Secure upgrade of hardware security modules in bank networks*

Riccardo Focardi¹ Flaminia Luccio¹

¹Università Ca' Foscari di Venezia, Italy {focardi,luccio}@dsi.unive.it

ARSPA-WITS'10 Paphos, Cyprus March 27-28, 2010

* Work partially supported by: Miur'07 Project SOFT: "Security Oriented Formal Techniques"

伺下 イヨト イヨト

PIN processing infrastructure

3

イロン イヨン イヨン イヨン

PIN processing infrastructure

くほと くほと くほと

PIN processing infrastructure

3

- 4 同 6 4 日 6 4 日 6

PIN processing infrastructure

3

- 4 同 6 4 日 6 4 日 6

PIN processing infrastructure

Hardware Security Module (HSM)

- Tamper resistant
- Security API for
 - Managing cryptographic keys
 - $\bullet~\mbox{Decrypting/re-encrypting}$ the \mbox{PIN}
 - Checking the validity of the PIN

Hardware Security Module (HSM)

- Tamper resistant
- Security API for
 - Managing cryptographic keys
 - Decrypting/re-encrypting the PIN
 - Checking the validity of the PIN

... but still, attacks are possible

Hardware Security Module (HSM)

- Tamper resistant
- Security API for
 - Managing cryptographic keys
 - Decrypting/re-encrypting the PIN
 - Checking the validity of the PIN

... but still, attacks are possible

Our goal:

propose 'cheap' HSM upgrading strategies

- securing subnetworks while keeping service up
- Itrade-off between hardware and manpower cost

• Encrypted PIN Block : contains the PIN at the ATM

PIN_V(EPB , vdata,len,dectab,offset)

- $\bullet\,$ Data for computing the user PIN $\checkmark\,$
- Returns the equality of the two PINs

• Encrypted PIN Block : contains the PIN at the ATM

PIN_V(EPB , vdata,len,dectab,offset)

- $\bullet\,$ Data for computing the user PIN $\checkmark\,$
- Returns the equality of the two PINs

Example: PIN_V({4104, r}, vdata, 4, 0123456789012345, 4732)

• Encrypted PIN Block : contains the PIN at the ATM

PIN_V(EPB , vdata,len,dectab,offset)

- $\bullet\,$ Data for computing the user PIN $\checkmark\,$
- Returns the equality of the two PINs

Example: PIN_V({4104, r}k,vdata,4,0123456789012345,4732)

• $\det_k(\{4104, r\}_k) = 4104, r$

(B)

• Encrypted PIN Block : contains the PIN at the ATM

PIN_V(EPB , vdata,len,dectab,offset)

- $\bullet\,$ Data for computing the user PIN $\checkmark\,$
- Returns the equality of the two PINs

Example: $PIN_V(\{4104, r\}_k, vdata, 4, 0123456789012345, 4732)$

$$dec_k(\{4104, r\}_k) = 4104, r 4104$$

• Encrypted PIN Block : contains the PIN at the ATM

PIN_V(EPB , vdata,len,dectab,offset)

- $\bullet\,$ Data for computing the user PIN $\checkmark\,$
- Returns the equality of the two PINs

Example: PIN_V({4104, r}_k, vdata, 4, 0123456789012345, 4732)

$$dec_k(\{4104, r\}_k) = 4104, r 4104$$

 $enc_{pdk}(vdata) = A47295FDE32A48B1$

• Encrypted PIN Block : contains the PIN at the ATM

PIN_V(EPB , vdata,len,dectab,offset)

- $\bullet\,$ Data for computing the user PIN $\checkmark\,$
- Returns the equality of the two PINs

Example: $PIN_V({4104, r}_k, vdata, 4, 0123456789012345, 4732)$

$$dec_k(\{4104, r\}_k) = 4104, r 4104$$

 $enc_{pdk}(vdata) = A47295FDE32A48B1$

• Encrypted PIN Block : contains the PIN at the ATM

PIN_V(EPB , vdata,len,dectab,offset)

- $\bullet\,$ Data for computing the user PIN $\checkmark\,$
- Returns the equality of the two PINs

Example: $PIN_V({4104, r}_k, vdata, 4, 0123456789012345, 4732)$

•
$$\operatorname{dec}_k(\{4104, r\}_k) = 4104, r$$

4104

 $enc_{pdk}(vdata) = \frac{A47295FDE32A48B1}{0472}$

• Encrypted PIN Block : contains the PIN at the ATM

PIN_V(EPB , vdata,len,dectab,offset)

- ullet Data for computing the user PIN \sim
- Returns the equality of the two PINs

Example: $PIN_V({4104, r}_k, vdata, 4, 0123456789012345, 4732)$

$$dec_k(\{4104, r\}_k) = 4104, r 4104$$

enc_{pdk}(vdata) = A47295FDE32A48B10472 \oplus 4732 mod 10 = 4104

• Encrypted PIN Block : contains the PIN at the ATM

PIN_V(EPB , vdata,len,dectab,offset)

