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Abstract. We study the secure upgrade of critical components in wide
networked systems, focussing on the case study of PIN processing Hard-
ware Security Modules (HSMs). These tamper-resistant devices, used by
banks to securely transmit and verify the PIN typed at the ATMs, have
been shown to suffer from API level attacks that allow an insider to re-
cover user PINs and, consequently, clone cards. Proposed fixes require
to reduce and modify the HSM functionality by, e.g., sticking on a single
format of the transmitted PIN or adding MACs for the integrity of user
data. Upgrading HSMs worldwide is, of course, unaffordable. We thus
propose strategies to incrementally upgrade the network so to obtain up-
graded, secure subnets, while preserving the compatibility towards the
legacy system. Our strategies aim at finding tradeoffs between the cost
for special “guardian” HSMs used on the borderline between secure and
insecure nodes, and the size of the team working in the upgrade process,
representing the maximum number of nodes that can be simultaneously
upgraded.

Keywords: Security APIs, PIN processing, Hardware Security Modules, Up-
grade strategies.

1 Introduction

Automated Teller Machines (ATMs) verify the user’s Personal Identification
Number (PIN) by sending it to the issuing bank on an international bank net-
work. During their journey, PINs are decrypted and re-encrypted on the tra-
versed network switches by special tamper-resistant devices called Hardware
Security Modules (HSMs). As shown in figure 1, the keypad itself is an HSM
that performs the first PIN encryption with a symmetric key k1 shared with the
neighbour acquiring bank. Before the encrypted PIN is routed to the next net-
work node, it is passed to the HSM in the switch that decrypts and re-encrypts
it with another key k2, shared with the destination node, and so on.

In the last years, several API-level attacks have been discovered on these
HSMs [5, 6, 9]. The attacker is assumed to be an insider gaining access to the
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Fig. 1. PIN processing infrastructure.

HSM at some bank switch. Then, by performing subtle sequences of API calls he
is able to deduce the value of the PIN. As an example, the so-called dectab attack
is based on manipulating public user data given as input to the PIN verification
API at the issuing bank HSM. One of these data is a decimalization table that
maps an intermediate hexadecimal representation of the user PIN into a decimal
number. By modifying the way numbers are decimalized and by observing if this
affects the result of the verification, the attacker can deduce which are the actual
PIN digits: if the original dectab maps, e.g., A into 0 and the attacker modifies
it so to map A into 1 causing a failure in the PIN verification API, then he
is guaranteed that a 0 digit was occurring in the decimalized user PIN. If it
were not the case, PIN verification result would be unaffected by the change in
the dectab. The attack goes on using another public parameter, the offset, to
reconstruct the whole PIN code. The interested reader is referred to, e.g., [8, 9,
12, 20], for more detail.

The interest in these API-level attacks has recently increased [1, 2] and it
becomes more an more plausible that some of them have been really exploited by
malicious insiders to steal thousands of user PINs. This has motivated research
on formal methods for analysing PIN recovery attacks and API-level attacks
in general [20]. In particular, in [8] we have proposed a language-based setting
for analysing PIN processing API via a type-system. We have formally modelled
existing attacks, proposed some fixes and proved them correct via type-checking.
These fixes typically require to reduce and modify the HSM functionality by,
e.g., sticking on a single format of the transmitted PIN or adding MACs for the



integrity of user data. Notice, in fact, that the above mentioned attack is based
on the absence of integrity on public user data such as the dectab and the offset.

There are crucial difficulties when trying to implement these fixes on a real
bank network: first of all, upgrading the bank network HSMs worldwide is com-
plex and very expensive; moreover, adding improved APIs in the HSMs is not
enough: we also need to remove old flawed APIs if we want to stop the attacks.
This typically makes upgraded HSMs incompatible with the old ones, for exam-
ple when one switch expects a MAC and the previous non-upgraded one cannot
provide it. These difficulties can be circumvented at the price of loosing some
security: in [11] we have proposed a low-impact, easily implementable fix requir-
ing no hardware upgrade which makes attacks 50000 times slower, but yet not
impossible.

