed by a process. Each process
primitive has an associated action and we denote with Act
the set of all possible actions. The dynamics of the calcu-
lus is formalized by means of a transition relation between
configurations, i.e., pairs 〈s, P 〉, where s ∈ Act+ is a trace

and P is a closed process, namely a process without free
variables. In the following, we let ε denote the empty trace.
Each transition 〈s, P 〉 → 〈s :: τ, P ′〉 simulates one compu-
tation step in P and records the corresponding action τ in
the trace. We denote by→+ a finite non-empty sequence of
computation steps. Principals do not directly synchronize
with each other. Instead, they may receive from the unique
channel an arbitrary message known to the environment,
which models the Dolev-Yao intruder [18]: the knowledge
of the environment is formalized by a set of deduction rules
stating that the environment knows all the messages sent
on the network, every name which is not restricted in the
trace, all asymmetric public keys, and every symmetric and
asymmetric private key with E in the subscript, e.g., kEI

and k−E . Moreover, the environment can tag and untag mes-
sages, construct and destruct pairs, apply hash functions,
and, if the appropriate key is known, encrypt/decrypt mes-
sages and build MACs.

Definition 1 (Traces). The set Tr(P) of traces of P
is the set of all the traces generated by a finite sequence of
transitions from 〈ε, P 〉: Tr(P) = {s | ∃P ′ s.t. 〈ε, P 〉 →+

〈s, P ′〉}

The notion of safety extends the agreement property of [30,
25] by pointing out the nonce used in the handshake and the
role of authenticated messages2, as discussed in Section 2.1.

Definition 2 (Trace Safety). A trace s is safe iff
whenever s = s1 :: endn(A, B, G) :: s2, there exist s′1, s

′′
1

such that s1 = s′1 :: beginn(B, A, G) :: s′′1 and s′1 :: s′′1 :: s2 is
safe. P is safe iff s is safe for all s ∈ Tr(P).

Intuitively, this definition guarantees that, whenever B au-
thenticates A, A has been willing to authenticate with B
and the two principals agree on the messages G exchanged
in the handshake.

3. CR CALCULUS
In the previous section, we presented a calculus for spec-

ifying and reasoning on cryptographic authentication pro-
tocols. Now, we want to abstract away from the specific
structure of messages, and in particular from symbolic cryp-
tography, and to reason on authentication protocols just in
terms of challenges and responses. The idea is to abstract

2For convenience, we often write the triple G1, G2, G3 of
authenticated messages as a unique term G.

Table 3 CR Calculus Names and Terms

a ::= n, m (Msg)
kIJ (Session Key)
I, J, A, B, E (Id)
> (Any)
⊥ (Failure)

T ::= a (Name)
x, y, z (Var)
?x, ?y, ?z (Input Var)
(T1, T2) (Pair)

C`,`′

N (I, J, M, K) (Chal)

R`′,`
N (I, J, M, K) (Resp)

Notation: ` ∈ {Pub, Tnt, Priv, Int}.
M, N denote terms with no challenges and responses. K is either a session key kIJ or a key variable xIJ.

cryptographic challenges or responses into two special mes-

sages, namely C`,`′

N (B, A, M1, K1) and R`,`′

N (A, B, M2, K2).
The former may be read as ”challenge sent by B to A to au-
thenticate A reception of message M1 and session-key K1,
using nonce N” and the latter may be read as ”response sent
by A to B to authenticate that M2 and K2 originate from
A, using nonce N”. The labels `, `′ ∈ {Pub, Tnt, Int, Priv}
specify the security level of the challenge and the response,
respectively, with the following meaning:

Pub : readable and writable by everyone; plaintexts fall in
this class;

Tnt : writable by everyone but readable only by the in-
tended receiver (e.g., public key cryptography);

Int : readable by everyone but writable only by the sender
(e.g., digital signatures);

Priv : readable only by the intended receiver and writable
only by the sender (e.g., “authenticated symmetric en-
cryption” as soon as the sender and the intended re-
ceiver are made explicit).

The capability of reading or writing challenges and responses
induces a partial order ≤ on labels:

C`,`′

N (A, B, M, K)

R`′,`
N (A, B, M, K)

Priv
(B reads, A writes)

lllll RRRRR

Tnt
(B reads, all write)

Int
(all read, A writes)

kkk
Pub

(all read, all write)

TTT

Messages with ` ≤ Tnt may be written by everyone, while
messages with ` ≤ Int may be read by everyone. Moreover,
only B can read messages with ` ≥ Tnt and only A can
write messages with ` ≥ Int. There are two ways in which
a principal B can authenticate himself: (i) by sending a
response that only B can generate, i.e., with security level
Int or Priv; and (ii) by replying to a challenge that only B
can read, i.e., Tnt or Priv.

