
In proceedings of ARSPA-WITS’10. Springer LNCS.

Formal Analysis of Key Integrity in PKCS#11?

Andrea Falcone and Riccardo Focardi

Università Ca’ Foscari di Venezia, Italy
andrea.falcone@tin.it, focardi@dsi.unive.it

Abstract. PKCS#11 is a standard API to cryptographic devices such
as smarcards, hardware security modules and usb crypto-tokens. Though
widely adopted, this API has been shown to be prone to attacks in which
a malicious user gains access to the sensitive keys stored in the devices. In
2008, Delaune, Kremer and Steel proposed a model to formally reason on
this kind of attacks. We extend this model to also describe flaws that are
based on integrity violations of the stored keys. In particular, we consider
scenarios in which a malicious overwriting of keys might fool honest users
into using attacker’s own keys, while performing sensitive operations.
We further enrich the model with a trusted key mechanism ensuring that
only controlled, non-tampered keys are used in cryptographic operations,
and we show how this modified API prevents the above mentioned key-
replacement attacks.

1 Introduction

PKCS#11 [9] defines an API to cryptographic devices, such as smartcards, hard-
ware security modules and usb crypto-tokens. Apart from providing access to
the functionalities offered by devices as, e.g., data encryption, the API is specifi-
cally developed to carefully manipulate cryptographic keys. As an example, keys
marked as sensitive should never be accessible as plaintext outside the device:
an application requiring the encryption of confidential data with a sensitive key
stored in the device, will refer to the key via a handle pointing to the location
where the key is stored; the cryptographic operation will then happen inside the
device without exposing the key to the external, untrusted world. Access to de-
vices is regulated via a PIN-based authentication check but RSA Security clearly
states that PIN leakage, foreseeable, e.g., if the device is used on an untrusted
machine, should not ruin the security of PKCS#11 devices.

Following this consideration, the attacker is assumed to execute any possible
sequence of legal API calls. Even under this fairly strong attacker model, the
secrecy of sensitive keys should still be preserved. Unfortunately, in [4] Clulow
showed that this is not the case: there exist rather simple API call sequences that
enable to recover the value of a sensitive key. The simplest example is the wrap-
decrypt attack in which a sensitive key is wrapped, i.e. encrypted, with another
key which has been generated with the double role of wrapping (sensitive) keys
? Work partially supported by Miur’07 Project SOFT: “Security Oriented Formal

Techniques”



and decrypting data. These roles are, indeed, conflicting. It is clear, in fact, that
once the sensitive key has been wrapped and exported, encrypted, out of the
device it is sufficient to ask for decryption to obtain the key as plaintext.

In [5], Delaune, Kremer and Steel (DKS) proposed a model of PKCS#11 for
formally reasoning on Clulow’s attacks. We propose an extension of the DKS-
model, in order to reason on how both an attacker and a regular user act on
a cryptographic device. The model can therefore explore how the users’ actions
would influence each other’s, accounting for some new capabilities we give to the
attacker:

1. overwriting of keys in the device;
2. interception of messages sent on the network by the regular user;
3. disconnection from the system, interrupting the session with the device.

The first capability takes advantage of a vulnerability we found in the API,
which may fool the regular user into using some untrusted key. The second
capability is typical of attacker models for protocol analysis but is not considered
in the DKS-model where there is no distinction between the API calls performed
by the honest user and the ones performed by the attacker. For example, in
DKS, the result of an encryption call is directly available to the attacker. In our
model, this is true only if the call has been performed by the attacker, otherwise
the ciphertext has to be explicitly intercepted. The third capability is useful to
distinguish attacks where the opponent is always connected to the device, like
the ones described in [5], from attacks requiring only a temporary connection. In
this way we can describe rather convenient scenarios for the attacker who does
not need to constantly break into the user’s system in order to stay connected
to the device.

Disconnection might also be caused by an external event. Suppose, for exam-
ple, that the attacker is be able to break the integrity of a key in a token only
when it is used on a specific compromised machine, at some public access point.
Any subsequent use of that key will be potentially compromised, even when the
user connects from her highly secure workstation, inaccessible to any attacker.
Our extended model is able to capture this behaviour. In fact, we detail a sce-
nario in which the attacker exploits the loss of one key integrity and manages
to violate the secrecy of some sensitive data subsequently sent on the network,
encrypted using the tampered key. The second part of the attack does not re-
quire the attacker to be connected to the device and is independent of where the
token is used next.

It is worth noticing that dropping the explicit disconnect event would still
find the same attack sequences, as disconnecting simply reduces the actions that
the attacker can perform. However, discovering that an attack can be performed,
even partially, in a disconnected state is interesting, as it enables the new scenar-
ios described above and points out a dangerous flaw in the API enabling future
exploits even when the token becomes inaccessible to the attacker.

We conclude by studying a modified API with a simple mechanism to ensure
that only controlled, non-tampered keys are used in sensitive operations, and



then show how this countermeasure impedes the previously described attack. The
mechanism is based on the trusted key attribute of PKCS#11 used to prevent
exporting keys in an insecure way, and is extended to any key involved in sensitive
operations, i.e., any such key is required to be trusted. As trusted keys cannot
be set by regular users, this prevents the key integrity problems discussed above.
It is quite surprising that a similar mechanism is not mandatory in the API.
As a matter of fact, in all the experiments we have performed on real crypto-
tokens and smartcard, we have ascertained that no one supports the trusted key
attribute.

The paper is organized as follows. In Section 2 we introduce the DKS-model
[5]. In Section 3 we present the vulnerability we found concerning the integrity of
keys, we introduce our model and we illustrate its adequacy through a detailed
example of attack; in Section 4 we refine this first model, tweaking a small but
significant detail and giving birth to a variation of the model; we then formally
compare the relative expressive power of the two proposals. Finally, in Section 5
we study a modified API preventing the previously described attack. Section 6
gives some concluding remarks.