Our contribution. We propose a novel way of upgrading critical components
in wide networked system that mitigates the above discussed difficulties. In par-
ticular, we propose strategies to incrementally upgrade the network so to obtain
upgraded, secure subnets while preserving the compatibility towards the legacy
system. This should make the upgrading process more appealing to banks, as
they might decide to invest money for upgrading part of the system still main-
taining the interoperability with the non-upgraded part. Of course, PINs trav-
elling through non-upgraded subnets would be exposed to the same attacks as
before, but PINs traversing secured subnets would be robust against API-level
attacks.

To guarantee the compatibility with the old system we propose the adoption
of special borderline HSMs translating from/to the old protocol. These HSMs are
temporarily placed on the borderline between upgraded and non-upgraded nodes
and can be thought as the ‘union’ of the old and the new HSMs, thus supporting
the functionalities of both and being able to translate from/to the old protocol.
Of course, this hardware is far from being secure but it can be used to temporarily
keep the network working while the upgrade is performed. Our strategies aim at
finding tradeoffs between the cost for borderline HSMs and the size of the team
working in the upgrade process, representing the maximum number of nodes
that can be simultaneously upgraded: since HSMs are quite expensive, it might
make sense to have bigger teams of technicians able to upgrade a whole subtree
in one shot, with no need of placing many borderline HSMs around.

We formally state the HSM upgrading problem and we prove that, when only
one technician is present, it is strictly related to the Connected Monotone Decon-
tamination (CMD) problem [3], where a team of agents aims at decontaminating
a graph and capturing an intruder. The analogy is that decontaminated nodes
should never be directly in contact with contaminated ones to avoid the intruder
re-contaminating them, thus some agents must stay on the borderlines to ‘guard’
the decontaminated subnetwork. This is similar to what happens when placing a
borderline HSM between upgraded and non-upgraded nodes. We then generalize
the optimum algorithm for the CMD problem to our setting, also considering
many technicians. We prove the new algorithm correct and we show how it can
be applied to estimate upgrading cost for a real bank (sub)network.
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Fig. 2. Borderline HSM on a link.

Paper structure. The paper is organized as follows: in section 2 we formalize
the HSM upgrading problem and we prove it equivalent to the CMD problem, up
to one borderline HSM; in section 3, we give an algorithm for upgrading HSMs
which is parametrized by the size of the technician team; in section 4 we give
an example of application of the algorithm to estimate the upgrading cost on a
network; finally, in section 5 we give some concluding remarks and we discuss
future work.

2 The HSM upgrading problem

Given a bank network, we want to study strategies for incrementally upgrading
HSMs while keeping the network functionality up, apart from the lapse of time
in which HSMs are physically substituted. While applying an upgrading tech-
nique, only part of the HSMs will be upgraded. As we have mentioned in the
introduction, in this upgraded hardware we certainly want to remove old flawed
functionalities, thus it will not be able, in general, to support the old protocol
and communicate with non-upgraded HSMs. To this aim, the technicians per-
forming the upgrade can place special borderline HSMs translating from/to the
old protocol.

We briefly discuss two possible settings, depending on whether these special
HSMs are placed on links as in figure 2, or on switches, as in figure 3. The former
setting makes all the paths in the upgraded network secure, but in case we have
many links towards the non-upgraded network it would require to install many
borderline HSMs thus becoming more complicated and expensive. The latter
setting is cheaper and more flexible: once an HSM becomes borderline all the
neighbouring switches can be indifferently upgraded or not. Notice, however,
that the paths passing through borderline HSMs in the upgraded network are
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Fig. 3. Borderline HSM on a node.

still subject to the attacks. This is because borderline nodes still support old,
flawed functionalities. This setting is cheaper than the former, but the same
degree of security is only achieved later on, when more nodes will be upgraded.
Given that we believe the cost is likely to be the major issue we prefer to analyse
this latter setting and leave the former as a future work.

Another issue to be considered is which network topology we can expect to
be faced with, when starting an upgrade. In the USA, real systems are composed
of regional networks shared by different banks and are hierarchically connected
through switches of one of the existing national networks [13]. In our opinion, a
reasonable assumption to make is that the updates start inside regional networks
which will be composed of different trees, each representing a different bank
network, rooted at the issuing bank. It seems plausible that different banks will
upgrade their hardware independently, thus we imagine they will first install
a sufficient number of borderline switches to ‘separate’ their network from the
other bank networks in the same region. We assume this preliminary separation
as done and we focus on single trees representing single bank networks, rooted
at the issuing bank node and having all the ATMs as leaves.