For example, the term RPub,Int
n (A, B, m) represents an inte-

ger response that may be preceded by the public challenge
CPub,Int

n (B, A), which might be concreted as in protocol a (cf.
Table 4): A proves her identity by signing the nonce together
with B’s identifier and message m. As another example,
RTnt,Tnt

n (A, B, , kAB) represents a tainted response that may
be preceded by the tainted challenge CTnt,Tnt

n (B, A, m), which
might be concreted as in protocol b: A proves her identity
by decrypting the tainted challenge using her private key.

Attention should be payed when the security label of the
challenge and the response is the same and symmetric key

Table 4 Protocol concretions

(protocol a)

A B

oo n

{B,m,n}
k
−
A

//

(protocol b)

A B

oo {B,n,m}
k
+
A

{A,n,kAB}
k
+
B

//

(protocol c)

A B

oo {B,m,n}kAB

{B,m,n}kAB
//

cryptography is used. For example, RPriv,Priv
n (A, B, m2) with

challenge CPriv,Priv
n (B, A, m1) should never be concreted using

messages that may be confused. For example, consider the
worst case in which challenge and response are the same,
as in protocol c. Here the enemy can trivially attack the
protocol by replaying the received challenge back to B, au-
thenticating as A. This is why the CR calculus distinguishes
between challenges and responses and the abstraction from
ρ-spi to the CR calculus guarantees that they remain distin-
guishable even when concreted through symbolic cryptogra-
phy (see Section 4).

3.1 Syntax and semantics
The calculus of Challenges and Responses, also called CR

calculus, has the same syntax as ρ-spi calculus apart from
names and terms, reported in Table 3. CR names, noted
a, correspond to the names in ρ-spi plus session keys, the
symbol >, used for abstracting arbitrary ρ-spi terms, and
the symbol ⊥, denoting failure.

Terms, instead, have neither tags nor symbolic cryptog-
raphy, but include challenges and responses. CR processes,
ranged over by P, have the same syntax as ρ-spi processes
but use the CR names and terms described above. As the ρ-
spi calculus, the CR calculus comes with a notion of process
well-formedness ruling out undesired process behaviors. In
particular, (i) identity declarations do not nest; (ii) the first
identity in begin and end assertions refers to the principal
running the process; (iii) the first (resp. second) identity
in output (resp. input) challenges and responses refers to
the principal running the process; (iv) the failure symbol
⊥ does not occur in the process; (v) nonces, i.e., the sub-
scripts of begin and end assertions, can occur in input and
output patterns only as subscripts of challenge and response
terms and (vi) session keys and key variables can occur in
input and output patterns only as last component of chal-
lenge and response terms. The last two conditions ensure
that nonces and session keys always appear in a precise po-

Table 5 Example Protocol in CR calculus

Resp , Init ,
new(m).new(nB).

in(?x, CTnt,Tnt
?y (B, A)) ←− out(m, CTnt,Tnt

nB
(B, A)).

new(nA).new(kAB).
beginy(A, B, , , kAB).

out(RTnt,Tnt
y (A, B, , kAB),

CPub,Priv
nA

(A, B)). −→ in(RTnt,Tnt
nB

(A, B, , ?xAB),

CPub,Priv
?y (A, B)).

endnB
(B, A, , , xAB).

beginy(B, A, , m).

in(RPub,Priv
nA

(B, A, x)). ←− out(RPub,Priv
y (B, A, m))

endnA
(A, B, , x).

System ,!B . Init | !A . Resp

sition within exchanged challenges and responses. This is
crucial to avoid they are leaked or used in an uncontrolled
way. These conditions are easily verifiable by an inspection
of the process syntax and in the following we shall always
consider well-formed processes. To illustrate, we report in
Table 5 the CR calculus specification corresponding to the
protocol of Example 1. As before, we use arrows to point
out synchronizing inputs and outputs.

We define the operational semantics of CR calculus in terms
of traces, similarly to the ρ− spi calculus. Here, instead of
symbolic cryptographic terms, the intruder can manipulate
challenges and responses, provided that security labels are
respected: the intruder can forge messages with labels less
than or equal to Tnt and read messages with labels less than
or equal to Int. For instance, if the intruder knows n and
m, then it can generate terms of the form CTnt,Tnt

n (A, B, m).
As another example, if the intruder knows CInt,Int

n (A, B, m),
then it also knows n and m. Finally, if the intruder gets the
knowledge of a session-key kIJ, then it can also write and
read challenges and responses sent by I to J or vice-versa,
regardless of their security level, thus abstracting session-key
corruption. In the following, we write→a and→+

a to denote
one-step and multi-step process reduction, respectively.