2 Background: the DKS-model of PKCS#11

In [5], Delaune, Kremer and Steel (DKS) proposed a model of PKCS#11 for
formally reasoning on API-level attacks. This model is the starting point of our
work and we describe it in the following.

Terms. LetN be a possibly infinite set of names, representing keys, data values,
nonces, etc., and X a possibly infinite set of variables. Let also Σ be a finite set of
function symbols, with arity ar : Σ → N, representing, e.g., handles to keys and
cryptographic primitives. The set of plain terms PT is defined by the following
grammar:

t, ti := x x ∈ X
| n n ∈ N
| f (t1, . . . , tn) f ∈ Σ and ar (f) = n

PKCS#11 specifies a number of different attributes for keys and data stored
in the devices, dictating their respective usage. For example, a sensitive key
should never be exported from the device as plaintext. Let now A be a set
of unary function symbols disjoint from Σ, called attributes. The set of at-
tribute terms AT is built by applying these attributes to plain terms, i.e.,
AT = {att (t) | att ∈ A, t ∈ PT }. Attribute terms are interpreted as proposi-
tions, meaning that there will be a truth value associated with them, represent-
ing the value of a given attribute of some plain term. A literal is an expression
a or ¬a where a ∈ AT . The set of all terms is T = PT ∪AT . Finally, we denote
as σ substitutions of variables into terms and we write tσ to note the application
of σ to all variables of t.

Example 1. Term senc (k2, k1) ∈ PT , with k1, k2 ∈ N , represents the symmetric
encryption of key k2 under key k1. Terms h(n1, k1) and h(n2, k2) specify two



handles n1, n2 to the respective keys k1, k2. Attributes sensitive(n2), extract(n2)
and wrap(n1) specifies that k2 is sensitive and extractable and k1 is a key for
wrapping, i.e., encrypting other extractable, possibly sensitive keys. Wrapping
keys, such as k1, is useful to export sensitive and extractable keys in a secure,
encrypted form.

Syntax. Rules for modelling APIs are expressed in the form

T ;L new ñ−−−−→ T ′;L′

where T, T ′ ⊆ PT are plain terms, L and L′ are sets of literals, ñ ∈ N is a set of
names. T and L specify the conditions under which the rule is applicable, whereas
T ′ and L′ specify what will be the result of this rule, if applied. Intuitively, the
rule can be executed if all the terms in T are present and all the literals in L
are evaluated to true in the current state. We will see, in fact, that a state is
a pair of two elements: a set of ground plain terms S, which represents data in
the attacker knowledge, and a partial valuation function V , which maintains the
values of the key attributes. The effect of the rule is that the terms in T ′ are
added to the state and the valuation of the attributes is updated according to
L′. Label ‘new ñ’ binds names ñ in T ′ and L′, forcing them to be different from
all the other names in the state. This mechanism, named fresh renaming, allows
for modelling nonce or key generation.

Example 2. Symmetric encryption is modelled as follows.

h (x1, y1) , y2; encrypt (x1) → senc (y2, y1)

Intuitively, if the attacker knows some data y2 that he wants to encrypt and he
also has a reference, represented by the handle term h (x1, y1), to some internally
stored key y1 with the encrypt attribute set, then the attacker may perform an
API call and obtain the ciphertext resulting from the encryption of y2 under key
y1, i.e., senc (y2, y1).

The DKS-model rules for more PKCS#11 functionalities are reported in Ap-
pendix A.

Semantics. As previously mentioned, A state (S, V ) is a pair of two elements:
a set of ground plain terms S, which represents data in the attacker knowledge,
and a partial valuation function V , which maintains the boolean values of the
key attributes. V is extended to literals and to sets of literals as expected, i.e.,
V (¬a) = ¬V (a) and V (L) =

∧
l∈L V (l) when V (l) is defined for all l ∈ L.

Given a rule1 T ;L → T ′;L′ transition (S, V )  (S′, V ′) may take place if
there exists a grounding substitution θ for the rule such that:

– Tθ ⊆ S, i.e., terms in T are in the enemy knowledge;
1 We omit here the formalization of rule fresh renaming, consisting of removing label

‘new ñ’ from the arrow after having renamed names ñ so that they differ from all
the other names in the rule and in the state. For more detail see [5].



– V (Lθ) = true, i.e., all literals in L are evaluated to true.

Then, S′ = S ∪ T ′θ, and function V ′ is defined as follows:

dom (V ′) = dom (V ) ∪ {a | (a ∈ L′θ) ∨ (¬a ∈ L′θ)}

and ∀a ∈ dom (V ′):

V ′ (a) =


true if a ∈ L′θ
false if ¬a ∈ L′θ
V (a) otherwise

Intuitively, literals in L′ override the evaluation function for their attributes. All
the other attributes are untouched.