We can now formally state the HSM upgrading problem as an algorithmic
problem on trees.

The HSM upgrading problem. We consider an initially non-upgraded tree
network that has to be upgraded by a set of technicians arbitrarily moving inside
the network and possibly placing borderline HSMs. All technicians and borderline
HSMs are placed in one initial node. A technician can move only in a connected
way, i.e., from a node to another along an edge, in doing so she upgrades the
traversed nodes. Borderline HSMs can only be moved by one technician; in that
case the HSM and the technician move together along edges. The technician



moves such special hardware when all the neighbouring nodes, except the desti-
nation one, have been upgraded. In this case, in fact, the borderline HSM is not
any more needed. We implicitly assume that this hardware, in the presence of
one technician and with all neighbouring nodes upgraded is switched off, making
the node upgraded. At the end of the computation all the nodes are upgraded.

An HSM upgrading strategy is a sequence of moves that will upgrade an
initially non-upgraded network. While devising efficient updating techniques we
consider different parameters that we would like to optimize:

1. the number B of available borderline HSMs: each of them has a cost which
may be very high, typically around 10000$, thus B has to be minimized;

2. the number U of technicians in the upgrading team: each technician can
upgrade one HSM in one node, so having many technicians allows for simul-
taneous upgrading of subsets of nodes; the salary we pay to the technicians
is proportional to this parameter, thus even U should me minimized;

Definition 1 (HSM upgrading number). It is the minimal number of bor-
derline HSMs needed to solve the HSM upgrading problem on a given tree T and
with a given number U of technicians. We note it uhn(T,U).

2.1 Upgrading vs. decontaminating

We now show that the HSM upgrading problem with a single technician is very
strictly related to the Connected Monotone Decontamination (CMD) problem,
formalized below.

The CMD problem [3]. We consider an initially contaminated network that
has to be decontaminated by a set of agents (or searchers) arbitrarily moving
inside the network. All nodes and edges are initially contaminated, except for
the initial node where all the agents are located, which is guarded. An agent
can move only in a connected way, i.e., from a node to another along an edge.
The network contains an intruder that contaminates the nodes and edges it
traverses. The intruder cannot traverse guarded nodes, otherwise it would be
captured by the agents, but we assume that he will immediately recontaminate
nodes or edges that are left unguarded. In the node decontamination problem
a node is guarded when it contains at least one agent, clean when an agent
has been on the node and all the neighbouring nodes are clean or guarded, and
contaminated otherwise. At the end of the computation all the nodes of the
network are simultaneously clean. In the edge decontamination problem an edge
becomes clean whenever an agent passes through it, and its starting node is
either clean or guarded. At the end of the computation all the nodes and edges
of the network are simultaneously clean.

A decontamination (or search) strategy is a sequence of moves that will clear
an initially contaminated network. A strategy is monotone, if a decontaminated
node or edge is never recontaminated. Finally, the strategy has to be efficient,
where efficiency is measured in terms of the size of the agent team. A strategy
is optimal if the size of the team is minimal.



Definition 2 (Connected search number). It is the minimal team size needed
to solve the edge CMD problem on a given network G, and is noted csn(G).

The problem of finding an optimal strategy has been studied in some specific
topologies such as trees [3]. In the same work it is also proved that, for trees,
a non-monotone solution, i.e., allowing re-contamination of nodes, would not
reduce the optimal number of required agents.