- ullet Data for computing the user PIN \sim
- Returns the equality of the two PINs

Example: $PIN_V({4104, r}_k, vdata, 4, 0123456789012345, 4732)$

$$dec_k(\{4104, r\}_k) = 4104, r 4104$$

enc_{pdk}(vdata) = A47295FDE32A48B10472 \oplus 4732 mod 10 = 4104

The two values coincide: PIN_V returns 'true'

PIN_V({4104, r}, vdata, 4, 0123456789012345, 4732)

•
$$dec_k(\{4104, r\}_k) = 4104, r$$

4104

enc_{pdk}(vdata) = A47295FDE32A48B10472 \oplus 4732 mod 10 = 4104

PIN_V({4104, r}_k,vdata,4,0123456789012345,4732)

•
$$dec_k(\{4104, r\}_k) = 4104, r$$

4104

enc_{pdk}(vdata) = A47295FDE32A48B10472 \oplus 4732 mod 10 = 4104

PIN_V({4104, r}, vdata, 4, 1123456789112345, 4732)

•
$$dec_k(\{4104, r\}_k) = 4104, r$$

4104

enc_{pdk}(vdata) =
$$A47295FDE32A48B1$$

0472 ⊕ 4732 mod 10 = 4104

PIN_V({4104, r}, vdata, 4, 1123456789112345, 4732)

•
$$dec_k(\{4104, r\}_k) = 4104, r$$

4104

enc_{*pdk*}(vdata) = A47295FDE32A48B10472 ⊕ 4732 mod 10 = 4104

PIN_V({4104, r}, vdata, 4, 1123456789112345, 4732)

•
$$dec_k(\{4104, r\}_k) = 4104, r$$

4104

enc_{pdk}(vdata) = A47295FDE32A48B11472 \oplus 4732 mod 10 = 4104

PIN_V({4104, r}, vdata, 4, 1123456789112345, 4732)

•
$$\operatorname{dec}_k(\{4104, r\}_k) = 4104, r$$

4104

enc_{pdk}(vdata) = A47295FDE32A48B11472 \oplus 4732 mod 10 = 4104

PIN_V({4104, r}, vdata, 4, 1123456789112345, 4732)

•
$$dec_k(\{4104, r\}_k) = 4104, r$$

4104

enc_{pdk}(vdata) = A47295FDE32A48B11472 \oplus 4732 mod 10 = 5104

PIN_V({4104, r}, vdata, 4, 1123456789112345, 4732)

•
$$dec_k(\{4104, r\}_k) = 4104, r$$

4104

enc_{pdk}(vdata) = A47295FDE32A48B11472 \oplus 4732 mod 10 = 5104

PIN_V({4104, r}, vdata, 4, 1123456789112345, 4732)

•
$$dec_k(\{4104, r\}_k) = 4104, r$$

4104

enc_{pdk}(vdata) = A47295FDE32A48B11472 \oplus 4732 mod 10 = 5104

PIN_V({4104, r}, vdata, 4, 1123456789112345, 4732)

•
$$dec_k(\{4104, r\}_k) = 4104, r$$

4104

PIN_V({4104, r}_k, vdata, 4, 1123456789112345, 3732)

•
$$dec_k(\{4104, r\}_k) = 4104, r$$

4104

enc_{pdk}(vdata) =
$$A47295FDE32A48B1$$

 $1472 \oplus 3732 \mod 10 = 5104$

PIN_V({4104, r}_k, vdata, 4, 1123456789112345, 3732)

$$dec_k(\{4104, r\}_k) = 4104, r 4104$$

enc_{pdk}(vdata) =
$$A47295FDE32A48B1$$

1472 \oplus 3732 mod 10 = 5104

PIN_V({4104, r}_k, vdata, 4, 1123456789112345, 3732)

•
$$dec_k(\{4104, r\}_k) = 4104, r$$

4104

enc_{pdk}(vdata) = A47295FDE32A48B1
1472 ⊕
$$3732 \mod 10 = 4104$$

PIN_V({4104, r}_k, vdata, 4, 1123456789112345, 3732)

•
$$dec_k(\{4104, r\}_k) = 4104, r$$

4104

enc_{pdk}(vdata) =
$$A47295FDE32A48B1$$

1472 \oplus **3**732 mod 10 = **4**104

PIN_V({4104, r}_k, vdata, 4, 1123456789112345, 3732)

•
$$dec_k(\{4104, r\}_k) = 4104, r$$

4104

- enc_{pdk}(vdata) = A47295FDE32A48B1 $1472 \oplus 3732 \mod 10 = 4104$
- PIN_V returns 'true'

This kind of attack is practical

- an average of 13.463 PIN_V calls for a four-digit PIN [Focardi, Luccio, FUN'10]
- ... an insider might disclose thousands of PINs in a lunch-break!