Example 3 (The wrap-decrypt attack, single key variant). We show how the mod-
els work by illustrating a variant of the wrap-decrypt attack of [4] with one single
key. The DKS-rules for wrap and decrypt are as follows:

h (x1, y1) , h (x2, y2) ;wrap (x1) , extract (x2)→ senc (y2, y1)
h (x1, y1) , senc (y2, y1) ; decrypt (x1)→ y2

It now sufficient to consider an initial state (S0, V0) with S0 = {h(n, k)} and
V0(wrap(n)) = V0(extract(n)) = V0(decrypt(n)) = V0(sensitive(n)) = true.
Intuitively, we consider a single key k with handle n, with the attributes wrap,
extract, decrypt and sensitive set. Notice that, being it sensitive, k should never
be extracted from the device as plaintext. Intuitively, being k both a wrapping
and extractable key, it can be wrapped under itself. To see this, formally, consider
the first rule above (wrap) and the substitution θ = {n/x1, n/x2, k/y1, k/y2}.
We have:

Tθ = {h (x1, y1) , h (x2, y2)}θ
= {h(n, k)} ⊆ S0

V0(Lθ) = V0({wrap (x1) , extract (x2)}θ)
= V0({wrap (n) , extract (n)})
= V0(wrap (n)) ∧ V0(extract (n)) = true

Thus (S0, V0)  (S0 ∪ {senc(k, k)}, V0), with term senc(k, k) representing the
wrapping of k under itself and obtained as T ′θ = senc (y2, y1) θ = senc(k, k).
Now, being k also a decryption key it can be used to decrypt term senc(k, k)
giving the sensitive key k as a plaintext. We leave as an exercise the formal
application of the decrypt rule using substitution θ′ = {n/x1, k/y1, k/y2} and
giving transition (S0 ∪ {senc(k, k)}, V0) (S0 ∪ {senc(k, k), k}, V0). This attack
shows that wrap and decrypt are conflicting attributes for keys: they should never
be both set on the same key.

The decision procedure arising from the model has been automated via model
checking, leading to a series of experiments reproducing the attacks already
shown by Clulow in [4], and also finding new ones [11]. The authors also proposed
‘patches’ on the API preventing the attacks in the model.



3 Extending the model: key integrity

We shift the focus of the analysis by taking into account a new vulnerability
we observed on real tokens: the attacker is able to overwrite keys stored on the
token, in such a way that the user application will refer the new substitute key
as it was its own. Assume one application refers to keys by means of their label
attribute, a short textual description, managed by the applications themselves,
on which no security policy is enforced by the API. Thus, an attacker logged
into the token can overwrite one of the regular user’s keys, say k1, with another
key of his choice, k2, by simply copying k1’s label onto k2 and then deleting k1

from the token. As a result, the next time a honest user will refer the target key
k1 by means of its label, he will be given access to the attacker’s key k2, in a
transparent way. We have tested this attack on different USB crypto-tokens we
possess.

We now extend the DKS-model of previous section so to also represent the
above mentioned scenario. In particular, we describe the actions of two users:
together with the enemy E we take into consideration a regular, trusted user T .
Their sessions on the device may run concurrently, thus each step of the system
represents an API call performed by one of them. States are enlarged to provide
both users with their own sets of known terms, namely SE and ST . The states
also maintain the attribute values for token keys and the connection status of
the users. The state of the system may be altered as a result of the users’ actions:
for instance an encryption operation would generate in the model a new term,
representing the resulting ciphertext, to be added to the knowledge set of the
user requesting this operation.

Having both an attacker and a regular user acting at the same time on the
token, this model can describe scenarios in which the two affect each other’s
actions. Based on this idea, we give the enemy new capabilities: the ability to
intercept information sent on the network by the trusted user and the ability to
indirectly affect the actions of the regular user, by modifying keys stored on the
token. In fact, in our model the attacker has the ability to overwrite keys stored
on the device, as discussed above.

Furthermore, the enemy has the ability to disconnect himself from the sys-
tem, ceasing the session with the device. Disconnecting from the token means
losing all the references to the keys stored on it and also losing the ability to
require cryptographic operations from the device. Note that nonetheless, even
if disconnected, the attacker can still perform cryptographic operations imple-
mented in software libraries. As discussed in the Introduction, this allows for
more practical and convenient attacks, in which a compromised key also com-
promises subsequent cryptographic operations based on such a key. The enemy,
for example, does not need to be connected to the device to decrypt any sensitive
data encrypted under a previously tampered key he possesses. For the sake of
simplicity we omit modelling a complementary ‘reconnect’ action but this could
easily accounted for in the model.

We formalize the above ideas by extending the DKS-model of section 2.



Key overwriting

h (x1, y2) , senc (y1, y2) ; unwrap (x1)
used n−−−−→ h (n, y1) ; extract (n) , L

h (x1, priv (z)) , aenc (y1, pub (z)) ; unwrap (x1)
used n−−−−→ h (n, y1) ; extract (n) , L

h (x1, y2) , senc (priv (z) , y2) ; unwrap (x1)
used n−−−−→ h (n, priv (z)) ; extract (n) , L

where, L = ¬wrap (n) ,¬unwrap (n) ,¬encrypt (n) ,¬decrypt (n) ,¬sensitive (n).

Disconnected

x, y −→ senc (x, y)

senc (x, y) , y −→ x

pub (z) , x −→ aenc (x, pub (z))

aenc (x, pub (z)) , priv (z) −→ x

Table 1. Rules for key overwriting and disconnected users

Syntax. We extend rule syntax as follows:

T ;L
new ñ, used m̃−−−−−−−−−→ T ′;L′

The only difference is the new label ‘used m̃’ forcing the usage of names occur-
ring in some handle already known by the user: when the rule is fired, all the
occurrences in T ′ and L′ of names in m̃ must be replaced by names already in
use as the first element m of a handle term h(m, k) in the actual user’s knowl-
edge set. This mechanism, named used renaming, allows us to model the key
overwriting operation, because it pinpoints handle names already in use, thus
selecting the handle to be replaced.

Key overwrite rules. Based on the extended syntax, we give new rules for
modelling key overwrite. As an example:

h (x1, y2) , senc (y1, y2) ;unwrap (x1) used n−−−−→ h (n, y1) ; extract (n) ,L

with L = ¬wrap (n) ,¬unwrap (n) ,¬encrypt (n) ,¬decrypt (n) ,¬sensitive (n),
models an unwrap operation overwriting key referred by handle n. Knowing the
handle h (x1, y2) and the wrapped key senc (y1, y2), and assuming x1 refers to
an unwrapping key, we can unwrap y1 giving a used handle n to refer to it, thus
overwriting a key already stored in the device. The appropriate attributes are
set to the unwrapped key. Notice that this rule corresponds to the first unwrap
DKS-rule of appendix A with ‘new n’ replaced by ‘used n’.

