
Information Flow Security of
Multi-Threaded Distributed Programs

Riccardo Focardi Matteo Centenaro
Dipartimento di Informatica

Università Ca’ Foscari di Venezia
{focardi,centenaro}@dsi.unive.it

Abstract
We study noninterference in the setting of multi-threaded dis-
tributed programs in which threads share local memories and
multi-threaded processes communicate over an insecure network
using encryption primitives to secure messages. We extend a sim-
ple imperative language with cryptographic operations which are
modelled as special expressions respecting the Dolev-Yao assump-
tions. Then, we adapt to our setting the notion of patterns proposed
by Abadi and Rogaway for modelling the equivalence of crypto-
graphic expressions. Based on this notion, we naturally obtain a
definition of strongly secure programs corresponding to the one
proposed by Sabelfeld and Sands for programs without cryptog-
raphy. This is, to the best of our knowledge, the first definition of
noninterference in a multi-threaded distributed setting, with in-
secure channels and cryptography. We prove compositionality of
secure programs and we adapt the type system of Sabelfeld and
Sands to our setting, proving its correctness.

Categories and Subject Descriptors F.3.2 [Semantics of
Programming Languages]: Program analysis

General Terms Security, Languages, Verification, Theory

1. Introduction
Protecting confidentiality of data stored in a computer sys-
tem or transmitted on a network, is a relevant issue in com-
puter security. Secure information flow analysis aims at pre-
venting programs from leaking sensitive data. This can be
done via static program analysis, as first observed by Den-
ning and Denning [8], i.e., by inspecting applications’ source
code in order to point out any potential insecurity. The non-
interference property (NI) [9] plays a crucial role in secure
information flow analysis and has been deeply studied in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS’08, June 8, 2008, Tucson, Arizona, USA.
Copyright © 2008 ACM 978-1-59593-936-4/08/06. . . $5.00

last years, as the survey by Sabelfeld and Myers shows [14].
In the simplest case two information confidentiality levels
are taken into account: secret (high) and public (low). In-
tuitively, NI ensures that computation results provide a low
level view of the system which is independent of the high
data, i.e., that high does not interfere with low.

Our goal, here, is to study noninterference in the setting of
multi-threaded distributed programs in which threads share
local memories and multi-threaded process communicate
over an insecure network. Due to the public nature of the
network, programs will use encryption primitives to secure
messages.

We employ a simple imperative while-language to de-
velop our analysis. Cryptographic operations are modelled
as special expressions respecting the Dolev-Yao assump-
tions, i.e., an attacker can never decrypt a ciphertext without
knowing the right decryption key. As observed in [5, 17],
studying information flow in this setting is challenging be-
cause common NI definitions forbid any flow from private
to public data, while encrypting high data with a high level
key is expected to produce a low result that might be sent on
the insecure network, like in

send(encrypt(h, k))

where h and k are, respectively, a high level datum and a
high key. Since the encryption depends on high level, varia-
tions of h cause variations on the ciphertext which become
observable when the message is sent over the network. This
program would be thus judged as insecure by standard NI
notions.

We propose a new variant of NI which correctly deals
with cryptographic messages in the Dolev-Yao model. First
of all, since information on plaintexts can be obtained by
comparing the corresponding ciphertexts, we adopt a form of
randomized encryption based on unpredictable confounders,
similarly to what is done in [1]. The idea is that each encryp-
tion contains a fresh confounder which makes it different
from every previous and future encryption. Then, we give
a new notion of memory/network equivalence, based on the
notion of patterns proposed by Abadi and Rogaway [3] and

extended by Abadi and Jürjens [2], which is able to cap-
ture the possibility for an intruder of observing different in-
stances of the same encryption. In fact, encrypting twice the
same message will produce different ciphertexts, but copy-
ing the same encryption twice will produce the very same
encrypted messages like in the following example program
taken from [11]:

l1 := encrypt(h1, k)
if h then l2 := encrypt(h1, k)

else l2 := l1

(1)

Depending on the high level variable h, we assign to l2 either
a new encryption of h1 with k or the encrypted value stored
in l1. Because of confounders, the assigned values will differ
and, only in the else branch, we will have that l1 = l2, thus
making the boolean h observable.

This new equivalence notion, apart from incorporating
the above mentioned Dolev-Yao assumption, looks for pos-
sible patterns of equal encrypted messages and requires that
those patterns are the same so to make it impossible for the
intruder to achieve any information about secret encrypted
data.

Based on this notion, we naturally obtain a definition of
strongly secure programs corresponding to the one proposed
by Sabelfeld and Sands [15] for programs without cryptog-
raphy. This is, to the best of our knowledge, the first defi-
nition of noninterference in a multi-threaded distributed set-
ting, with insecure channels and cryptography. Interestingly,
we only refine the underlying notion of low-equivalent states
leaving the remaining part of the definition, i.e., the low-
bisimulation, substantially the same. This minimal change,
together with the fact that cryptography is modelled via ex-
pressions, simplifies the task of re-proving known results.
In particular, we prove compositionality of secure programs
and we adapt the type system of Sabelfeld and Sands [15] to
our setting, proving its correctness.

Related work. Information flow for programs that employ
explicit cryptographic operations has been studied recently
by Askarov, Hedin and Sabelfeld [5], Smith and Alpı̀zar [17]
and Laud [11]. All of these papers, however, propose mod-
els and properties for sequential programs without multi-
threading or concurrency.

More specifically, in [5] the authors adopt the notion of
possibilistic noninterference, a weaker variant of noninter-
ference. This choice has been driven by the need of dis-
tinguishing between different encryptions and copies of the
same ciphertexts, as we have illustrated with Program (1)
above. The limitation of such a notion, however, is that it
does not deal with possible concurrent thread executions.
Consider, for example, the following program:

h := true
if (h) then l := true

else l := false

It is clear that in a single-threaded setting this code can be re-
ferred as secure: in fact using the (possibilistic) noninterfer-
ence notion of [5] the program would be considered secure
(even if it would be rejected by the type system). Intuitively,
such a property observes the result after program termina-
tion which, independently of the initial values of h and l, is
always h : true, l : true. Our definition rejects such a pro-
gram because a thread running together with the above code
could change the value stored on the secret h just before the
if command, thus making the program change its execution
path and reveal the new high value.

The work by Smith and Alpı̀zar [17] uses computational
probabilistic noninterference on a language with random
assignments. The language is not multi-threaded but random
assignments break the determinism of sequential programs
making the setting much more complicate than just single-
threading. The paper focus on the computational counterpart
of noninterference, that we instead do not consider here.