4. ABSTRACTION
The abstraction from ρ-spi to CR calculus is defined on
ρ-spi terms, traces and processes. The idea is to abstract
away from the specific structure of messages, focusing in-
stead on their challenge-response role in the authentication
task. The abstraction, given a ρ-spi protocol, yields a CR
protocol that is proved to be a faithful abstraction of the
former. The abstraction of syntactic terms is reported in
Table 6: the most interesting aspect is the abstraction of
ciphertexts into challenges and responses. The abstraction
of traces and processes is conceptually simpler and amounts
to abstract every term occurring therein. The abstraction
of names and variables is straightforward and amounts to
map them into their direct CR counterparts. The abstrac-
tion of a pair yields the pair composed of the abstractions
of each component. Finally, tags and hashes are abstracted
away. The abstraction of encryptions performed by trusted
principals is parameterized and ruled by a partial function f
from encryption patterns to abstract challenge and response
terms. This function works on syntactic terms in which there

are no input variables and all the variables are distinct. In
the actual protocol specification variables may be different,
preceded by ‘?’ or even replaced by run-time terms: the
abstraction of an encryption is thus given by the closure of
f , denoted by f .

Function f is defined by closing f under all the possible
valid variable instantiations: a valid variable instantiation
on syntactic terms maps (i) all the key variables xIJ into
different key variables yIJ (possibly prefixed by ‘?’) or ac-
tual session keys kIJ of the same pair I, J of principals, and
(ii) the remaining concrete variables into other variables or
run-time terms different from pairs and tagged terms that
are never substituted to variables at run-time. Function f
maps the abstract variables correspondingly apart from non-
atomic terms that are abstracted into >. Non-atomic terms
are terms different from names, keys, variables and input
variables. If the encryption is in the domain of f , then the
abstraction is defined accordingly. If the encryption is not
defined in f and there is no variable instantiation allowing
the corresponding run-time ciphertext to be interpreted as a
challenge or response, then the abstraction is simply defined
as the abstraction of the content in that the outer encryption
does not provide any authentication guarantee. Otherwise
the abstraction fails since the challenge-response interpreta-
tion is not statically predictable. Similar reasoning applies
to MACs.

Example 2. If f({|A, x, z |}kAB) = RPub,Priv
x (A, B, z) then

f({|A, nA, {n}kBC |}kAB) = RPub,Priv
nA

(A, B,>), since {n}kBC

is non-atomic, while f({|A, nA, m |}kAB) = RPub,Priv
nA

(A, B, m),
given that m is, instead, atomic.

Although we can define a unique function f covering several
interesting protocol classes, as discussed in the conclusions,
our framework allows the programmer to extend such a func-
tion when needed. The abstraction is sound as far as f is
an encryption abstraction.

Definition 3 (Encryption Abstraction). A partial

function f : {|T |}K | MACK(|T |) 7→ C/R`,`′

N (I, J, M, K) is an
encryption abstraction iff the following conditions hold:

Format nm(T) ⊆ ID ∧ nm(N) = nm(M) = nm(K) = ∅;
∧ x ∈ var(T) iff x ∈ var(N) ∪ var(M) ∪ var(K);
∧ for every x, y ∈ var(M), x precedes y in T iff
x precedes y in M.
∧ T does not contain input variables

Unique Abstraction for every T, T ′ ∈ dom(f) and valid
σ, σ′ such that [[T]]σ = [[T]] ′σ′, T = T ′;

Nesting for every T ′ ∈ dom(f), {|T |}K ∈ term(T ′) (resp.
MACK(|T |) ∈ term(T ′)), α({|T |}K) = α(T) (resp.
α(MACK(|T |)) = α(T));

Enc-MAC for every {|T |}K ∈ dom(f) (resp. MACK(|T |)
∈ dom(f))

if K = k+
I , then f({|T |}K) (resp. f(MACK(|T |)))

∈ {C`,`′

N (J, I, M, K), R`′,`
N (J, I, M, K)}, with l ≤ Tnt;

if K = k−I , then f({|T |}K) (resp. f(MACK(|T |)))
∈ {C`,`′

N (I, J, M, K), R`′,`
N (I, J, M, K)}, with l ≤ Int;

if K ∈ {kIJ , xIJ}, then f({|T |}K) (resp.

f(MACK(|T |))) ∈ {C`,`′

N (I, J, M, K), R`,`′

N (I, J, M, K)

C`′,`
N (J, I, M, K), R`′,`

N (J, I, M, K)}.