Verizon Breach Report 2008

"Were seeing entirely new attacks that a year ago were thought to be only academically possible"

"What we see now is people going right to the source [..] and stealing the encrypted PIN blocks and using complex ways to un-encrypt the PIN blocks." (Quotes from Wired Magazine interview with report author, Bryan Sartin)

How to prevent the attack?

- low-impact CVV-based fix [Focardi, Luccio, Steel, NORDSEC'09]
 - mitigates the attack (50000 times slower)
- point-to-point MAC-based fix and type-based proof of security [Centenaro, Focardi, Luccio, Steel, ESORICS'09]
 - prevents the attack but requires modifying each HSM

/□ ▶ 《 ⋽ ▶ 《 ⋽

HSM upgrade

- replace old, flawed, functionalities with new, patched, APIs
- keep the service up: new and old HSMs should 'talk'
- IDEA: special borderline HSMs placed temporarily
 - supporting both old and new APIs (still flawed!)
 - translating from/to upgraded and non-upgraded subnetworks

The HSM upgrading problem

- initially *non-upgraded* tree network
- U technicians moving on the network and upgrading nodes
- technicians place borderline HSMs, when needed
- borderline HSMs can be moved when all the neighbouring nodes are upgraded

HSM upgrading strategy

A sequence of moves that upgrades an initially non-upgraded network

HSM upgrading number uhn(T, U)

The number of borderline HSMs needed to solve the HSM problem on a given tree T and with a given number U of technicians

< /₽ > < E > <

The Connected Monotone Decontamination problem [Barrière et al., SPAA'02]

- initially *contaminated* tree network
- a set of *agents* moving on the network
- agents decontaminate nodes they traverse
- decontaminated nodes left unguarded are recontaminated

Decontamination strategy

A sequence of moves that clears an initially contaminated network

Connected search number csn(T)

The number of agents needed to solve the CMD problem on a given tree T

The two problems are strictly related

Theorem

Given a tree T, we have $uhn(T,1) \leq csn(T) \leq uhn(T,1) + 1$

Intuitively:

- Borderline HSMs as 'still' agents transported by the *unique* technician
- Agent moves simulated by the technician reaching a borderline HSM and moving it
- \Im reuse known algorithms and generalize them to U technicians

・ 何 ト ・ ヨ ト ・ ヨ ト

・ 何 ト ・ ヨ ト ・ ヨ ト

- 4 回 ト - 4 回 ト

・ 何 ト ・ ヨ ト ・ ヨ ト

- 4 回 ト - 4 回 ト

- 4 回 ト - 4 回 ト

E

- 4 同 6 4 日 6 4 日 6

- 4 回 ト - 4 回 ト

• Two borderline HSMs needed

- 4 同 6 4 日 6 4 日 6

A D A D A D A

< 回 > < 三 > < 三 >

< 回 > < 三 > < 三 >

→ Ξ →

< 🗗 🕨

∃ →

- 4 回 ト - 4 回 ト

A (10) F (10)

∃ →

< 回 > < 三 > < 三 >

< 回 > < 三 > < 三 >

• Only one borderline HSM needed!

< ∃ ►

Cost trade-off: an example

- Let C_H be the cost for one HSM and C_U the cost for one technician
- $2C_H + C_U$ versus $C_H + 2C_U$
- Suppose $C_H = 10000 \in$ and $C_U = 5000 \in$ we obtain
 - 25000€ versus 20000€
- In general, $BC_H + UC_U$ where B is derived by applying the strategy

- 4 @ > - 4 @ > - 4 @ >

Conclusion

- strategy for HSM upgrading on tree networks
- trade-off between hardware and manpower cost

Open problems

- placing HSMs on edges instead of nodes
- trade-off between cost and security
 - counting the number of secured paths
- measuring the travelling cost
 - weighted graph
 - independent distance matrix
- extensions to more topologies

Conclusion

References

- L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder by mobile agents. In proceedings of SPAA'02.
- M. Bond and P. Zielinski. Decimalization table attacks for PIN cracking. UCAM-CL-TR-560, Univ. Cambridge, Computer Lab., 2003.
- M. Centenaro, R. Focardi, F.L. Luccio, G. Steel. Type-Based Analysis of PIN Processing APIs In proceedings of ESORICS'09, September 2009.
- R. Focardi, F.L. Luccio, G. Steel. Blunting Differential Attacks on PIN Processing APIs In proceedings of NORDSEC'09, Obtober 2009.
- R. Focardi, F.L. Luccio. Cracking bank PINs by playing Mastermind to appear in FUN'10, June 2010, Ischia Island.

U=1

U=2

イロン イヨン イヨン イヨン

2