Another very recent paper on this line of research is [11],
where Laud investigates conditions under which the model
proposed in [5] is computationally sound. The author essen-
tially proves a conjecture made in [5] about the properties
required on the underlying cryptographic primitives to guar-
antee computational security for programs that satisfy the
possibilistic noninterference property discussed above. In-
terestingly, at the end of the paper, Laud suggests a variant
of the model of [5] based on the same definition of patterns
we adopt in this paper [3, 2]. He still employs possibilistic
noninterference for a single-threaded language. For exam-
ple, consider the following example taken from [11]:

k := newkey
if (h) then

l1 := encrypt(a, k)
l2 := encrypt(b, k)

else
l2 := encrypt(a, k)
l1 := encrypt(b, k)

Notice that the order of assignments is swapped in the two
branches. Nevertheless, Laud’s model accept this program as
secure, given that, at the end of execution, the two low vari-
ables are assigned to two different (randomized) ciphertexts.
In a multi-threaded environment, however, we can think of
the intruder as a concurrent thread observing, step by step,
the program execution (and possibly controlling the schedul-
ing). It is clear that by observing which of the two variables
is assigned first, the intruder can deduce the value of h. Our
notion of noninterference correctly rejects this program. In a
previous work, Laud [10] presented a type system to check
secrecy of messages in cryptographic protocols implementa-
tion. While addressing multi-threading it was not aiming at
noninterference result.

Vaughan and Zdancewic [19] study interaction between
cryptography and information flow using implicit primitives
in a single-threaded imperative language and obtaining a

noninterference result which is based on both static and
dynamic checking. They implement a decentralized label
model (DLM) where confidentiality and integrity require-
ments can be specified independently. Chothia, Duggan and
Vitek [7] first investigated the combination of DLM-style
policies and cryptography but without providing any non-
interference result.

Finally, papers [12, 13] are also quite related with ours,
even if they do not treat explicit cryptography. In particu-
lar, the language for distributed multi-threaded programs we
adopt here derives from the one proposed in those papers.
Differently from [12, 13] we only consider insecure channels
and, consequently secret data needs to be encrypted before
being sent over the network. The noninterference property
we adopt is basically the same but, because of the crypto-
graphic messages, the underlying low-equivalence notion is
completely different, as already discussed.

The paper is organized as follows: Section 2 presents the
language, Section 3 gives the NI notion of strongly secure
programs showing it is inadequate for dealing with cryp-
tography; Section 4 illustrates the new NI notion, through
many simple examples; Section 5 presents some results
about composition of secure programs; Section 6 gives a
type system for the proposed NI property; Section 7 draws
some concluding remarks.

For space reason we are forced to omit most of the proofs
which can be found in the full version [6].

2. A Language with Cryptography
Our language is an extension with explicit cryptography of
the Multi-Threaded While-Language with Message Passing
of [12], a simple imperative language with message pass-
ing communication. Instead of assuming the presence of
secure channels, as done in [12], we assume channels are
all public and thus accessible by every program. Security
is then achieved by explicit cryptographic operations which
we model via the special expressions encrypt and decrypt.
For the sake of readability, we only consider a synchronous,
blocking, receive. We are confident all the results will scale
to the full language of [12], in which a non-blocking if-
receive is considered, too. As in the original language, our
send is asynchronous. The language syntax follows:

C ,D ::= skip |var :=Exp |C 1;C 2

| ifB thenC 1 elseC 2 | whileB doC

| fork(C ~C) | send(cid ,Exp) | receive(cid ,var)

Exp ::= var | op(Exp1, . . . , Expn)

Commands CMD are ranged over by C ,D , while ~C, ~D
denote possibly empty vectors of concurrent commands
〈C1 C2 . . . Cn〉, representing multi-threaded programs, vari-
ablesvar range overVAR, expressionsExp range overEXP ,
boolean expressions B range over BOOL, values v range
overVAL and channel identifiers cid range over a fixed set

CID . Variables VAR are partitioned into two disjoint sets
H and L of high and low variables, ranged over by h and
l. The commands send(cid ,Exp) and receive(cid ,var) are
used to send and receive messages on network channel iden-
tified by cid . As already mentioned, channels are all public
(in contrast to channels partition assumed in [12]), i.e., every
program can access them, and are accessed with a standard
First-In-First-Out (FIFO) policy. We model cryptographic
operations as special expressions following the Dolev-Yao
assumptions, as explained below.

Language Semantics A configuration 〈| ~C,m, σ |〉 is a
triple consisting of a vector of commands ~C, a local mem-
ory m and network state σ. The memory m :VAR →VAL
is a finite map from variables to values. The network state
σ : CID → LVAL returns, for each channel identifier, the
ordered list of values which are present on that channel.
A program shares, over its threads, the local memory m
and we suppose that executions happen on a single pro-
cessor, i.e., at most one thread is active at a given point
in time. Distributed programs ~C1, . . . ~Cn have their own
memories m1, . . . ,mn and communicate via the network
whose state is represented by σ. Global configurations,
noted C(~C1,m1), . . . , (~Cn,mn);σB, represent distributed
programs.

The semantics is formalized in Table 1 by transitions
between configurations and global configurations. In par-
ticular, _ transition formalizes the deterministic execu-
tion of sequential commands. Intuitively, skip does noth-
ing;var :=Exp assigns the evaluation ofExp to variablevar
(notice that expressions are atomically evaluated using the
function ↓m which returns ⊥ in case of failure, as described
below);C 1;C 2 is the sequential composition ofC 1 andC 2,
in which possible generation of threads ~D performed byC 1

is executed concurrently, as expected; ifB thenC 1 elseC 2

executes C 1 or C 2 depending on whether B evaluates to
true or not and whileB doC is handled similarly; fork(C ~C)
dynamically generates a new vector of threads ~C running in
parallel withC ; send(cid ,Exp) and receive(cid ,var) respec-
tively sends and receives values on the channel cid which
is modeled as a FIFO queue. In [12], channels are modelled
as unordered lists thus capturing a lower level view of dis-
tributed systems in which the order of message delivery is
not guaranteed. We can easily adapt our definitions to also
deal with this different assumption.

Concurrency is modeled by transitions → and �, the
first non-deterministically picking a thread and executing
it via _, the second non-deterministically picking a multi-
threaded program and executing it via→. Intuitively,→ acts
as purely nondeterministic scheduler among all the threads,
while � gives an interleaving semantics to the global dis-
tributed system.

Cryptography We model cryptography via special expres-
sions. In particular, in the set of expressions EXP , we as-

sume to have all the usual arithmetic and relational expres-
sions plus encrypt and decrypt for cryptography, pair for the
constructions of tuples, fst and snd to access their contents.
We thus consider the following values, ranged over by v :

v ::= ⊥ | n | b | {v}n | (v1, v2)

where ⊥ is a special value representing failures, n denotes
a generic atomic value, b ranges over booleans, {v}n repre-
sents the encryption of v using n as key and (v1, v2) is a pair
of values. We will sometimes omit the brackets to simplify
the notation, e.g., we will write {v1, v2}n for {(v1, v2)}n.

Based on this set of values we can give the semantics of
the special expressions mentioned above:

encrypt(v , n) = {v , c}n c← C
decrypt({v , c}n, n) = v

newkey = k k ←KEY
pair(v1, v2) = (v1, v2)
fst((v1, v2)) = v1

snd((v1, v2)) = v2

where c is a fresh confounder, i.e., a number which is used
for one encryption and never used again, and k is a fresh
key. The notation← is used to represent random extraction
from a set of values, namely C is the stream of confounders
and KEY the one of encryption keys. Further details on
this latter stream will be given later on. The probability of
extracting the same random value is negligible, if the set
is suitably large, so we actually model random extraction
by requiring that extracted values are always different, e.g.,
c ← C can be thought as extracting the first element of an
infinite stream of confounders and removing it from the list
so that it cannot be reused. More formally we assume that
two extractions c, c′ ← C are such that c 6= c′. A similar
solution is also adopted, e.g., in [1, 2].