Table 6 Abstraction of syntactic terms

α(a) =a
α(x) =x
α(?x)=?x

α((T1, T2))=(α(T1), α(T2))
α(Tag(T)) =α(T)
α(h(|T |)) =α(T)

α({|T |}K) =

8>>><>>>:
f({|T |}K) if {|T |}K ∈ dom(f)
α(T) if {|T |}K /∈ dom(f) ∧

@ valid σ and R ∈ dom(f)
s.t. [[{|T |}K]]σ = [[R]]

⊥ otherwise

α(MACK(|T |)) =

8>>><>>>:
f(MACK(|T |)) if MACK(|T |) ∈ dom(f)
α(T) if MACK(|T |) /∈ dom(f) ∧

@ valid σ and R ∈ dom(f)
s.t. [[MACK(|T |)]]σ = [[R]]

⊥ otherwise

Condition Format requires that the only names occurring
in T are identities and that N, M and K are abstract terms
only composed of the (abstraction of) variables occurring
in T . It is important that abstractions preserve all of the
encrypted variables so that, when decryption is performed,
we can recover those (abstract) values from the correspond-
ing challenge-response. We also require that the order of
the abstract variables in the authenticated message M cor-
responds to the order in the encryption pattern: this avoids
that variables occurring free in the encryption pattern get
bound in the abstract message or vice-versa. Notice that the
sorting of abstract variables does not regard N and K, since
in well-formed CR processes nonces and session-keys occur
only once in the same abstract term.

Condition Unique Abstraction requires that the encryp-
tion (and MAC) patterns in f give rise to disjoint classes
of ground terms. This means that any ground run-time
message G has a unique possible challenge-response inter-
pretation. When composing different protocols, this guar-
antees that if two ciphertexts have the same structure, and
may be thus exploited by the attacker to interleave different
protocol sessions, then they also share the same challenge-
response interpretation: this property is crucial for preserv-
ing the compositionality of the analysis and can be enforced
by the use of message tags [14]. We verify this condition by
applying a standard most general unifier.

Condition Nesting requires that nested encryptions and
MACs represent neither challenges nor responses. This pre-
vents the uncontrolled leakage of challenges and responses.
As future work, we plan to design a more precise definition
of encryption abstraction so as to identify the security level
and role of nested terms and to abstract them accordingly.

Condition Enc-MAC requires that the security level of CR
terms is consistent with the security level of the encryption
keys. Public key encryption is of security level at most Tnt,
digital signature at most Int and symmetric key encryption
has no constraints as it is of the highest level Priv. Notice
that it is allowed to abstract a message to a lower level of
security, which is sound but could make the abstract pro-
tocol insecure even if the concrete one is safe, thus losing
precision in the abstraction.

Finally, notice that names sent or received in clear do not
contain enough information for determining whether they
represent challenges or responses or messages without a spe-
cific role in the authentication task. Since messages circu-
lating in clear on the network have the same computational
import as public challenges and public responses (i.e., they
can be derived from each other by the environment), terms
of the form v, CPub,`

v (I, J) or R`,Pub
v (I, J), where v is either a

name or a variable or an input variable, are in fact freely ex-

changeable within the process when occurring as plaintext
in input or output patterns: in fact, we identify processes
differing because of the above described replacement.

Example 3. Let us consider the protocol of Example 1 and
formulate the following abstraction function:

f : {|B, x |}
k+

A
7→ CTnt,Tnt

x (B, A),

{|x, yAB , A |}
k+

B
7→ RTnt,Tnt

x (A, B, , yAB),

{|h(|x |), y, A |}xAB 7→ RPub,Priv
y (B, A, x)

By applying the abstraction on terms defined in Table 6,
and in particular the closure of the encryption abstraction
defined above, we can abstract the protocol of Table 2 into
the protocol of Table 5. It is easy to see that function f sat-
isfies the conditions of Definition 3 and is thus an encryption
abstraction.

Before stating the soundness of the abstraction, we introduce
the notion of authenticated key variable. At run-time, key
variables xIJ must be bound to actual session keys kIJ so to
avoid “fake” session keys sent by the enemy. This is crucial
to safely abstract ciphertexts encrypted with session keys
into private challenges or private responses. As stated in
Section 5, successfully validated abstract processes always
guarantee this property.

Definition 4 (Authentication of key variables).
An abstract process P guarantees authentication of key vari-
ables iff in every reduction of P key variables of the form xIJ

are only replaced by session keys of the form kIJ. A similar
definition applies to ρ-spi processes.

The following theorem states that every concrete computa-
tion has a direct counterpart in the abstract model, given
that the abstract process guaranteed authentication of key
variables.

Theorem 1 (Reduction). If α(P) is well-formed and
guarantees authentication of key variables, then 〈s, P 〉 →+

〈s′, P ′〉 implies 〈α(s), α(P)〉 →+
a 〈α(s′), α(P ′)〉.