The other rules to model key overwriting for asymmetric cryptography are
given in table 1. In the same table we also give rules for operations implemented
in software and called ‘Disconnected’, being them executable even when users
are not connected to the token. These rules are not described in [5] but they are
implicitly part of the DKS-model too, as they correspond to standard Dolev-Yao
attackers.



Semantics. A state is now represented by a tuple (ST , SE , V, CT , CE), where

– ST , SE ⊆ PT represent the knowledge of the trusted user and the enemy;
– V , as before, is a partial boolean function evaluating attributes AT ;
– CT , CE ∈ {true, false} are two booleans indicating the connection status of

the two users.

We define the following operations on set of ground plain terms:

H (S) = {h (n, k) ∈ S | n ∈ N}
Ĥ (S1, S2) = {h (n, k) ∈ S1 | n ∈ N and ∃k′ such that h (n, k′) ∈ S2}

H(S) returns the set of all the handles in a given set S of ground plain terms.
Ĥ(S1, S2) returns all the handles in S1 also referring to keys in S2.

Example 4. Let SE = {k1, h (n1, k2) , h (n2, k3)} and ST = {k1, h (n1, k4)}, then
H (SE) = {h (n1, k2) , h (n2, k3)}, H(ST ) = {h (n1, k4)} give the handles in SE
and ST . Moreover, Ĥ(SE , ST ) = {h (n1, k2)} since n1 refers to a key also in ST .
Similarly, Ĥ(ST , SE) = {h (n1, k4)}.

In the following we will use σ ∈ {T,E} to select one of the users, with the
complement σ̄ defined as expected, i.e. T̄ = E and Ē = T . The system can
evolve through one of the following transitions:

– σ-call: user σ performs a call to the API or an operation in software, the
former only possible if she is connected;

– Send: one or more terms of the trusted user’s knowledge become part of the
attacker’s knowledge. This mimics the attacker intercepting data sent over
the network by the regular user;

– Disconnect: the attacker closes his session with the token and loses all his
handles.

We describe the three kinds of transition in detail.

The σ-call transition. This transition extends the execution of a rule in the DKS-
model: first, if the rule is not one of the ‘Disconnected’ (table 1), i.e. if the rule
uses handles referring to keys stored in the device, the user must be connected.
Second, the premises of the rule must be in the knowledge of user σ and the
non-handle terms generated by the rule-firing are visible only to such user, i.e.
the one performing the call, while new handles are visible to both. As for DKS-
model, we assume rules have been renamed so that new names are different from
any other name around (fresh renaming). Moreover, for each label ‘used m’, we
rename m so that there exists h(m, k) ∈ H(ST ) ∪H(SE), i.e., m is the handle
of some key in one of the knowledge sets (used renaming).

Given T ;L → T ′;L′ transition (ST , SE , V, CT , CE)  (S′T , S
′
E , V

′, CT , CE)
takes place if there exists a grounding substitution θ for the rule such that

– Cσ ∨ H (Tθ) = Lθ = H (T ′θ) = L′θ = ∅, i.e., either the user is connected or
the rule does not refer to any handles and attributes (it is a ‘Disconnected’);



– Tθ ⊆ Sσ, i.e., terms in Tθ are in the knowledge of user σ;
– V(Lθ) = true, i.e., all literals in L are evaluated to true.

Then S′σ = Sσ \ Ĥ (Sσ, T ′θ) ∪ T ′θ and

S′σ̄ =

{
Sσ̄ \ Ĥ (Sσ̄, T ′θ) ∪H (T ′θ) if Cσ̄
Sσ̄ if ¬Cσ̄

Intuitively, the terms in the rule consequence are added to the knowledge set of
the σ-user; terms that represent homonym handles, i.e. key handles that share
their first argument with some handle in the rule consequence, must be sub-
tracted from the system, since they are going to be overwritten. The manipula-
tion of token keys is immediately visible to all the sessions on the token, thus the
other user’s knowledge set (i.e. Sσ̄) must be updated accordingly: only handle
terms in the rule consequence are added to it and homonym handles are sub-
tracted; of course, if instead σ̄ is disconnected, there will be no change on user’s
knowledge.

Function V ′ is defined as follows

dom (V ′) = dom (V ) \ Â ∪ {a | (a ∈ L′θ) ∨ (¬a ∈ L′θ)}

where Â =
{
att (n) | ∃h (n, k) ∈ Ĥ (Sσ, T ′θ) , att ∈ A, n ∈ N

}
is the set of the

attribute-terms in the V function domain that will be “forgotten” due to their
respective handles being overwritten in this transition. Also, attribute terms in
the rule consequence are added to the function domain. V ′ values then are defined
as in DKS-model (section 2). Finally, notice that CT and CE are unchanged since
no disconnection can happen within this transition.

Example 5 (σ-call transition). We illustrate how a symmetric encryption opera-
tion performed by the attacker is represented in the model. Consider the names
set N = {m,n, k1, k2}. Assume, also, that at step number i the state is qi =
(ST,i, SE,i, Vi, true, true) with SE,i = {h (n, k1) , k2}, Vi (encrypt (n)) = true. In
state qi the attacker has thus access to key k1 through the handle named n,
which is entitled for encryption, and he knows the value of key k2; also, both
the users are connected to the token. The values of the other state elements are
irrelevant here.