Interestingly, the above functions are not defined for all
the possible values. For example, decrypting with the wrong
key is undefined, as is taking the first element of a value
which is not a pair. We assume that all the undefined cases
will fail producing a ⊥ as result. This choice will influence
command semantics, as described below. A simpler solution
would be to stop execution for the undefined cases. This
would however make many programs insecure if we assume
the intruder is able to observe termination (as we will). For
example the following program reads a message from the
network, decrypts it using a secret key k, then sends out a
public value.

receive(cid, x)
y := decrypt(x, k)
send(cid, l)

If decrypt stopped the execution then the last message would
not be sent and the intruder could gain information about the
message sent to the program. In particular, he could discover
whether or not it was encrypted with the right key k. Our

solution makes decrypt total: in case of wrong key y will be
bound to ⊥ but the last message will be sent anyway. We
leave to the programmer the task of handling failures.

To guarantee a safe use of cryptography we also as-
sume that every expressionExp different from the five above
and every boolean expressionB different from the equality
test will fail when applied to ciphertexts, producing a ⊥.
This is important to (i) avoid “magic” expressions which
decrypt a ciphertext without knowing the key like, e.g.,
magicdecrypt({v , c}n) = v ; (ii) abstract away from the
bit-stream representation of ciphertexts: in our model, do-
ing any kind of arithmetic operation on a ciphertext has an
unpredictable result given that we are assuming randomized
encryption. Checking equality is instead useful to observe
copies of the very same encryption.

3. Standard noninterference
In this Section, we recall the notion of strongly secure pro-
grams [15, 12] and we naively try to apply it to our setting so
to illustrate why it does not scale to cryptography. In doing
this, we will exploit arguments similar to the ones of [5].

Strongly Secure Programs This notion of NI is based on
an underlying relation =L equating states which are indistin-
guishable by low level users. The intuition is that low level
users can observe every low level variable l ∈ L and every
network channel cid ∈CID . We let a state s = (m,σ) be a
pair composed of a memory m and a network state σ.

Definition 3.1. Two states s1 = (m1, σ1) and s2 = (m2, σ2)
are low-equivalent, noted s1 =L s2, if

1. m1 =L m2: ∀l ∈ L,m1(l) = m2(l);
2. σ1 =L σ2: ∀cid ∈CID , σ1(cid) = σ2(cid);

In order to judge a multi-threaded program ~C secure
we employ the notion of strong low-bisimilarity [15]: two
strongly low-bisimilar thread pools must be of the same size
and must spawn or terminate the same number of threads at
each execution step, moreover each sequential move of one
thread pool must be simulated by corresponding thread of
the low-bisimilar pool and lead from low-equivalent states
into low-equivalent states. Formally:

Definition 3.2. Let R ⊆
⋃

n∈N (CMDn ×CMDn) be a
symmetric relation on multi-threaded programs of equal
size.R is a strong low-bisimulation if whenever

〈C1 . . . Cn〉R〈D1 . . .Dn〉

then ∀s1, s2, i, such that s1 =L s2:

〈|Ci, s1 |〉_ 〈| ~C ′, s′1 |〉 implies 〈|Di, s2 |〉_ 〈| ~D′, s′2 |〉
for some ~D′, s′2 such that ~C ′R ~D′, s′1 =L s′2.

Strong low-bisimilarity uL is defined as the union of all
strong low-bisimulations.

Table 1 Semantics

Commands

[skip] 〈| skip,m, σ |〉_ 〈| 〈〉,m, σ |〉 [assign]
Exp ↓m v

〈|var :=Exp,m, σ |〉_ 〈| 〈〉,m[var 7→ v], σ |〉

[seq1]
〈|C1,m1, σ |〉_ 〈| 〈〉,m2, σ

′ |〉
〈|C1;C2,m1, σ |〉_ 〈|C2,m2, σ′ |〉

[seq2]
〈|C1,m1, σ |〉_ 〈|C ′1 ~D,m2, σ

′ |〉
〈|C1;C2,m1, σ |〉_ 〈| (C ′1;C2) ~D,m2, σ′ |〉

[ift]
B ↓m true

〈| if B then C1 else C2,m, σ |〉_ 〈|C1,m, σ |〉
[iff]

B ↓m false ∨ B ↓m⊥
〈| if B then C1 else C2,m, σ |〉_ 〈|C2,m, σ |〉

[whilet]
B ↓m true

〈|while B do C,m, σ |〉_ 〈|C; while B do C,m, σ |〉
[whilef]

B ↓m false ∨ B ↓m⊥
〈|while B do C,m, σ |〉_ 〈| 〈〉,m, σ |〉

[fork] 〈| fork(C ~D),m, σ |〉_ 〈|C ~D,m, σ |〉

[send]
Exp ↓m v σ(cid) = vals

〈| send(cid, exp),m, σ |〉_ 〈| 〈〉,m, σ[cid 7→ v .vals] |〉

[receive]
σ(cid) = vals.v

〈| receive(cid, var),m, σ |〉_ 〈| 〈〉,m[var 7→ v], σ[cid 7→ vals] |〉

Threads

[proc]
〈|Ci,m1, σ |〉_ 〈| ~C,m2, σ

′ |〉
〈| 〈C1 . . . Ci . . . Cn〉,m1, σ |〉 → 〈| 〈C1 . . . ~C . . . Cn〉,m2, σ′ |〉

Distributed programs

[par]
〈| ~Cj ,mj , σ |〉 → 〈| ~C ′j ,m′

j , σ
′ |〉

C(~C1,m1) . . . (~Cn,mn);σB�C(~C1,m1) . . . (~C ′j ,m
′
j) . . . (~Cn,mn);σ′B

The intuition behind ~C uL
~D is that the two programs

~C and ~D are not distinguishable by any low level observer.
In fact, every change done by one computational step of ~C
to the state is simulated by ~D in a way that preserves state
low-equivalence. Thus, if the states were indistinguishable
before such a step, they will remain indistinguishable even
after. Moreover, the reached programs have to be bisimilar
so to guarantee that even the future steps will be indistin-
guishable. Notice also the universal quantification over all
the possible low-equivalent states done at each step. This en-
sures compositionality given that any state change possibly
performed by parallel threads or distributed programs is cer-
tainly “covered” by quantifying over all the possible states.

Definition 3.3. A program ~C is secure if ~C uL
~C.

Intuitively, a secure program which is run on equivalent
states will always produce low-equivalent states, even in the
presence of parallel threads and distributed programs. Thus
no information on the high variables will ever be leaked.