5. EFFECT SYSTEM
Our use of effects for locally checking the correct behavior

of principals is inspired from [14]. Superseding [14] how-
ever, we do not need any typing environment as CR syntax
makes explicit the role of terms, which considerably simpli-
fies the analysis. The effect system checks the safety of nonce
handshakes by relying on the following intuitive principles:
the verifier should authenticate through an end assertion
only after the successful completion of a suitable handshake

Table 7 CR protocol with effects

A B

•new(n)

��fresh(n)

•

��

oo CPub,Int
n (B,A) •

��

?CPub,Int
n (B, A)

•

��

beginn(A, B, , m)
fresh(n)

!CPub,Int
n (B, A)

!RPub,Int
n (A, B, m)

• RPub,Int
n (A,B,m)

// •

��

fresh(n)
!CPub,Int

n (B, A)
?RPub,Int

n (A, B, m)

•endn(B, A, , m)

based on a fresh nonce and the claimant should respond to
a received challenge only after a suitable begin assertion.
For instance, A should assert endn(A, I, M1, M2, K) only after

the output of C`,`′
n (A, I, M1) (i.e., a challenge with nonce n

to authenticate message M1), the input of R`,`′
n (I, A, M2, K)

(i.e., a response with the same nonce to authenticate mes-
sage M2 and session key K) and the check on the freshness

of n. Dually, B should respond to challenge C`,`′
n (I, B, M1)

with response R`,`′
n (B, I, M2, K), only after having asserted

beginn(B, I, M1, M2, K). For the sake of simplicity, we assume
that session keys circulate only within responses: this is a
common way to distribute session keys in that sending them
within challenges requires the receiver, and consequently the
sender, to engage in a further nonce handshake for verifying
the freshness. Although our framework can be extended to
deal with such handshakes similarly to [13, 26], this is left
as future work.

5.1 Effects and Safety
The link between correspondence assertions and the nonce
handshake followed by principals can be achieved by track-
ing the generation-reception of challenges and responses and
the freshness of nonces. This tracking can be conducted by
means of effects. Formally, an effect e is a multi-set of atomic
effects f1, . . . , fn, as formalized below:

f ::= fresh(n) | [!|?]C`,`′

N (I, J, M) | [!|?]R`,`′

N (I, J, M, K)
e ::= [f1, . . . , fn]

As mentioned before, we assume that session keys only
circulate within responses and, consequently, the last field
of the challenge effect is empty. The atomic effect fresh(n)
tracks the freshness of nonce n, allowing for a successive
endn(· · ·) on the same nonce: a new name n is fresh until

it is used in an endn(· · ·). The atomic effect ?C`,`′

N (I, J, M)

(resp. !C`,`′

N (I, J, M)) tracks the reception (resp. generation)
of a challenge with nonce N sent by I to J to authenticate
message M, thus allowing the occurrence of a successive
beginN(J, I, M, · · · , · · ·) (resp. endN(I, J, M, · · · , · · ·)) asser-
tion. The security levels ` and `′ have the same semantics

as in Section 3. The atomic effect ?R`,`′

N (I, J, M, K) tracks
the reception of a response with nonce N sent by I to J to
authenticate M and session key K, thus allowing a successive

endN(J, I, · · · , M, K). The atomic effect !R`,`′

N (I, J, M, K) has
different semantics as it enables I to generate a response for

J with nonce N to authenticate M and session key K. This
atomic effect is justified by a beginN(I, J, · · · , M, K) asser-
tion. This asymmetry is discussed below. In the following,
we illustrate by an example our use of effects in the static
analysis of authentication protocols.

Example 4. Let us consider protocol a of Table 4: the cor-
responding abstract protocol and the effects for the analy-
sis are reported in Table 7. B generates a nonce n, whose
freshness is tracked by the atomic effect fresh(n), and sends
it in a challenge to A: !CPub,Int

n (B, A) tracks on the initia-
tor’s code the generation of the challenge. The reception
of this message is tracked by ?CPub,Int

n (B, A). The follow-
ing beginn(A, B, , m) requires the reception of a challenge
from B (effect ?CPub,Int

n (B, A)) and justifies the generation
of a response to authenticate m (effect !RPub,Int

n (A, B, m)).

This is the reason why effects of the form !R`,`′

N (. . .) are
used for enabling rather than tracking the generation of re-
sponses, as mentioned above. Hence !RPub,Int

n (A, B, m) en-
ables A to generate the corresponding response, which is
eventually received by B as tracked by ?RPub,Int

n (A, B, m).
After completing the handshake (effects !CPub,Int

n (B, A) and
?RPub,Int

n (A, B, m)) and checking the freshness of n (effect
fresh(n)), B can assert endn(B, A, , m).