Originally, the decontamination problem has been introduced in [7, 17] and
has been extensively studied in the literature under the term graph search (e.g.,
see [10, 14–16, 18]). The difference with the CMD problem is that searchers do
not necessarily move in a connected way, i.e., may ‘jump’ from one node to an-
other. In the HSM upgrading problem technicians do not travel via the network
they repair, but via lorries or cars. In an ideal setting we would thus have to
think our scenario as a composition of two networks: the bank network over-
lapped with a geographical network where technicians physically move. Another
approach could consist of considering only the bank network where the travelling
cost is added by assigning weights to the edges (where weights represent physical
distances), and by letting searchers jump from one node to the other. It is inter-
esting to note that for any non-weighted tree T with n nodes the ratio between
the connected search number csn(T ) and the regular search number sn(T ) (i.e.,
for agents that may jump) is bounded by, csn(T )/sn(T ) ≤ 2 (see [4]), i.e., any
optimal connected strategy will require at most twice the number of agents than
a non-connected one (at least in the non-weighted case). We thus leave the two
above mentioned extensions as a future work and for simplicity, in this work we
concentrate on the scenario in which we do not consider the technician motion
as a parameter to optimize.

Equivalence of HSM upgrading and CMD. We now prove that the HSM
upgrading problem solved using the minimal number of borderline HSMs and a
single technician is equivalent, up to one extra agent, to the problem of finding a
connected monotone technique for the edge decontamination of the tree network
using the smallest number of agents.

Theorem 1. Given a tree T , we have uhn(T, 1) ≤ csn(T ) ≤ uhn(T, 1) + 1.

Proof. Let us first assume we have solved the HSM upgrading problem in a tree
using the minimal number uhn(T, 1) of borderline HSM and a single technician.
We show that the adopted strategy can be mapped into a valid strategy for
the CMD problem with a number of agents equal to uhn(T, 1) + 1. We can see
upgraded and non-upgraded HSMs respectively as decontaminated and contam-
inated nodes. Moreover, we see each borderline HSM and the (single) technician
as agents. We now show that moves of the technician and of borderline HSMs
(that are anyway transported by the technician) are correctly mapped into agent
moves.

We first consider the technician moving alone, bringing no HSM. The only
crucial case is when the node where she moves from has no borderline HSM on
it meaning, in the other problem, that she is the only agent on the node. In this



case we are guaranteed that all the neighbouring nodes are either upgraded or
borderline HSMs, as an upgraded node (the one where the technician is moving
from) can never be directly connected to a non-upgraded one. The corresponding
move in the CMD problem can be safely performed.

We now consider the technician moving with some borderline HSMs. If at
least one HSM is left on the node the move can be safely simulated in the CMD
problem, as at least one agent will stay on the originating node, guarding it.
If all the borderline HSMs are moved by the technician we are in a situation
similar to the one where the technician alone is moving: all the neighbouring
nodes need to be either upgraded or borderline HSMs, except the destination
node which, if needed, will be protected by one of the incoming borderline HSMs.
This is perfectly safe in the CMD problem, as the moving agents will guard the
destination node. The important thing is that the node left alone is protected
by the upgraded/guarded neighbouring nodes.

When all the nodes are upgraded in the HSM upgrading problem they will
correspondingly be decontaminated in the CMD problem, thus the strategy in
the former problem is also a strategy in the latter, with a number of agents equal
to uhn(T, 1) + 1. This implies csn(T ) ≤ uhn(T, 1) + 1.

Similarly, let us now assume we have solved the CMD problem with csn(T )
agents. We show that the adopted strategy can be mapped into a valid strat-
egy for the HSM upgrading problem with one technician and with a number
of borderline HSMs equal to csn(T ). We can see decontaminated and contam-
inated nodes as upgraded and non-upgraded HSMs, respectively. Moreover, we
see each agent as a borderline HSM. We now show that moves of the agents
are correctly mapped into borderline HSM moves, via the technician. Notice
that no agent is mapped into the technician, so the position of the technician
on the tree is immaterial. Notice also that, at any point of the computation,
all upgraded/borderline HSMs are on a connected subtree of the network, given
that agents start from a single initial node, they move in a connected way and
HSMs can never be downgraded. Thus, we can freely move the technician on
this upgraded/borderline nodes reaching all the borderline HSMs.

Now, any agent move is simulated by the technician reaching the correspond-
ing borderline HSM and moving it in the destination node. The only crucial case
is when the node which is left has no other agents guarding it. In this case,
however, we are guaranteed that all of the neighbouring nodes, except the desti-
nation one, are upgraded or guarded, since an agent cannot allow a decontami-
nated node to be recontaminated. Thus, the corresponding borderline HSM can
be safely removed from the node.