Standard NI and Cryptography The above noninterfer-
ence notion is too restrictive if naively applied to our lan-

guage with cryptography. A simple assignment

l := encrypt(h, k) (2)

of an encrypted high level value to a low variable would be
considered insecure. Notice that this kind of assignments are
the one we expect to be able to do via encryption: we actually
want to hide high level information via cryptography so to,
e.g., safely send it on the untrusted network or simply store
it in an untrusted (low) part of the local memory. To see why
this simple program is judged to be insecure, consider the
two following low-equivalent memories m1 =L m2:

m1 m2

h : 1234 h : 5678
l : 0 l : 0
k : K k : K

Running the assignment we get

m′
1 m′

2

h : 1234 h : 5678
l : {1234, c1}K l : {5678, c2}K
k : K k : K

where m′
1(l) = {1234, c1}K 6= {5678, c2}K = m′

2(l) and
so m′

1 6=L m′
2. We conclude that

l := encrypt(h, k) 6uL l := encrypt(h, k)

and, consequently, such an assignment is judged as insecure.
Notice that this is not just caused by the counfounders c1 and
c2. Even without confounders the two ciphertexts {1234}k
and {5678}k would differ. The problem is related to the fact
that =L do no take into account that the plaintext should
not be visible without knowing the decryption key. Coun-
founders will actually help us defining a new notion of low-
equivalence which is suitable for cryptography.

4. Cryptographic noninterference
In this Section, we adapt the notion of strongly secure pro-
grams illustrated in the previous Section to our language
with cryptography. Interestingly, we will only refine the un-
derlying notion of low-equivalent states =L leaving the re-
maining part of the definition, i.e., the low-bisimulation part,
substantially untouched. As we will show in Section 6, this
minimal change together with the fact that cryptography
is modeled via expressions, thus leaving the language un-
changed, will make it very easy to rephrase an existing type
system to the new setting.

Low-equivalent ciphertexts The use of confounders al-
lows us to assume that encryptions will always be different,
even when the encrypted messages are the same. As already
discussed, this is an abstraction of randomized encryption,
where encryptions are not always different but the probabil-
ity that they are the same is negligible.

Intuitively, if ciphertexts are always different we can con-
sider them to be indistinguishable and so equate them all.
Of course, this is not true for values encrypted with a low
level key, i.e., a key known by low level users. We thus need
to distinguish high level keys from low level ones. One solu-
tion could be to reuse the partitioning of variables intoH and
L and ask that high level keys are stored into high variables.
However this choice is not adequate given that we want to
allow flows from L to H, e.g., h := l, and we would not be
guaranteed that performing an encryption with a high vari-
able h, e.g., encrypt(h′, h), would result in a ciphertext that
cannot be read by the environment.

We thus assume that variables VAR are partitioned into
three disjoint setsH, L and K, whereH and L are as before
and K, ranged over by k, is the set of variables containing
high level keys. High and low variables, when used as keys,
will represent low level keys, given that low level values are
allowed to flow into high level variables, as explained above.
We let high level key values K range overKEY , the subset
of the atomic values used as high level keys.

We give a new version of low-equivalence on values
called cryptographic-low-equivalence, noted ≈C , and based
on the notion of patterns of [3, 2]. We extend the set of

possible values with�c, representing an undecryptable mes-
sage with confounder c and we call patterns (PAT) this set
of extended values. We then define a function p(v) which
takes a value and returns the corresponding pattern by re-
placing with �c all the ciphertexts that cannot be decrypted.
The intuition is that equal confounders correspond to equal,
undecryptable, messages. In fact, messages generated us-
ing high keys are always assumed to contain a fresh con-
founder making it impossible to have two different messages
with the same confounder. Given a bijection on confounders
ρ : C → C, that we call confounder substitution, we write
pρ to denote the result of applying ρ as a substitution to the
pattern p.

Definition 4.1. Let p :VAL→PAT be defined as follows:

p(⊥) = ⊥
p(n) = n
p(b) = b

p((v1, v2)) = (p(v1), p(v2))

p({v , c}n) =
{
{p(v), c}n if n 6∈KEY
�c otherwise

Two values v1 and v2 are cryptographically-low-equivalent,
written v1 ≈C v2, if there exists a confounder substitution ρ
such that p(v1) = p(v2)ρ.

Let us see ≈C at work through some simple examples.
Consider again Program (2) of Section 3 which, starting
from low-equivalent memories, was producing the two dif-
ferent ciphertexts {1234, c1}K and {5678, c2}K . Given that
K ∈ KEY , we obtain that p({1234, c1}K) = �c1 and
p({5678, c2}K) = �c2 . Given that confounders represent
random numbers, the two patterns are indistinguishable. In
fact, by taking ρ(c2) = c1 we obtain �c1 = �c2ρ and so
{1234, c1}K ≈C {5678, c2}K ; if we change the key into a
low level one n 6∈KEY we obtain that they are different. In
particular, p({1234, c1}n) = {1234, c1}n 6= {5678, c2}n =
p({5678, c2}n). Notice that it is impossible to make the two
patterns equal through a substitution ρ because of the dif-
ferent plaintexts, thus {1234, c1}n 6≈C {5678, c2}n. No-
tice that the same happens if only one of the two keys is
untrusted, e.g., {1234, c1}K 6≈C {5678, c2}n, since �c1 is
never equal to {5678, c2}n. As a matter of fact, one of the
two ciphertexts can be decrypted using n which tells an ob-
server that the first ciphertext is, at least, encrypted with a
different key.

By substituting m1(l) = m2(l) with m1(l) ≈C m2(l)
and σ1(cid) = σ2(cid) with σ1(cid) ≈C σ2(cid) in Def-
inition 3.1, we could directly obtain a definition of ≈C for
memories, networks and states. However, we will see in a
while that≈C needs to be applied to the memories and chan-
nels as a whole, and not, individually, to each stored value
with its corresponding one.

Patterns of equal ciphertexts When we generate new ci-
phertexts, the counfounder guarantees that they will be dif-

ferent, but if we copy a ciphertext from a variable to an-
other one, that variables will be identical. Intuitively, this
correspond to the attacker ability of comparing ciphertexts
bit-wise as done, e.g., in traffic-analysis: copies of the same
ciphertext will always be identical and we have to consider
this aspect when defining low-equivalence. Take, for exam-
ple, the following low program which only acts on low vari-
ables and public channels:

if (l1 = l2) then
send(cid , l3)

else
send(cid , l4)

(3)

Depending on the equality of l1 and l2 it sends the value of
two different low variables on channel cid . Now, consider
the following states:

m1 σ1 m2 σ2

l1 : {1234, c1}K cid : l1 : {9999, c′1}K cid :
l2 : {1234, c1}K l2 : {5678, c′2}K
l3 : true l3 : true
l4 : false l4 : false

Since K ∈ KEY , we have m1(l1) = {1234, c1}K ≈C

{9999, c′1}K = m2(l1) and m1(l2) = {1234, c1}K ≈C

{5678, c′2}K = m2(l2). However, running the program on
these memories, we obtain different network states:

σ′1 σ′2
cid : true cid : false

Thus, m1 and m2 should not be considered equivalent. We
further illustrate this crucial issue with another simple exam-
ple. Consider the two programs:

l1 := encrypt(h, k)
l2 := encrypt(h, k)

l1 := encrypt(h, k)
l2 := l1

Starting from clearly low-equivalent memories, in which,
e.g., l1 = l2 = 0, they will produce the following memories

m1 m2

h : 1234 h : 5678
l1 : {1234, c1}K l1 : {5678, c3}K
l2 : {1234, c2}K l2 : {5678, c3}K
k : K k : K

(4)

Notice that m1(l1) ≈C m2(l1) and m1(l2) ≈C m2(l2) but
in m1 we have l1 6= l2 while in m2 we have l1 = l2. Thus
the previously discussed low Program (3) would distinguish
m1 from m2 even if they are considered low-equivalent by
≈C .