To carry out the next step in computation, an applicable transition must
be looked for, on behalf of either the regular user or the attacker. Of all the
applicable transitions in this state, an E-call for the symmetric encryption is
chosen. We report the corresponding rule here for convenience:

h (x1, y1) , y2; encrypt (x1)→ senc (y2, y1)

There is no need for a renaming operation on this rule before execution, and it is
applicable in the current state qi with the substitution θi = {n/x1, k1/y1, k2/y2}:
in fact, we have that {h (x1, y1) , y2} θ1 ⊆ SE,i and Vi ({encrypt (x1)} θ1) = true.
Therefore, qi  qi+1 = (ST,i+1, SE,i+1, Vi+1, true, true) such that:



– ST,i+1 = ST,i
– SE,i+1 = SE,i ∪ {senc (y2, y1)} θi = SE,i ∪ {senc (k2, k1)}
– Vi+1 is such that
• dom (Vi+1) = dom (Vi)
• Vi+1 (encrypt (x1)) = true, thus Vi+1 = Vi

Example 6 (overwriting a key). We now illustrate what happens when firing the
previously described key overwriting rule:

h (x1, y2) , senc (y1, y2) ;unwrap (x1) used n−−−−→ h (n, y1) ; extract (n) , L

We give a synthetic representation of the scenario, detailing only the knowledge
set of the attacker, who is executing the rule.

step SE

i h (n1, k1) , senc (k3, k2) , h (n2, k2)
i+1 h (n1,k3) , senc (k3, k2) , h (n2, k2)

We see that key k3 is unwrapped and overwrites key k1. Formally, to fire the
overwriting rule we first have to perform the ‘used renaming’ operation obtaining:

h (x1, y2) , senc (y1, y2) ;unwrap (x1) −→ h (n1, y1) ; extract (n1) , L {n1/n}

We have removed the ‘used n’ label by renaming n in a way it matches an existing
handle, in this case h (n1, k1). Now we can fire the rule using the substitution
θi = {n2/x1, k2/y2, k3/y1}. We obtain that

SE,i+1 = SE,i \ Ĥ (SE,i, T ′θ) ∪ T ′θ =

= SE,i \ Ĥ (SE,i, {h(n1, k3)}) ∪ {h(n1, k3)} =
= SE,i \ {h(n1, k1)} ∪ {h(n1, k3)} =
= {h (n1, k3) , senc (k3, k2) , h (n2, k2)}

Notice that the existing conflicting handle h(n1, k1) is correctly removed before
the new overwriting key h(n1, k3) is added to the knowledge.

The Send transition. When a user asks a device for generating a ciphertext it is
plausible that she is going to send it on the network or store it in a place she does
not completely trust. This transition models exactly the attacker intercepting
such an encrypted data.

Given a subset I ⊆ ST of the trusted user’s knowledge set, the system can
perform a Send transition (ST , SE , V, CT , CE) (ST , SE ∪ I, V, CT , CE).

Example 7 (Send transition). Suppose that the trusted user has to send a ci-
phertext on the network and that this will be intercepted by the attacker. Con-
sider the state is q = (ST , SE , V, CT , CE), where ST = {h (n1, k1) , senc (d, k1)},
meaning that the trusted user has access to the key k1 through the handle
named n1 and he also knows the ciphertext resulting from the encryption of



some data d under key k1. Furthermore, SE = {h (n1, k1)}. The values of the
other state elements are irrilevant here. In this state the Send transition is ap-
plicable, considering I ⊆ ST , I = {senc (d, k1)}. Thus, we have q  q′ =
(ST , SE ∪ {senc (d, k1)} , V, CT , CE).

The Disconnect transition. Since this transition models the disconnection of the
attacker from the device with the consequence of losing access to all the token
keys, key handles must be deleted from the attacker’s knowledge set in the
process.

The system may evolve by a Disconnect transition (ST , SE , V, CT , CE)  
(ST , SE \H (SE) , V, CT , false).

Example 8 (Disconnect transition). Let q = (ST , SE , V, true, true), where SE =
{h (n1, k1) , h (n2, k2)}, meaning that the attacker has access to two keys through
their respective handles. A disconnect operation is issued and reflected in the
model as qi  qi+1 = (ST , ∅, V, true, false).

A complete key overwriting attack. The features introduced in our model
make it possible to describe a scenario in which a key integrity violation is ex-
ploited by the attacker to illegally obtain secret data. The regular user possesses
some secret data d, which he needs to send on the net, after having encrypted it
to protect its secrecy. Also, recall that the attacker knows the regular user’s PIN
code for the token and he is also able to send commands to the token. Further-
more, the attacker knows which key will be used for the encryption operation
and has access to the corresponding handle (but not to the key value).

In Table 2 we give a summary of the attack sequence, detailing only the
knowledge sets; in bold font we emphasize what is new at each step. In the
initial state the device holds two keys and both users have handles to them: kt
is the trusted user’s key and ki is a wrap/unwrap key that will be exploited by
the attacker to import in the device his own key ke (initially not stored on the
device); the trusted user knows the sensitive data d.

During steps 1 and 2 the attacker illegally imports his key in the device,
through a process already shown in [5, section 5.3, experiment 2]: he encodes key
ke in the same format used for wrap operations and makes the device encrypt
it under ki. This yields the same result as ke was regularly wrapped by the
token. Then, the attacker calls an unwrap of this piece of data, creating as a
result a copy of ke in the device and obtaining a new handle for it. We adapted
this process to model the key overwriting operation: while unwrapping key ke,
the trusted user’s key is deleted after having copied its label onto ke. Note that
having key ki is not mandatory, it’s just for clarity: key kt itself could be used
to import ke, in case its unwrap attribute is set to true.

Having done this, at step 3 the attacker can disconnect himself from the
system: the user key kt as been replaced and any subsequent encryption (appar-
ently) based on such a key will be compromised, as show below.