When all the nodes are decontaminated in the CMD problem they will cor-
respondingly be upgraded or borderline in the HSM upgrading problem. At this
point the technician can go around an collect all the borderline HSMs ‘deac-
tivating’ them. Thus the strategy in the former problem is also a strategy in
the latter, with a number of borderline HSMs equal to csn(T ). This implies
uhn(T, 1) ≤ csn(T ).



3 Upgrading strategies

In this section we show different techniques to solve the HSM upgrading prob-
lem. We first provide strategies which aim at minimizing B, i.e., the number of
borderline switches used, and then present trade-offs between B and U , i.e., the
number of nodes U that can be simultaneously upgraded by a team of techni-
cians.

Case U = 1. Nodes are sequentially updated by a unique technician. As we
have proved in the previous section, in this case this problem is equivalent to
the CMD problem where agents are seen as borderline HSMs. We thus slightly
modify the algorithm presented in [3] in order to solve our problem.

The main idea is to first compute, from every possible starting point, i.e.,
every node of the tree T , the minimal number of borderline switches required
for the solution of the upgrading problem. Then, one of the nodes with minimal
value is chosen as starting point and the actual upgrading algorithm is applied.
In order to compute this minimal value two different rules (similar to the ones
of [3]) need to be applied. For each edge {x, y}, we first compute λx(x, y), i.e.,
the minimal number of borderline HSMs necessary for the upgrade of the tree
rooted at y while arriving from x.

Rule 1 for computing minimal number of borderline HSMs on
an edge
1. An edge e = {x, y} leading from a node x to a leaf y requires only

the technician moving from x to y to upgrade the HSM on y, thus
λx(x, y) = 0;

2. An edge e = {x, y} leading from a node x to a node y that has
other k out-going edges requiring l1, . . . , lk borderline HSMs, with
l1 ≥ l2 ≥, . . . ,≥ lk, requires λx(x, y) = max{l1, l2 + 1, 1} borderline
HSMs.

From this value we can then compute the minimal number of borderline HSMs
which are necessary for the upgrade of the tree starting from any node. The two
rules are:

Rule 2 for computing minimal number of borderline HSMs on
a node
1. A leaf y requires a number of borderline HSMs defined by λy(y, x)

to move to node x; in fact, being a leaf we do not need to leave any
borderline HSM on y;

2. A node x that has h out-going edges each respectively requir-
ing l1, . . . , lh borderline HSMs, with l1 ≥ l2 ≥, . . . ,≥ lh, needs
max{l1, l2 + 1} borderline HSMs.

We now apply Rules 1 and 2 and then choose one of the nodes, say z, requiring
a minimal number B of borderline HSMs. Similarly to the algorithm of [3],



consider Tz, the tree rooted at z and, for each node y of Tz, order its children by
increasing values assigned by λz to the related links. Apply then the following:

Algorithm Upgrade
1. Start at z with B borderline HSMs and a technician;
2. Traverse Tz in pre-order (by increasing values of λz). While moving

from a node x to a node y use λx(x, y) borderline HSMs and a
technician, while returning to x bring back λx(x, y) borderline HSMs
and a technician.

Example 1. Let us now show how to apply Rules 1, 2 and Algorithm Upgrade
on a small example. Assume we have a tree T of 6 nodes called a, b, c, d, e, f
(see figure 4). We first compute the values associated to the edges, i.e., we apply
Rule 1. E.g., consider node d. As d is a leaf by Rule 1.1 we have λb(b, d) = 0,
that is there is just a technician moving from b to d. The same holds for the
other leaves e and f , thus λc(c, e) = 0, and λc(c, f) = 0. Consider now node
a and edge {a, b} and apply Rule 1.2. Node b has only one other out-going
edge, i.e., {b, d} that requires l1 = λb(b, d) = 0 borderline HSMs. Thus, edge
{a, b} requires λa(a, b) = max{l1 = 0, 1} = 1 borderline HSM. That is, path
{a, b, d} is a chain thus we need at least one borderline HSM to upgrade it.
On the other hand, if we consider edge {a, c} and apply Rule 1.2 we have that
node c has two other out-going edges, i.e., {c, e} and {c, f} that respectively
require l1 = λc(c, e) = 0 and l2 = λc(c, f) = 0 borderline HSMs. Thus, edge
{a, c} requires λa(a, c) = max{l1 = 0, l2 = 0 + 1 = 1, 1} = 1 borderline HSM.
To compute the minimal number of borderline HSMs on a node we apply Rule
2. E.g., consider a leaf d. It requires a number of borderline HSMs defined by
λd(d, b) = 1 to move to node b, thus we write 1 inside node d. Consider now node
c that has 3 out-going edges each respectively requiring l1 = 1, l2 = 0, l3 = 0
borderline HSMs, thus c needs max{l1 = 1, l2 + 1 = 0 + 1 = 1} = 1 borderline
HSM.