One might argue that the two programs above are anyway
distinguishable by NI, given that we quantify over all possi-
ble low-equivalent states. After the first assignment to l1 we
might, in fact, override that value and take two equivalent

memories with, e.g, l1 = 0. If we run the programs on these
new memories we clearly obtain non-equivalent memories,
given that we will have l2 : {1234, c2}K for the first pro-
gram and l2 : 0 for the second one. NI can thus track copies
between memory cells via plain-texts and given that we re-
quire bisimilar programs to preserve low-equivalence of all
the possible low-equivalent states, the two programs above
would result to be non-bisimilar. However we may write a
smarter program that copies l1 to l2 only when l1 actually
contains a ciphertext:

if (decrypt(l1, k) 6=⊥) then
l2 := l1

else
l2 := encrypt(h, k)

This program produces memories like (4) only when l1 is
actually a ciphertext encrypted with k, but we cannot track
anymore this copy via plain-texts because, when l1 is not a
ciphertext, the program writes a new fresh ciphertext to l2
which will never be the same as l1. Notice that, whenever
we observe l1 = l2, e.g., via the low Program (3), we learn
that l1 is encrypted with K , which should be detected as a
flow from high to low.

These examples show that we need to build one single
pattern on the whole memory, so that equal confounders in
different memory cells will be observable. Indeed, the same
reasoning applies to the network: equal confounders appear-
ing either in the local memory or on the network channels
will be observable, too. In order to deal with channel values,
we extend patterns to deal with list of values, noted v1.vals,
by just letting p(v1.vals) = p(v1).p(vals). As before, we
have that vals ≈C vals′ if p(vals) = p(vals′)ρ for a con-
founder substitution ρ.

Definition 4.2. The set of memory, network and state pat-
terns are constructed as follows:

sp(m) = { (l, p(m(l))) | ∀l ∈ L }
sp(σ) = { (cid , p(σ(cid))) | ∀cid ∈CID }

sp(m,σ) = sp(m) ∪ sp(σ)

Two memories, networks or states t1 and t2 are cryptographically-
low-equivalent, written t1 =C t2, if there exists a con-
founder substitution ρ such that sp(t1) = sp(t2)ρ.

For example, memories (4) have state patterns

sp(m1) = { (l1,�c1), (l2,�c2) }

and
sp(m2) = { (l1,�c3), (l2,�c3) }

Notice that there not exists a substitution ρ which makes
such state patterns equal. We thus conclude thatm1 6=C m2.

This reflects the fact that equality of confounders is not
the same in the two states: if equality is not preserved, it is

in fact impossible to find a bijection ρ on confounders that
make them the same.

We can prove that equivalent states are such that values
of corresponding variables and channels are equivalent, too.
The opposite implication does not hold and it actually moti-
vated the definition of state patterns. We can also prove that
removing (i.e., reading) the first value of one channel (item
3) and also copying it to the same low variable (item 4) do
not break state equivalence.

Lemma 4.3. If (m1, σ1) =C (m2, σ2) then

1. m1 =C m2 also implying ∀l,m1(l) ≈C m2(l);
2. σ1 =C σ2 also implying ∀cid , σ1(cid) ≈C σ2(cid);
3. If σ1(cid) = vals1.v1 and σ2(cid) = vals2.v2 then

(m1, σ1[cid 7→ vals1]) =C (m2, σ2[cid 7→ vals2]).
4. If σ1(cid) = vals1.v1 and σ2(cid) = vals2.v2 then

(m1[l 7→ v1], σ1[cid 7→ vals1]) =C

(m2[l 7→ v2], σ2[cid 7→ vals2]).

Proof. The first two statements derives from the fact that we
take subsets of the state patterns. On those subsets we can
apply the same ρ that we used to equate states. For example,
(m1, σ1) =C (m2, σ2) if sp(m1, σ1) = sp(m2, σ2)ρ. We
have that sp(m1) and sp(m2) are the subsets of sp(m1, σ1)
and sp(m2, σ2) only containing variables with their patterns.
It is thus easy to see that the same ρ equates such memory
patterns, i.e., sp(m1) = sp(m2)ρ. Analogously for state-
ment three and four: removing the first value of a channel
leaves the remaining patterns identical, up to ρ; the same
happens when we assign such value to a low variable.

The next last example, taken from [5], shows why it is
important to simultaneously observe patterns of memories
and channels, as we do.

l := encrypt(h1, k)
send(ch, l)
if h then

l := encrypt(h2, k)
else

skip

(5)

An observer can deduce the value of h by comparing the
value of l with the one sent on ch: they will be different only
when h is true. Consider the following states just before the
branch:

m1 σ1

h : true
h1 : 1234 h2 : 5678
l : {1234, c1}K ch : {1234, c1}K

m2 σ2

h : false
h1 : 4443 h2 : 5556
l : {4443, c′1}K ch : {4443, c′1}K

After the branch, m1 is updated (yielding m′
1) with the

new value {5678, c2}K for variable l while m2 will not
be touched (m2 = m′

2). If we only observe memory pat-
terns we have sp(m′

1) = { (l,�c2) } =C { (l,�c′
1
) } =

sp(m′
2), since they are equal, up to renaming of c′1 into c2.

This is because there are no copies of l in the memory to
compare with. Similarly we have sp(σ1) = sp(σ2). How-
ever, if we observe the whole state we obtain sp(m′

1, σ1) =
{ (l,�c2), (ch,�c1) } 6=C { (l,�c′

1
), (ch,�c′

1
) } =

sp(m′
2, σ2). Notice that the equality of c′1 in sp(m′

2, σ2)
makes it impossible to rename confounders so to make pat-
terns equal. Intuitively, the comparison with the value sent
on the network allows us to deduce the value of h.

Secure programs We define Strong cryptographic low-
bisimilarity, noted uC , exactly as strong low-bisimilarity of
Definition 3.2, with =L replaced by =C . When quantifying
over all the possible states, we make two assumptions:

Confounder unicity Values encrypted with high level keys
and with the same confounder are exactly the same. As
already discussed, this is a consequence of using a fresh
confounder for each encryption. Instead, we do not as-
sume anything on confounders that might have been cho-
sen by the intruder, i.e., the confounders of ciphertexts
encrypted with low level keys;

High level key safety High key variables k ∈ K can only
contain high key values K ∈ KEY . On the other hand,
we never allow high key values to occur unprotected in
the low level memory and on the network, given that this
would imply those keys are broken. This does not mean
we assume keys cannot be broken: since we start from
a state with no broken key and we require that, at each
steps, keys are not broken, we basically check that high
key values remain protected. Moreover, we will prove
that this check is actually not necessary because secure
programs will never break keys.