At step 4 the trusted user encrypts d : she (unconsciously) refers to ke because
her reference is now pointing to it. At step 5 the trusted user sends the cipher-
text resulting from encryption on the net; the attacker intercepts it. Finally, at



step transition σ ST SE

0 - - d, h (t, kt) , h (i, ki) h (t, kt) , h (i, ki) , ke
1 encrypt E d, h (t, kt) , h (i, ki) h (t, kt) , h (i, ki) , ke, senc (ke,ki)
2 overwrite E d, h (t,ke) , h (i, ki) h (t,ke) , h (i, ki) , ke, senc (keki)
3 Disconnect - d, h (t, ke) , h (i, ki) ke, senc (keki)
4 encryption T d, h (t, ke) , h (i, ki),

senc (d,ke)
ke, senc (keki)

5 Send - d, h (t, ke) , h (i, ki),
senc (d, ke)

ke, senc (keki) , senc (d,ke)

6 decryption
(disconn.)

E d, h (t, ke) , h (i, ki),
senc (d, ke)

ke, senc (keki) , senc (d, ke) ,d

Table 2. Key overwriting attack

step 6 the attacker can decrypt the data d. Notice that this last operation is per-
formed off-line, possibly using some software implementation of the decryption
algorithm.

4 The H-transition system

We give another formalization of the transition system, aiming at making it more
rational in the way it manages the handle terms: as can be seen in examples of
previous section the key handles are often redundantly maintained in both the
knowledge sets. In the new transition system, the handle terms are made explicit
from the knowledge sets and uniquely maintained in a new element in the state
vector, named H. The state becomes thus (H, ST , SE , V, CT , CE) and we note
the new transition as H. We now describe how σ-call, Send and Disconnect
are modified to accommodate the new separate information on handles.

The H σ-call transition. The σ-call transition requires the same conditions
as in the previous transition system to be met in order to execute a rule from
R (recall that a call to the API is only possible for connected users). The only
difference is that the handle terms are to be found in the H element of the state
vector. More specifically, in place of condition Tθ ⊆ Sσ, requiring that terms in
Tθ are in the knowledge of user σ, we require:

– H (Tθ) ⊆ H, i.e., all the required handles are in H;
– Tθ \H (Tθ) ⊆ Sσ, i.e., all the required terms that are not handles are in the

knowledge of user σ.

If these conditions are met, then the system can evolve with the transition
(H, ST , SE , V, CT , CE) (H′, S′T , S′E , V ′, CT , CE), where:

H′ = H \ Ĥ (H, T ′θ) ∪H (T ′θ)
K ′σ = Kσ ∪ T ′θ \H (T ′θ)
K ′σ = Kσ



Handle terms in the rule’s consequence are added to the handle set, accounting
for overwriting operations if needed. The non-handle terms in the rule’s con-
sequence are added to the knowledge set of the σ-user. Notice that for σ̄-user
nothing is done, since handles are stored in the ‘centralized’ set H.

The attribute valuation function V is updated as before, carefully removing
all the attributes of overwritten keys.

The H Send transition. The H Send transition is analogous to the Send.
Given a subset I ⊆ ST of terms in the trusted user’s knowledge set, the system
can perform (H, ST , SE , V, CT , CE) H (H, ST , SE ∪ I, V, CT , CE).

The H Disconnect transition. The H Disconnect transition differs from the
Disconnect in that no handle terms are deleted from the state vector; just the
connection flag is updated: (H, ST , SE , V, CT , CE) H (H, ST , SE , V, CT , false).

Expressiveness results We now show that the two presented models are equiv-
alent regarding their ability to describe evolutions of the token-users system. We
formalize and prove a theorem stating that, given a  transition there exists
a correspondent  H transition, and vice-versa. First we give some preliminary
definitions.

Let H̄ (S) = {S \H (S)} be the set of all the non-handle terms in a set S..
We let also Q and QH denote the set of states in the two models.

Definition 1 (State encoding). The state encoding function J·K : Q −→ QH
is defined as J(ST , SE , V, CT , CE)K ,

(
H (ST ) , H̄ (ST ) , H̄ (SE) , V, CT , CE

)
.

This definition of state encoding is based on the observation that the trusted user
never disconnects from the token: the H element of QH is filled with handles
taken explicitly from the trusted user’s knowledge set ST .

Definition 2 (Inverse state encoding). The inverse state encoding function
J·K−1 : QH −→ Q is defined as

J(H, ST , SE , V, CT , CE)K−1 ,
(
JST K−1

, JSEK−1
, V, CT , CE

)
where JSσK

−1 =

{
Sσ ∪H, if Cσ
Sσ if ¬Cσ

Next lemma states that J·K−1 is the inverse of J·K. Proof is given in Appendix B.

Lemma 1. ∀q ∈ Q we have JJqKK−1 = q.

Relying on these encodings, we formalize our main result.

Theorem 1 (models equivalence). Let qi, qf ∈ Q

qi  qf ⇐⇒ JqiK H Jqf K

The proof for this theorem is long, but rather mechanical; we give a sketch of it
in Appendix B.



5 Adding trusted keys

In this section, we propose a way to remedy the PKCS#11 API vulnerability
that lets an attacker break a key integrity, discussed above. The idea is based on
the use of one of the cryptographic key attributes, already part of the API: the
trusted attribute. As the name suggests, this attribute is used to discriminate
between trusted and untrusted keys. It is designed to be part of a mechanism
by which the API can prevent exporting keys in an insecure way, by forbidding
the usage of untrusted keys for wrapping sensitive keys. The trusted attribute
can only be set by the Security Officer in charge of the token. Since the Securiy
Officer’s PIN code is different from that of the normal user and is never used on
untrusted hosts, the enemy cannot manipulate the trusted attribute.