After having applied Rules 1 and 2 to all the nodes, we choose one of them
requiring a minimal number of borderline HSMs, e.g., c requiring 1 HSM. We
consider Tc, the tree rooted at c and order its children by increasing values
assigned by λc to the related links, e.g., we consider node e, then f , then a, and
finally apply Algorithm Upgrade starting from c with 1 borderline HSMs and
a technician.

Figure 5 shows an application of Algorithm Upgrade starting from node c.
Black nodes represent updated HSMs. Nodes surrounded by squares represent
borderline HSMs, the lady represents the technician. At the end the technician
goes back to c.

We now prove the correctness and the optimality of algorithm Upgrade.

Theorem 2. Algorithm Upgrade together with Rule 1 and Rule 2 correctly
and optimally solve the HSM upgrading problem in a bank tree network T .
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Proof. The general correctness directly derives from the one of the rules and the
algorithm presented in [3]. In particular, we first have to prove that an optimal
monotone strategy for HSM upgrading with a single starting point on any tree
T exists. Then, we choose the entry point that minimizes the number of required
HSMs. Another key point for the correctness of the strategy is the property that
the minimal number of required HSMs from a node x is given by the minimal
number between the biggest minimal value of a son of x and the second biggest
minimal value plus one. These values will correspond to the edge labels and will
imply a specific ordering in the strategy visit. Finally, we prove that using the
minimal number of HSMs, we can upgrade the system as moving back and forth
with such number of HSMs does not leave parts of the network unprotected.

The existence of an optimal monotone strategy for CMD on any tree T has
been proved in [3] using a variation of the proof of [15] for the non-monotone
setting with the addition of the single starting point (i.e., the initially guarded
node). The main idea that we borrow is that it is possible to build a progressive
connected crusade (i.e., a sequence of moves where a new single un-traversed
edge is added at each step, leading to the visit of the whole network and using
only connected sub-networks) using at most uhn(T, 1) HSMs on the borderline
between the non-upgraded and upgraded sub-networks.

The correctness of the optimal strategy for the HSM upgrading problem
also derives from the one of [3]. In particular, from what is stated above we
can limit the upgrading to strategies having a single entry point, thus one of
the starting point requiring the smallest number of HSMs will be chosen. An-
other key point is the fact that, given a tree T rooted at r (call it Tr) and
considering a sub-tree of Tr rooted at x (Tr[x]) with k children x1, . . . , xk such
that uhn(Tr[xi], 1) ≥ uhn(Tr[xi+1], 1) for all i = 1, . . . , k, then uhn(Tr[x], 1) =
max{uhn(Tr[x1], 1), uhn(Tr[x2], 1)+1}. Obviously uhn(Tr[x], 1) ≥ uhn(Tr[x1], 1)
otherwise Tr[x1] cannot be upgraded. We now have two possible cases:

1. uhn(Tr[x1], 1) ≥ uhn(Tr[x2], 1)+1. Then Tr[x] is upgraded by visiting Tr[x1]
as the last subtree, after having placed an HSM on x and cleaned all the
other children;
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Fig. 5. Algorithm Upgrade starting from c.