First assumption is just a well-formedness condition that is
preserved by each program execution, independently of its
security:

Definition 4.4. A state s = (m,σ) is well-formed if when-
ever {v, c}K , {v′, c′}K ′ occur in s, with K ,K ′ ∈ KEY ,
then c = c′ implies {v, c}K = {v′, c′}K ′ .

We will always implicitly assume that states are well-
formed. The second condition, instead, is important to check
that high level keys are safely dealt with. In order to for-
malize it, given a state s, we write s ` k to denote that
k ∈ values(sp(s)) where values(p) is the set of all atomic
values occurring in pattern p.

Definition 4.5. A state s = (m,σ) is key-safe if

1. ∀k ∈ K, m(k) ∈KEY ;
2. s ` n implies n 6∈ KEY ;

We denote withKS the set of key-safe states.

We are now ready to give the new notion of strong cryp-
tographic low-bisimilarity. Notice that we require key-safety
only for quantified states s1 and s2. Indeed, we will prove
that key-safety is preserved by bisimilar programs with con-
trolled assignments to high level variables.

Definition 4.6. Let R ⊆
⋃

n∈N (CMDn ×CMDn) be a
symmetric relation on multi-threaded programs of equal
size. R is a strong cryptographic low-bisimulation if when-
ever 〈C1 . . . Cn〉R〈D1 . . .Dn〉 then ∀i, ∀s1, s2 ∈KS , such
that s1 =C s2:

〈|Ci, s1 |〉_ 〈| ~C ′, s′1 |〉 implies 〈|Di, s2 |〉_ 〈| ~D′, s′2 |〉
for some ~D′, s′2 such that ~C ′R ~D′, s′1 =C s′2.

Strong cryptographic low-bisimilarity uC is defined as the
union of all strong cryptographic low-bisimulations.

The universal quantification over all possible crypto-
graphically–low–equivalent states done at each step ensures
compositionality. Indeed, any state change performed by a
(possibly evil) concurrent thread or distributed program will
be certainly “covered” by this quantification.

We can now prove key-safety preservation for programs
with controlled assignments to high level key variables,
called key-safe programs:

Definition 4.7. A program C is key-safe if

1. receive(cid , k) never occurs in C;
2. k :=Exp occurring in C implies Exp = k′ or Exp =

newkey.

Proposition 4.8. Let C and D be two key-safe programs.
If ∀s1, s2 ∈KS , with s1 =C s2,

〈|C, s1 |〉_ 〈| ~C ′, s′1 |〉 implies 〈|D, s2 |〉_ 〈| ~D′, s′2 |〉
for some ~D′, s′2 such that s′1 =C s′2

then s′1, s
′
2 ∈KS .

Proof. Let us assume, by contradiction, that one of s′1, s′2,
let us say s′1, is not in KS . We have that either m′

1(k) 6∈
KEY for a certain k, or s′1 ` K with K ∈ KEY . Since
s1 ∈KS we have that ∀k′,m1(k′) ∈KEY . The assumption
on assignments ensures that k can only have been assigned
to another k′, for which we know m1(k′) ∈ KEY , or to
newkey that, by definition, returns a value in KEY which
gives a contradiction. The only remaining case is s′1 ` K
with K ∈KEY . We have two sub-cases: (i) if K has been
generated with newkey it must be different from every other
name in s′2 and, since it appears in sp(s′1) and not in sp(s′2),
it cannot be s′1 =C s′2; (ii) K appeared in s1 but not in
sp(s1) because s1 ∈KS . Thus we can consider a new state
s3 = s1η with η being the substitution K 7→ K ′, with
K ′ ← KEY fresh. Since sp(s1) = sp(s3), then we have
s1 =C s3. We can run again C and D on equivalent states
s1 and s3. Since K does not occur in s3 it is impossible
that it appears in s′3. But we have that K appeared in sp(s′1)

from which we obtain the contradiction, i.e., s′1 6=C s′3.
Intuitively, the universal quantification on equivalent states
allows us to relabel broken key K to a fresh one and observe
its leakage by comparison with the relabelled state (which
does not contain it). Assumption on receive() command
let us preserve key-safe while reading messages from the
network. This follow directly form the fact that s1, s2 ∈KS ,
so s1 6` K and s2 6` K , ∀K ∈ KEY . Thus, we avoid to
assign a bad value (i.e., a valued not contained inKEY) to a
key.

Definition 4.9. A program ~C is secure if it is key-safe and
~C uC

~C.

5. Hook-up properties
Inspired by [15, 12], in this section we investigate hook-
up properties for uC , i.e., compositionality results among
secure programs. The results we prove are very similar to
the ones of [15, 12], but we need to carefully adapt the notion
of low expressions. A low expression, in the model with no
cryptography, is just an expression that evaluates the same
when calculated on low-equivalent states [15, 12], i.e.,

∀m1 =L m2, Exp ↓m1=Exp ↓m2

We cannot just rephrase it with the new equivalences

∀m1 =C m2, Exp ↓m1≈C Exp ↓m2 (6)

The problem is that Exp ↓m1≈C Exp ↓m2 does not guar-
antee that if such values are stored in the memories or sent
on public channels the resulting state will be equivalent. In
particular, it does not hold that m1 =C m2 andExp ↓m1≈C

Exp ↓m2 imply m1[l 7→ Exp ↓m1] ≈C m2[l 7→ Exp ↓m2],
and analogously for network states, as we have already illus-
trated in example (??). We thus give the following stronger
requirement for low expressions:

Definition 5.1. An expressionExp is said to be low if,
∀l ∈ L,∀cid ∈CID , for all states (m1, σ1) =C (m2, σ2),
if we let v1 =Exp ↓m1 and v2 =Exp ↓m2 , it holds that

1. (m1[l 7→ v1], σ1) =C (m2[l 7→ v2], σ2);
2. (m1, σ1[cid 7→ v1.vals]) =C (m2, σ2[cid 7→ v2.vals]).

otherwiseExp is high.

We have the following simple lemma, stating that the pre-
viously proposed definition of low expressions (5) is implied
by our new definition.

Lemma 5.2. If Exp is low then ∀m1 =C m2, we have
Exp ↓m1≈C Exp ↓m2 .

Proof. This fact is a direct consequence of Lemma 4.3,
item 1. Taking a σ with empty channels, we also have that
(m1, σ) =C (m2, σ). By definition of low expressions, we
obtain (m1[l 7→ Exp ↓m1], σ) =C (m2[l 7→ Exp ↓m2], σ)
and, by Lemma 4.3, item 1,Exp ↓m1≈C Exp ↓m2 .

This lemma is useful for proving a deterministic be-
haviour in case of low boolean guards. Notice the equality
instead of equivalence:

Corollary 5.3. IfB is low, thenB ↓m1=B ↓m2 .

Proof. Trivial, by Lemma 5.2 and by the fact that p(b) = b
(Definition 4.1).