5.2 Typing Rules
In the following, + and − are the usual union and sub-

traction operators on multi-sets: e1 + e2 yields the effect
composed of all the atomic effects in e1 plus the ones in
e2, while e1 − e2 yields the effect obtained by removing, if
present, one occurrence of each atomic effect in e2 from e1.

The binding between abstract messages and their effects
is formalized in Table 8 by the judgement ` M : (eC ; eR),
read as “M has challenge effect eC and response effect eR”.
Notice that we check that the security levels of challenges
and responses are consistent, namely either the challenge
security level is greater that Tnt or the response security
level is greater than Int, as discussed in Section 3. The main
judgement in our analysis is ` P : e, read as “P has effect
e”, meaning that process P is safe under the conditions ex-
pressed by effect e. For instance, ` P : [fresh(n)] means that
P is safe if n is fresh. In the following, we give informal
explanations of the process judgements of Table 8. The val-
idation of a process is defined by induction on its structure
and the null process is the base case. Nil validates process
0 under empty effect since the null process is always safe.
Repl validates the replication of a process under empty ef-
fect [], if that process is in turn validated under empty effect.
Requiring the empty effect is necessary in order to preserve
the safety; e.g., replicating a process with effect [fresh(n)]
may generate an infinite number of processes exploiting the
freshness of the same nonce n to complete authentication
sessions. This, of course, is not safe as a nonce should be
used only once. Par validates the parallel composition of
two processes under the union of their effects, stating that
the parallel composition of two processes is safe if both of
the processes are safe. Id skips identity declarations as they
are not relevant in the analysis. New justifies, through the
atomic effect fresh(n), at most one use of n as fresh nonce in
the continuation process. Indeed, the deletion of one occur-
rence of fresh(n) in the thesis allows the continuation process
to exploit the nonce for asserting one end assertion (cf. rule
End). In justifies in the continuation process the reception

Table 8 Effect System (Terms and Processes)

Chal
`C ≥ Tnt ∨ `R ≥ Int

` C`C ,`R
N (I, J, M) : ([C`C ,`R

N (I, J, M)]; [])

Resp
`C ≥ Tnt ∨ `R ≥ Int K 6= ε⇒ `R ≥ Tnt

` R`C ,`R
N (I, J, M, K) : ([]; [R`C ,`R

N (I, J, M, K)])

Atom
` a : ([]; [])

Pair
` T : (eC ; eR) ` T′ : (e′C ; e′R)

` (T, T′) : (eC + e′C ; eR + e′R)

——

Nil
` 0 : []

Repl
` P : []

`!P : []

Par
` P : eP ` Q : eQ

` P|Q : eP + eQ

Id
` P : e

` A . P : e

New
` P : e

` new(n).P : e− fresh(n)

In
` P : e+?eC+?eR ` T : (eC ; eR)

` in(T).P : e

Out
` P : e+!eC ` T : (eC ; eR)

` out(T).P : e+!eR

Begin

` P : e + [!R`C ,`R
N (A, I, M2, K)] M2 ground

` beginN(A, I, M1, M2, K).P : e + [?C`C ,`R
N (I, A, M1)]

End
` P : e M1, ground

` endn(A, I, M1, M2, K).P : e + [!C`C ,`R
n (A, I, M1), ?R

`C ,`R
n (I, A, M2, K), fresh(n)]

An abstract term is ground if it contains neither variables nor >,⊥ symbols.

of the challenges and responses composing the received mes-
sage. Out justifies in the continuation process the reception
of the challenges and requires the permission to generate the
responses composing the message sent on the network. As
discussed in Section 5.1, the assertion beginN(A, I, M1, M2, K)

(rule Begin) requires the reception of C`C ,`R
N (I, A, M1) and

justifies the generation of R`C ,`R
N (A, I, M2, K). Similarly, the

assertion endn(A, I, M1, M2, K) (rule End) requires the fresh-

ness of n, the generation of C`C ,`R
n (A, I, M1) and the recep-

tion of R`C ,`R
n (I, A, M2, K).

Notice that we check on the syntax of begin and end as-
sertions that messages sent in the response by the claimant
are ground and so are the ones sent in the challenge by the
verifier. This suffices for proving that > and ⊥ never occur
within authenticated messages at run time. This is crucial
for carrying safety properties from the abstract semantics to
the concrete one, since authenticated messages might oth-
erwise be instantiated differently in the matching begin and
end assertions. Finally, notice that validation rules uniquely
determine the process effect from the one of the continuation
process, with the exception of Begin and End which have
to guess the security level of challenges and responses. How-
ever, this nondeterminism can be easily solved in a prevali-
dation step by labelling end assertions by the security level
of challenges and responses based on the same nonce, thus
making the analysis fully deterministic.