2. uhn(Tr[x1], 1) = uhn(Tr[x2], 1). Assume S is a strategy that upgrades Tr[x]
using uhn(Tr[x2], 1) HSMs. If Tr[x2] is upgraded before Tr[x1] no HSM may
be left on x, thus an untraversed edge (towards x1) remains unprotected. The
same holds if Tr[x2] is upgraded after Tr[x1]. Thus more than uhn(Tr[x2], 1)
HSMs have to be used. In fact, uhn(Tr[x2], 1)+1 HSMs are sufficient by first
visiting Tr[x2] and then Tr[x1] with one HSM on x.

Label now each edge {a, b} of the network with a function λa(a, b) that is 0 if b is
a leaf and max{l1, l2 +1, 1} if b has h out-going edges each respectively requiring
l1, . . . , lh HSMs, with l1 ≥ l2 ≥, . . . ,≥ lh. The next step borrowed from [3] is to
prove that λa(a, b) = uhn(Ta[b], 1) and this is done by induction on the height
of Ta[b].

All the proofs of [3] can thus be directly mapped to our problem. There
are some differences on the rules which we report below. Rule 1.1 for the HSM
upgrading problem avoids the placement of a borderline switch (i.e., the agent
in the other problem) on y, i.e., at the end of the chain, but, by the recursive
construction, a borderline switch will however be placed on x while upgrading y,
with the only exception being a tree composed of a single edge {x, y}, that we do
not treat (it could be treated via an ad-hoc rule but we prefer not to complicate
the algorithm for a trivial case). Now, if x has degree at least 2, by Rule 2 node
x will require at least one borderline HSM (used on x) and one technician (the
two edges out-going from x have associated 0). Thus, y will be safely upgraded.
Moreover, Rule 1.2 states that, if x is the starting point of a chain of HSMs we
need at least one borderline HSM to upgrade the system. This is included in the



constant 1 of the relation λx(x, y) = max{l1, l2 + 1, 1}. This is peculiar of our
algorithm and is not present in [3].

Consider now Algorithm Upgrade. In point 1 we start from the node that
requires the minimal number B = uhn(T, 1) of borderline HSMs. B has been
correctly computed by Rule 1 and 2. Consider now point 2 of Algorithm Up-
grade. The proof is similar to the one of [3] with the inclusion of the case
where a node is a leaf that has to be directly updated by the technician (that is
in this case λx(x, y) = 0 no borderline HSMs, only the technician). Very briefly,
the main idea is that technician and HSM move may be forward and backward.
Backward moves are safe as they leave an upgraded network and move to an
already upgraded one. Forward moves upgrade a non-upgraded subtree by in-
creasing number of HSMs. Moreover the relation λx(x, y) = max{l1, l2 + 1, 1}
assures that at least one HSM will be left on node x, avoiding new attacks and
enough HSMs can be moved to y.

Finally, observe that Rule 1 and 2 compute the minimal number of borderline
switches required on the tree and starting from every possible node, and B is
the minimal of such values.

Case U > 1. We now assume that our network is a tree T , and that U = k > 1,
i.e., that nodes can be simultaneously upgraded by a team of k technicians.
Using this issue we now try to compute what is the related decrease in B. To
do this we extend Rule 1 and Algorithm Upgrade 1 basing our changes on the
following observation: given U = k, and the tree T , if we have a subtree Tz of T
rooted at z and containing <= k nodes, we can then use the team to upgrade Tz

in one shot, one technician sent to each node. That is, the team can collaborate
to upgrade a contiguous part of T , decreasing the number B of borderline nodes
required by Algorithm Upgrade 1.

In order to do this we have to compute, for each node z of T , the number
of nodes in each subtree of T rooted in z (i.e., in Tz). More precisely, assuming
z has h neighbouring nodes z1, . . . , zh, we have to compute sz,zi the size of the
subtrees Tz[zi] of Tz rooted in zi, for i = 1, . . . , h. We can do this recursively as
follows:

Computing the number of nodes of subtrees
1. An edge e = {x, y} leading from a node x to a leaf y. We trivially

have sx,y = 1;
2. Consider an edge e = {x, y} leading from a node x to a node y that

has other k out-going edges {y, z1}, . . . , {y, zk} with subtree sizes
sy,zi

, with i = 1, . . . , k. Then the size of the subtree of Tx rooted at
y is sx,y = sy,z1 + . . .+ sy,zk

+ 1.