We extend the definition of secure contexts of [15, 12]
by taking into account direct assignment to high level key
variables and a careful use of the receive command.

Definition 5.4. A secure context is a context built with se-
cure programs. Let [~•] and [•] be holes for, respectively, a
command vector and singleton command. Secure contexts
are defined as follows

C[~•1, ~•2] ::= skip | h :=Exp | l :=ExpL | [•1]; [•2]
| k := k′ (k, k′ ∈ K) | k := newkey (k ∈ K)
| ifBL then [•1] else [•2] | whileBL do [•1]
| fork([•1][~•2]) | send(cid ,ExpL)
| receive(cid ,var) (var 6∈ K) | 〈[~•1][~•2]〉

whereBL andExpL denotes low expressions.

The next result proves that uC is preserved by secure
contexts.

Theorem 5.5. If ~C1 uC
~C ′1, ~C2 uC

~C ′2 then

1. C[~C1, ~C2] uC C[~C ′1, ~C
′
2];

2. Let D[~•1, ~•2] = ifB then ~•1 else ~•2, with B high. Then,
~C1 uC

~C2 implies D[~C1, ~C2] uC D[~C ′1, ~C
′
2].

Proof outline. (Full proof is in [6]) The Theorem is proved
inductively on the structure of contexts, by exploiting equiv-
alences ~C1 uC

~C ′1 and ~C2 uC
~C ′2 and, for statement 2,

~C1 uC
~C2. It can be conducted as in [15], except for assign-

ments, message exchange, branches and while loops. For as-
signments and message exchanges, we have to prove that
equivalence of states will be preserved by executing the com-
mand. To this aim, we directly exploit the requirements on
low expression given in Definition 5.1. In fact, such a Def-
inition states that assigning the result of an expression to a
low variable or sending such a result on the network leave
the states equivalent. For the reception of a message we also
exploit Lemma 4.3, item 3 and 4, stating that the removal
of a value from a channel and the assignment of that value
to a low variable does not break state equivalence. As far as
low branches (and while loops) are concerned, we have to
prove that they always branch in the same way on equivalent
states. This is guaranteed by Corollary 5.3, stating that the
result of evaluating B on the two equivalent states is always
the same.

The next Hook-up Corollary proves that secure programs
placed in secure contexts are still secure. For high branches,
as expected, this happens when the two branches are equiv-
alent.

Corollary 5.6. Let ~C1, ~C2 be secure programs. Then

1. C[~C1, ~C2] is secure;
2. Let D[~•1, ~•2] = ifB then ~•1 else ~•2, with B high. Then,

~C1 uC
~C2 implies that D[~C1, ~C2] is secure.

Proof. Since ~C1 and ~C2 are secure we have C1 uC C1 and
C2 uC C2. By Theorem 5.5 it must be that C[~C1, ~C2] uC

C[~C1, ~C2] meaning that C[~C1, ~C2] is secure, too.

6. Type system
In this Section, we show that the type system presented
by Sabelfeld and Mantel in [12], which is an extension of
[15], can be easily adapted to our setting. The type system
transforms, if possible, a given program ~C into a new one ~C ′
which is the timing-leak free version of the original program,
by exploiting Agat’s approach [4]. In particular, branches
of conditional of different lengths are padded using skip
commands, when necessary.

The typing rules for commands have the form

~C ↪→ ~C ′ : ~Sl

where ~C is a program, ~C ′ is its transformation and ~Sl is
the type of ~C ′. The type of a program is its low slice: a
copy of a secure command where assignment to high and
key variables have been replaced by skip. A slice models the
time behaviour of ~C ′ as observable by an attacker running
concurrently with it [15].

Our message passing commands send and receive are
typed as the low, insecure, channels of [12]. The only real
extension to previous type systems are the rules for typing
expressions, including encrypt and decrypt.

Expressions Types for expressions are : low, high, for low
and high data, and key, for high level keys. Only encrypting
with a secure key k will provide security guarantees. How-
ever, we admit encryption with untrusted (low) values so
to allow encrypted communication between the trusted pro-
cesses and the hostile environment that otherwise could only
communicate via plain-texts.

Judgments have the form Exp : τ . Typing rules for ex-
pressions are as follows:

(var/exp) l : low k : key Exp : high

(newkey) newkey : key

(enc-sec)
var : key Exp : high
encrypt(Exp,var) : low

(op-low)
Exp1 : low, . . . ,Expn : low
op(Exp1, . . . ,Expn) : low

Variables are typed with their respective types, while generic
expressions can be always given type high. (High variables
are typed high being them expressions.) The (newkey) rule
states that newkey returns a high level key. The (enc-sec)

Table 2 Typing Commands

(Skip) skip ↪→ skip : skip (Assignlow)
Exp : low

l :=Exp ↪→ l :=Exp : l :=Exp

(Assignhigh) h :=Exp ↪→ h :=Exp : skip (Assignkey)
Exp : key

k :=Exp ↪→ k :=Exp : skip

(Seq)
C1 ↪→ C ′1 : Sl1 C2 ↪→ C ′2 : Sl2
C1;C1 ↪→ C ′1;C

′
2 : Sl1;Sl2

(While)
B : low C ↪→ C ′ : Sl

while B do C ↪→ while B do C ′ : while B do Sl

(Fork)
C1 ↪→ C ′1 : Sl1 ~C2 ↪→ ~C ′2 : ~Sl2

fork(C1
~C2) ↪→ fork(C ′1 ~C

′
2) : fork(Sl1 ~Sl2)

(Par)
C1 ↪→ C ′1 : Sl1 . . . Cn ↪→ C ′n : Sln

〈C1 . . . Cn〉 ↪→ 〈C ′1 . . . C ′n〉 : 〈Sl1 . . . Sln〉

(Iflow)
B : low C1 ↪→ C ′1 : Sl1 C2 ↪→ C ′2 : Sl2

if B then C1 else C2 ↪→ if B then C ′1 else C ′2 : if B then Sl1 else Sl2

(Ifhigh)
B : high C1 ↪→ C ′1 : Sl1 C2 ↪→ C ′2 : Sl2 al(Sl1) = al(Sl2) = false

if B then C1 else C2 ↪→ if B then C ′1;Sl2 else Sl1;C ′2 : skip;Sl1;Sl2

(Send)
Exp : low

send(cid ,Exp) ↪→ send(cid ,Exp) : send(cid ,Exp)

(Receive)
var 6∈ K

receive(cid ,var) ↪→ receive(cid ,var) : receive(cid , ˆvar)

rule checks that a proper key is used when a secret text is
ciphered: it demands to use a high level key. The (op-low)
rule states that expressions whose subexpressions have type
low can be typed low. Examples of application of this rule
are encryption and decryption with low level keys. Notice
that, apart from low decryption, decrypt will be always typed
high.