Key integrity can be thus checked by just reading the value of its trusted
attribute: if the trusted attribute value is found to be false, it means the key has
possibly been tampered. Note that this check can be done either explicitly by
the user application, or implicitly by the API or the device itself.

In order to model this new mechanism, we simply check the trusted attribute
of every key appearing in a rule, before its application. To this aim, we need
to update all the rules for the σ-call transition which yield new key handles
and have them explicitly set the trusted attribute of the newly created handles
to false, as a default value. The rules affected by this update are all the key
generation rules and all the unwrap rules. To this aim it is sufficient to extend
L with ¬trusted(n).

T σ-call semantics We let Tr (S) = {trusted (n) | ∃h (n, k) ∈ S with n ∈ N}
be the set of trusted attribute terms relative to all the handle terms in S. We add
to the rule applicability conditions a check for the trusted attribute value for all
the key handle terms in rule premises T . This new condition will only allow the
execution of a rule if each of the required key handles has the trusted attribute
set to true. Formally, this is achieved by asking V (Tr (T )) = true.

Note that this new behavior does not directly forbid the key overwriting opera-
tion but it makes it possible to detect it in a simple way, as shown below.

Key overwriting attack and trusted keys. Given the above modifications to
the semantics, the example attack showed in Example 3 on page 11 is prevented.
In Table 3 on the next page we show how the attack sequence is revealed and
blocked. Suppose that initially the trusted attribute on the handle for kt is set
to true. After step 2 the attacker has successfully overwritten kt with ke, h(t, kt)
being replaced by h(t, ke); nonetheless, the new handle h(t, ke) does not possess
the trusted attribute. Thus, at step 4 the normal user’s request for a symmetric
encryption is refused, because the supplied key, referenced by the name t, fails
the trusted attribute check. Therefore, the same attack will not be possible. Note
that the key still gets overwritten, but the loss of integrity is disclosed.



st. transition σ ST SE trusted (t)
0 - - d, h (t, kt) , h (i, ki) h (t, kt) , h (i, ki) , ke true
1 encryption E d, h (t, kt) , h (i, ki) h (t, kt) , h (i, ki) , ke,

senc (ke,ki)
true

2 unwrap E d, h (t,ke) , h (i, ki) h (t,ke) , h (i, ki) , ke,
senc (keki)

false

3 Disconnect d, h (t, ke) , h (i, ki) ke, senc (keki) false
4 encryption

(not exec)
T - - -

Table 3. Key overwriting attack

6 Conclusions

We have proposed an extension to an existent model for the PKCS#11 API, in
order to broaden its descriptive capabilities, taking into account the integrity of
cryptographic keys. We have granted the attacker some new capabilities, among
which the overwriting of keys on the token. We have given a result reasoning
on the expressiveness of two variations of the model semantics. Finally, we have
proposed a simple mechanism to ensure in the model that only non-tampered
keys are used in cryptographic operations.

The PKCS#11 API does not provide a way to satisfactorily manage the
integrity of keys stored on a device, in a transparent manner for the user ap-
plications. We believe this is a major flaw of the standard. As discussed in the
introduction, a user might need to perform some critical operation connecting
a crypto-token to an untrusted host and she would expect no one is allowed
to tamper with her crypto-device in a way that might compromise any further
usage of it. Connecting a crypto-device to an untrusted host should not, in fact,
compromise what is done/stored inside the device. We have shown that, apart
from known attacks where sensitive keys are extracted, an enemy might also
substitute a user key with one he knows and learn any data subsequently en-
crypted with such compromised key. This is, in our opinion, a rather irritating
behaviour for what is expected to be a ‘secure’ crypto-device.

Alternative ways to check key integrity, other than the proposed use of the
trusted attribute, could be: the use of cryptographic functions to validate key
values (e.g. digital signatures or MACs), of course having computational costs;
the introduction of a new attribute to specify that a key cannot be deleted,
making a key impossible to be overwritten.

The use of the trusted attribute we suggest as a countermeasure to the in-
tegrity issue has an advantage in that it is simple and fast. Also, it can be
implemented at several levels: at user application level, without the need to al-
ter the API or the devices, or at API or device level, gaining transparency for
the applications. A main disadvantage is that, since only keys with the trusted
attribute set to true are authorized for any operation, to be of use, a key needs to



be �promoted�right after its generation by the Security Officer in charge of the
token. This might become quite restrictive especially in applications that need
to establish new session-keys. We intend to explore alternative, less-restrictive,
solutions.

We are glad that the automated DKS framework of [11] has been extended
by Graham Steel so to include our model and analysis. In [12] it is possible to
find the result of the performed experiments. First, a device patched to prevent
confidentiality attack is modelled and analysed in the standard DKS-model. As
expected no attacks are found. Then, the model is extended so to capture key
overwriting and the same patched device is found to be vulnerable. The attack
sequence pointed out by the SATMC model checker is essentially the same as the
one presented in Table 2. It only differs on what is encrypted with the tampered
key and then disclosed by the attacker: a freshly generated sensitive key ks1
instead of generic sensitive data d.

References

1. Armando, A., Compagna, L. SAT-based model-checking for security protocols.
International Journal of Information Security. Volume 7, Issue 1, January 2008.

2. Bond, M. and Anderson, R.: API-Level Attacks on Embedded Systems. IEEE
Computer Magazine, pp. 67-75. (2001)

3. Cimatti, et al.: NuSMV version 2: an OpenSource Tool for Symbolic Model Check-
ing. Proc. International Conference on Computer-Aided Verification (CAV’02). Vol.
2404 of LNCS, pp. 359-364. Springer. (2002)

4. Clulow, J.: On the security of PKCS#11. In Proceedings of the 5th International
Workshop on Cryptographic Hardware and Embedded Systems (CHES’03), volume
2779 of LNCS, pages 411-425, Cologne, Germany (2003). Springer.