Based on this computation we can give a new rules, Rule 1 new which substi-
tutes Rule 1:



Rule 1 new for computing minimal number of borderline HSMs
on an edge using U technicians
1. An edge e = {x, y} leading from x to y such that sx,y ≤ U requires

only the technician team moving from x to y to upgrade the HSM
on the whole subtree rooted in y, thus λx(x, y) = 0;

2. An edge e = {x, y} leading from x to y such that sx,y > U and having
other k out-going edges requiring l1, . . . , lk borderline HSMs, with
l1 ≥ l2 ≥, . . . ,≥ lk, requires λx(x, y) = max{l1, l2 + 1, 1} borderline
HSMs.

Theorem 3. Algorithm Upgrade together with Rule 1 new and Rule 2 cor-
rectly solve the HSM upgrading problem in a bank tree network T where U tech-
nicians operate. The number of borderline switches required is value B computed
via Rule 1 new and Rule 2.

Proof. Rule 2 and the Upgrade algorithm are the one previously presented,
their correctness thus follows. The correctness of Rule 1 new derives from the
one of Rule 1. Moreover, the computation of the sub-tree sizes is based on the
standard saturation technique widely used in the field of distributed algorithms
(see, e.g., [19]). This technique assumes that the computation of the size of a
sub-tree is started at the leaves (which in this case count one) and is propagated
on the sub-tree by collecting values from all but one edge and propagating it to
through the remaining edge. Finally, given U technicians that may work on a
non-upgraded network of≤ U nodes, all these technicians may obviously upgrade
this sub-tree in parallel.

4 Estimating the upgrading cost: an example

We consider a simple example to show how to compute a trade-off between
the number U of technicians and the the number of needed borderline HSMs.
The example is depicted in figure 6. We use the same notation adopted in the
previous section to label edges and nodes. On the left, we execute the algorithm
with U = 1: it gives 2 on all nodes, thus the minimal number of needed borderline
HSMs is 2. We now want to evaluate the benefits of hiring one more technician.
On the right we have executed the algorithm with U = 2, pointing out the
difference in red, and we see that in 2 nodes just one HSM is needed. Thus, if we
start from those nodes with two technicians we only need one borderline HSM
to upgrade the whole network. Notice that we cannot do best than this as one
HSM is for sure needed.

We can now reason as follows: let CH be the cost for one HSM and CU the
cost for one technician. In the first case the overall upgrade cost is estimated as
2CH +CU while in the second case we estimate as CH +2CU . It is now clear that
depending on how CH and CU are related we will go one direction or the other.
For example, if a technician costs around 5000$ and an HSM around 10000$, we
will opt for the second solution spending 20000$ instead of 25000$.
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Fig. 6. An example of cost estimation.

5 Conclusion

We have proposed a novel way of upgrading critical components in wide net-
worked system which are incremental and aim at finding a trade-off between
the extra hardware needed to maintain the functionality of the network, and
the size of the technician teams simultaneously operating on the bank network
switches. The presented techniques are not specific for HSMs and PIN manag-
ing but could be reused in any networked system requiring the upgrade of some
security-critical component.

There are some aspects that we have not treated in this paper and might be
interesting to investigate. We have mentioned in section 2 that borderline HSMs
might be placed on edges instead of nodes. This increases the number of secured
paths but, intuitively, requires more hardware to isolate secure subnetworks from
insecure ones. To understand the benefits of this approach it would be useful
to measure the degree of security of the network, i.e., the size of the secure
subgraph from the ATMs to the related issuing bank or, in other words, the
number of secured, upgraded paths in a network. Having this measure, we could
compare the present strategies with ones placing borderline HSMs on edges, also
comparing the degree of security provided by the new approach. The trade-off,
thus, might be between the cost and the degree of security.

Finally, another interesting issue, we have previously mentioned, is the opti-
mization of a new parameter, i.e., the technician motion either inside a weighted
network or on a new independent physical network overlapped to the bank net-
work. In this case, time complexity would probably become an issue as in the
traveling salesman problem. Depending on the size of the analyzed trees, the
solution might thus require heuristic approaches.
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