5.3 Soundness and Safety Results
The following theorem says that CR processes with empty

effect are safe.

Theorem 2 (Safety). If ` P : [], then P is safe.

The main theorem states that if the abstraction of a pro-
cess is safe, then such a process is safe as well, i.e., a proof
of authentication in the CR calculus automatically entails
authentication in the ρ-spi calculus.

Theorem 3 (Soundness). If α(P) is well-formed and
` α(P) : [], then P is safe.

This theorem can be easily proved by exploiting Theorem 1
and the following lemma.

Lemma 1 (Key Variables). If ` P : [], then P guar-
antees authentication of key variables.

For example, the protocol of Table 5 is validated with empty
effect and it is well-formed. By Theorem 2 it is safe and, by
Lemma 1, it guarantees authentication of key variables. By
Theorem 3, the protocol of Table 2 is safe as well. The last
theorem states that the effect system is modular and the
analysis compositional.

Theorem 4 (Modularity and Compositionality).
Let P be an abstract process of the form !P1| . . . |!Pm. Then
` P : [] if and only if `!Pi : [], ∀i ∈ [1, m].

Depending on whether one reads P as a protocol, executed
by different principals, or a multi-protocol system, made of
different protocols, this theorem says that (i) a protocol is
safe if all participants are safe (modularity), and (ii) a multi-
protocol system composed of safe protocols is safe (compo-
sitionality). We remark that our result does not prevent
the interleaving of protocol executions and, in particular,
an execution trace is safe even if an end assertion and the
matching begin assertion are generated by principals run-
ning different protocols. We do not regard this aspect as
limiting or inconvenient since, besides of allowing for strong
compositionality results, it is a direct consequence of our
approach: in fact, the semantics of principal actions does
not depend on the protocol as a whole, but it is instead de-
termined by the semantics of the ciphertexts that principals
generate and receive in each message exchange. The encryp-
tion abstraction, and in practice the use of tags, makes such
semantics formal and explicit, independently of the rest of
the protocol.

6. CONCLUSIONS
We have proposed a static analysis of authentication pro-

tocols based on an abstraction of cryptography: deriving
authentication guarantees for protocol abstractions suffices
to prove such guarantees for the actual protocols. The ap-
proach enjoys compositionality and guaranteed termination.
Furthermore, abstraction refinements are sound as far as
they satisfy the conditions on the encryption abstraction.

In [14], we propose a compositional type and effect system,
which is general enough to analyze several existing protocols:
as a matter of fact, we can formulate a unique encryption ab-
straction comprehending all the protocol classes considered
in [14]. This is achieved by tagging messages within cipher-
texts so as to make explicit their role in the authentication
task (e.g., claimant identifier, nonce, authenticated message,
And so on). The abstraction-based analysis here presented
is thus strictly more general than our previous type and ef-
fect system. As future work, we plan to exploit recent results
on linking symbolic cryptography with actual cryptographic
algorithms to verify abstract authentication protocols in a
way that ensures strong authentication guarantees even for
concrete, cryptographic implementations.

7. REFERENCES
[1] M. Abadi. Secrecy by typing in security protocols. Journal

of the ACM, 46(5):749–786, 1999.
[2] M. Abadi and B. Blanchet. Secrecy types for asymmetric

communication. In Proc. 4th International Conference on
Foundations of Software Science and Computation
Structures (FOSSACS), volume 2030 of Lecture Notes in
Computer Science, pages 25–41. Springer-Verlag, 2001.

[3] M. Abadi and B. Blanchet. Analyzing security protocols
with secrecy types and logic programs. In Proc. 29th
Symposium on Principles of Programming Languages
(POPL), pages 33–44. ACM Press, 2002.

[4] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus. In Proc. 4th ACM Conference
on Computer and Communications Security, pages 36–47,
1997.

[5] R. M. Amadio, D. Lugiez, and V. Vanackére. On the
symbolic reduction of processes with cryptographic
functions. Theoretical Computer Science, 290(1):695–740,
2003.

[6] M. Backes, A. Cortesi, and M. Maffei. Causality-based
abstraction of multiplicity in cryptographic protocols. In
Proc. 20th IEEE Symposium on Computer Security
Foundations (CSF), pages 355–369. IEEE Computer
Society Press, 2007.

[7] B. Blanchet. An efficient cryptographic protocol verifier
based on Prolog rules. In Proc. 14th IEEE Computer
Security Foundations Workshop (CSFW), pages 82–96.
IEEE Computer Society Press, 2001.

[8] B. Blanchet. From secrecy to authenticity in security
protocols. In Proc. 9th International Static Analysis
Symposium (SAS), volume 2477 of Lecture Notes in
Computer Science, pages 342–359. Springer-Verlag, 2002.