5. Delaune, S. , Kremer, S., Steel, G.: Formal analysis of PKCS#11. In Proceedings
of the 21st IEEE Computer Security Foundations Symposium (CSF’08), pages
331-344, Pittsburgh, PA, USA (June 2008). IEEE Computer Society Press.

6. Dolev, D.,Yao, A: On the security of public key protocols. IEEE Transactions in
Information Theory, pp. 198-208. (1983)

7. International Telecommunication Union: X.690 - Abstract Syntax Notation One
(ASN.1). (2002)

8. RSA Laboratories: PKCS#8: Private-Key Information Syntax Standard. (1993.)
9. RSA Security Inc: PKCS #11 v.2.20: Cryptographic Token Interface Standard

(June 2004)
10. Steel, G.: Analysis of Security APIs FAQ. Available at http://www.lsv.

ens-cachan.fr/~steel/security\_APIs\_FAQ.html.
11. Steel, G. Experiments: Secure Configuration of PKCS11. Available at http://www.

lsv.ens-cachan.fr/~steel/pkcs11/

12. Steel, G. Experiments: Key Integrity in PKCS#11. Available at http://www.lsv.
ens-cachan.fr/~steel/pkcs11/replacement.php



A DKS-Rules modelling cryptographic operations

Wrap

h (x1, y1) , h (x2, y2) ; wrap (x1) , extract (x2) → senc (y2, y1)

h (x1, priv (z)) , h (x2, y2) ; wrap (x1) , extract (x2) → aenc (y2, pub (z))

h (x1, y1) , h (x2, priv (z)) ; wrap (x1) , extract (x2) → senc (priv (z) , y1)

Unwrap

h(x1, y2), senc(y1, y2); unwrap(x1)
new n−−−−→ h(n, y1); extract(n),L

h(x1, priv(z)), aenc(y1, pub(z)); unwrap(x1)
new n−−−−→ h(n, y1); extract(n),L

h(x1, y2), senc(priv(z), y2); unwrap(x1)
new n−−−−→ h(n, priv(z)); extract(n),L

Key generation

new n,k1−−−−−−→ h (n, k1) ;¬extract (n) ,L
new n,s−−−−−→ h (n, priv(s)) , pub (s) ;¬extract (n) ,L

Encryption

h (x1, y1) , y2; encrypt (x1) → senc (y2, y1)

h (x1, priv (z)) , y1; encrypt (x1) → aenc (y1, pub (z))

Decryption

h (x1, y1) , senc (y2, y1) ; decrypt (x1) → y2

h (x1, priv (z)) , aenc (y2, pub (z)) ; decrypt (x1) → y2

Attribute set
h (x1, y1) ;¬wrap (x1)→ wrap (x1)

...

Attribute unset
h (x1, y1) ; wrap (x1)→ ¬wrap (x1)

...

where L = ¬wrap (n) ,¬unwrap (n) ,¬encrypt (n) ,¬decrypt (n) ,¬sensitive (n). The
ellipsis in the attribute set and unset rules indicates that similar rules exist for other
attributes.

B Proofs from section 4

To prove Lemma 1 we need the following simple lemma, stating that equality of
the handles in ST and SE is preserved by transitions as long as the attacker stays
connected. When he disconnects, the handles in SE are permanently removed.
This allows us to implicitly assume H(ST ) = H(SE) if CE and H(SE) = ∅
otherwise, for all states (ST , SE , V, CT , CE) in Q.

Lemma 2. Let (ST , SE , V, true, true) be such that H(ST ) = H(SE). Then,
(ST , SE , V, true, true)  ∗ (S′T , S

′
E , V

′, C ′T , C
′
E) implies H(S′T ) = H(S′E) if C ′E

and H(S′E) = ∅, otherwise.



Proof. Lemma 1. Let q ∈ Q, q = (ST , SE , V, CT , CE). By definition of encoding,
JqK =

(
H (ST ) , H (ST ) , H (SE) , V, CT , CE

)
. To this we apply the inverse encod-

ing; we have to distinguish whether the attacker is connected or disconnected
from the device.

If the attacker is connected:

q(
H (ST ) , H (ST ) , H (SE) , V, CT , CE

)y−1
=

=
(q
H (ST )

y−1
,
q
H (SE)

y−1
, V, CT , CE

)
=
(
H (ST ) ∪H (ST ) , H (SE) ∪H (ST ) , V, CT , CE

)
= (ST , SE , V, CT , CE) because H (SE) = H (ST )
= q

If the attacker is disconnected:
q(
H (ST ) , H (ST ) , H (SE) , V, CT , CE

)y−1
=

=
(q
H (ST )

y−1
,
q
H (SE)

y−1
, V, CT , CE

)
=
(
H (ST ) ∪H (ST ) , H (SE) , V, CT , CE

)
= (ST , SE , V, CT , CE) because H (SE) = ∅
= q

�

Proof sketch. Theorem 1.
(=⇒) Let qi  qf . We explore case by case, for each kind of derivation

applied. We express qf as a function of qi by the applied transition and we
express q′i as a function of qi by the definition of state encoding. Then, given
the applicability conditions of the assumed derivation, we verify that analogous
conditions, required to apply the same transition in the H system, hold in state
q′i. Thus, we can apply the same transition to state q′i, which by hypothesis is
the encoding of qi, yielding state q′f . Finally, we show that q′f obtained in this
way is the encoding of qf : this is done checking the vector state elements one at
a time, to show that the state encoding definition is complied with.

(⇐=) This part of the proof is symmetric to the first part and it relies on
the inverse state encoding.