Commands Typing and transformation rules are presented
in Table 2. Intuitively, the command skip is typed by itself;
to prevent explicit flows, rule (Assignlow) requires the ex-
pression to be typed as low; typing an assignment to a se-
cret variable will be done using skip as its low slice, this
is because we want that the slice has no occurrences of
high variables (Assignhigh). Rule (Assignkey) requires
the expression to be typed as key and uses skip as low
slice; Rules (Seq), (While), (Fork), (Par), (Iflow) are as
expected and do nothing interesting. Let al(C) be a boolean
function on command returning true whenever occurs a syn-
tactic assignment to a low variable or a receive command
of the form receive(cid ,var),var ∈ L. Rule (Ifhigh) asks
that (al(Sl1) = al(Sl2) = false), neither low assignment
nor receive that reads message to a low variable occurs, to
prevent indirect insecure flows [15]. It also aims to make the
two branches of the conditional bisimilar, in fact the trans-
formed command is composed by the same conditional with
branches modified to contains the original sub-command

and the low slice of the other branch. Rules (Send) and
(Receive) are taken from [12] for the case of low (public)
channel. We additionally require that a key cannot be read
directly from a channel. Low slice cannot use secret vari-
ables so (Receive) let the command read the message from
the network (removing it from cid) but do not update the
variablevar if it is high. This is obtained using the notation
ˆvar which is defined as follow: ĥ = , l̂ = l [12].

Correctness In order to apply Theorem 5.5 and Corollary
5.6 to well-typed programs, we need the following:

Lemma 6.1. (Expression equivalence) If Exp : low then
Exp is low according to Definition 5.1

We finally prove that well-typed programs are secure.

Theorem 6.2. (Correctness)
If ~C ↪→ ~C ′ : ~Sl then ~C ′ uC

~Sl.

Theorem 6.3. (Program Noninterference)
If ~C ↪→ ~C ′ : ~Sl, then ~C ′ is secure, i.e., ~C ′ is key-safe and
~C ′ uC

~C ′.

Proof. The proposed type system accepts a program as valid
only if it is a key-safe program: rules (Assignkey) and
(Receive) implement the requirements of Definition 4.7. By
Theorem 6.2 we know that ~C ′ uC

~Sl. By symmetry and
transitivity of uC we get ~C ′ uC

~C ′.

7. Conclusions
We have investigated information flow security for multi-
threaded distributed application in the presence of explicit
cryptographic operations. The model we have adopted de-
rives from the notion of patterns that has been proposed in
[3, 2] for proving computational soundness of formal cryp-
tography. Interestingly, we have adopted it for a completely
different purpose, i.e., as an underlying model for rephrasing
an existing notion of noninterference [15]. Before discover-
ing we really needed this notion, we have tried a number of
different formalizations for low-equivalence, none of them
as satisfactory as the present one. As we have discussed in
the Introduction, Laud has recently proposed to use the very
same notion of patterns as a model for possibilistic nonin-
terference [11]. However, he was aiming at computational
soundness results and not at extending the noninterference
property, as we have done here. It would be interesting to
study in which extent his proof of computational soundness
applies to our multi-threaded setting, given the similarity of
the models in between noninterference and computational
security.

There are many extensions that might be interesting to
investigate: keys can be sent around encrypted, but the type
system does not allow to use them as keys; we have decided
not to approach this issue in order to keep types simple.
However, we are confident that this might be easily dealt
with by adding some form of channel typing so to safely re-
construct the type of the key upon reception. Public key en-
cryption has not yet been included in the model and could be
interesting to investigate how this can be achieved. Finally,
we claim that the low-equivalence notion we have proposed
is the weakest which is also compositional with respect to
low, untyped, programs (representing the opponents). We
plan to investigate further this issue and try to prove this
claim.

References
[1] Martı́n Abadi. Secrecy by typing in security protocols.

JACM: Journal of the ACM, 46, 1999.

[2] Martı́n Abadi and Jan Jurjens. Formal eavesdropping and
its computational interpretation. In TACS: 4th International
Conference on Theoretical Aspects of Computer Software,
2001.

[3] Martı́n Abadi and Phillip Rogaway. Reconciling two views
of cryptography (the computational soundness of formal
encryption). JCRYPTOL: Journal of Cryptology, 15, 2002.

[4] Johan Agat. Transforming out timing leaks. In Proceedings of
the 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POLP-00), pages 40–53, N.Y.,
January 19–21 2000. ACM Press.

[5] Aslan Askarov, Daniel Hedin, and Andrei Sabelfeld.
Cryptographically-masked flows. In In Proceedings of
the International Static Analysis Symposium, Seoul, Korea,
August 2006. Springer-Verlag.

[6] Matteo Centenaro and Riccardo Focardi. Information flow
security of multi-threaded distributed programs (full version).
http://www.dsi.unive.it/~mcentena/centenaro-focardi.pdf,
2008.

[7] Tom Chothia, Dominic Duggan, and Jan Vitek. Type-based
distributed access control. In In Proceedings of the 16th
IEEE Computer Security Foundations Workshop (CSFW ’03),
Asilomar, CA, USA, July 2003.

[8] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Communications of the ACM,
20(7), July 1977.

[9] J. A. Goguen and J. Meseguer. Security policies and security
models. In IEEE Computer Society Press, editor, Proceedings
of the 1982 IEEE Symposium on Security and Privacy, pages
11–20, 1982.

[10] Peeter Laud. Secrecy types for a simulatable cryptographic
library. In Proceedings of the 12th ACM Conference on
Computer and Communications Security. ACM SIGSAC,
2005.

[11] Peeter Laud. On the computational soundness of crypto-
graphically masked flows. In George C. Necula and Philip
Wadler, editors, Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2008, San Francisco, California, USA, Jan-
uary 7-12, 2008, pages 337–348. ACM, 2008.

[12] Andrei Sabelfeld and Heiko Mantel. Static confidentiality
enforcement for distributed programs. In In Proceeding of
the 9th International Static Analysis Symposium, volume
2477, Madrid, Spain, September 2002. Springer.

[13] Andrei Sabelfeld and Heiko Mantel. A unifying approach
to the security of distributed and multi-threaded programs.
Journal of Computer Security, 11(4):615–676, 2003.

[14] Andrei Sabelfeld and Andrew C. Myers. Language-based
information-flow security. IEEE Journal on Selected Areas
in Communications, 21(1), January 2003.

[15] Andrei Sabelfeld and David Sands. Probabilistic noninter-
ference for multi-threaded programs. In In Proceedings of
the 13th IEEE Computer Security Foundations Workshop,
Cambridge, England, July 2000. IEEE Computer Society.

[16] Geoffrey Smith. A new type system for secure information
flow. In In Proceeding of the 14th IEEE Computer Security
Foundations Workshop, Cape Breton, Nova Scotia, June
2001. IEEE Computer Society.

[17] Geoffrey Smith and Rafael Alpı̀zar. Secure information flow
with random assignment and encryption. In In Proceeding
of the 4th ACM Workshop on Formal Methods in Security
Engineering, Alexandria, Virginia, November 2006. ACM.

[18] Geoffrey Smith and Dennis M. Volpano. Secure information
flow in a multi-threaded imperative language. In In
Proceeding of the 25th ACM Symposium on Principles of
Programming Languages, San Diego, California, January
1998.

[19] Jeffrey A. Vaughan and Steve Zdancewic. A cryptographic
decentralized label model. In IEEE Symposium on Security
and Privacy, 2007.