[9] B. Blanchet and A. Podelski. Verification of cryptographic
protocols: Tagging enforces termination. In Proc. 6th
International Conference on Foundations of Software
Science and Computation Structures (FOSSACS), pages
136–152, 2003.

[10] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. R.
Nielson. Static validation of security protocols. Journal of
Computer Security, 13(3):347–390, 2005.

[11] M. Boreale. Symbolic trace analysis of cryptographic
protocols. In 28rd International Colloquium on Automata,
Languages and Programming (ICALP 2001), Lecture Notes
in Computer Science, pages 667–681. Springer-Verlag, 2001.

[12] M. Bugliesi, R. Focardi, and M. Maffei. Compositional
analysis of authentication protocols. In Proc. 13th
European Symposium on Programming (ESOP), volume
2986 of Lecture Notes in Computer Science, pages 140–154.
Springer-Verlag, 2004.

[13] M. Bugliesi, R. Focardi, and M. Maffei. Analysis of
typed-based analyses of authentication protocols. In Proc.
18th IEEE Computer Security Foundations Workshop
(CSFW), pages 112–125. IEEE Computer Society Press,
2005.

[14] M. Bugliesi, R. Focardi, and M. Maffei. Dynamic types for
authentication, 2007. To appear in Journal of Computer
Security.

[15] A. Datta, A. Derek, J.C. Mitchell, and A. Roy. Protocol
composition logic (pcl). Electronic Notes on Theoretical
Computer Science, 172:311–358, 2007.

[16] Anupam Datta, Ante Derek, John C. Mitchell, and Dusko
Pavlovic. A derivation system and compositional logic for
security protocols. Journal of Computer Security,
13(3):423–482, 2005.

[17] S.F. Doghmi, J.D. Guttman, and F.J. Thayer. Searching
for shapes in cryptographic protocols. In Proc. 13th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), Lecture
Notes in Computer Science, pages 523–538.
Springer-Verlag, 2007.

[18] D. Dolev and A. C. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory,
29(2):198–208, 1983.

[19] N. Durgin, J. Mitchell, and D. Pavlovic. A compositional
logic for proving security properties of protocols. Journal of
Computer Security, 11(4):677–721, 2004.

[20] H. Gao, P. Degano, C. Bodei, and H. R. Nielson. Detecting
replay attacks by freshness annotations. In WITS ’07:
Proceedings of the 7th Workshop on Issues in the theory of
security, pages 85–100, 2007.

[21] A. D. Gordon and A. Jeffrey. Types and effects for
asymmetric cryptographic protocols. Journal of Computer
Security, 12(3):435–484, 2004.

[22] J. D. Guttman and F. J. Thayer. Protocol independence
through disjoint encryption. In Proc. 13th IEEE Computer
Security Foundations Workshop (CSFW), pages 24–34.
IEEE Computer Society Press, 2000.

[23] J. D. Guttman and F. J. Thayer. Authentication tests and
the structure of bundles. Theoretical Computer Science,
283(2):333–380, 2002.

[24] C. Haack and A. Jeffrey. Pattern-matching spi-calculus.
Information and Computation, 204(8):1195–1263, 2006.

[25] G. Lowe. “A Hierarchy of Authentication Specification”. In
Proc. 10th IEEE Computer Security Foundations
Workshop (CSFW), pages 31–44. IEEE Computer Society
Press, 1997.

[26] M. Maffei. Dynamic Typing for Security Protocols. PhD
thesis, Università Ca’ Foscari di Venezia, Dipartimento di
Informatica, 2006.

[27] C. Meadows. Open issues in formal methods for
cryptographic protocol analysis. In Proc. 2000 DARPA
Information Survivability Conference and Exposition
(DISCEX), pages 237–250, 2000.

[28] J. Millen and V. Shmatikov. Constraint solving for
bounded-process cryptographic protocol analysis. In Proc.
8th ACM Conference on Computer and Communications
Security, pages 166–175, New York, NY, USA, 2001. ACM
Press.

[29] C. R. Nielsen, F. Nielson, and H. R. Nielson. Cryptographic
pattern matching. Electronic Notes on Theoretical
Computer Science, 168:91–107, 2007.

[30] T. Y. C. Woo and S. S. Lam. A lesson on authentication
protocol design. Operation Systems Review, 28(3):24–37,
1994.

	Introduction
	A Dialect of -spi Calculus
	Syntax
	Operational Semantics

	CR Calculus
	Syntax and semantics

	Abstraction
	Effect System
	Effects and Safety
	Typing Rules
	Soundness and Safety Results

	Conclusions
	References

