
Type-based Analysis of PKCS#11
Key Management?

Matteo Centenaro1 and Riccardo Focardi1 and Flaminia L. Luccio1

DAIS, Università Ca’ Foscari Venezia, Italy
{mcentena,focardi,luccio}@dsi.unive.it

Abstract. PKCS#11, is a security API for cryptographic tokens. It is
known to be vulnerable to attacks which can directly extract, as cleart-
ext, the value of sensitive keys. In particular, the API does not impose
any limitation on the different roles a key can assume, and it permits
to perform conflicting operations such as asking the token to wrap a
key with another one and then to decrypt it. Fixes proposed in the lit-
erature, or implemented in real devices, impose policies restricting key
roles and token functionalities. In this paper we define a simple imper-
ative programming language, suitable to code PKCS#11 symmetric key
management, and we develop a type-based analysis to prove that the
secrecy of sensitive keys is preserved under a certain policy. We formally
analyse existing fixes for PKCS#11 and we propose a new one, which is
type-checkable and prevents conflicting roles by deriving different keys
for different roles.

1 Introduction

PKCS#11, also known as Cryptoki, defines a widely adopted API for crypto-
graphic tokens [18]. It provides access to cryptographic functionalities while, in
principle, providing some security properties. More specifically, the value of keys
stored on a PKCS#11 device and tagged as sensitive should never be revealed
outside the token, even when connected to a compromised host. Unfortunately,
PKCS#11 is known to be vulnerable to attacks that break this property [4,8,10].

An application initiates a session with a PKCS#11 compliant device by
first supplying a PIN, and then accessing the functionalities provided by the
token. There may be various objects stored in the token, such as cryptographic
keys and certificates. Objects are referenced via handles to permit, e.g., that a
cryptographic key is used without necessarily knowing its value: we can ask a
token to encrypt some data just providing a handle to the encryption key. The
value of a key is one of the attributes of the enclosing object. There are other
attributes to specify the various roles a key can assume: each different API call
can, in fact, require a different role. For example, decryption keys are required
to have attribute CKA DECRYPT set, while key-encrypting keys, i.e., keys used to
encrypt other keys, must have attribute CKA WRAP set.

? Work partially supported by the RAS Project “TESLA: Techniques for Enforcing
Security in Languages and Applications”.

The attacks on PKCS#11 we consider in this paper are at the API level
[1,2,3,4,7,8,10,16], i.e., the attacker is assumed to control the host on which the
token is connected and to perform any sequence of (legal) API calls. The crucial
functionalities of PKCS#11 are the ones for exporting and importing sensitive
keys, called C WrapKey and C UnwrapKey. The former performs the encryption
of a key under another one, giving as output the resulting ciphertext, and the
latter performs the corresponding decrypt and import into the token. They allow
for exporting and reimporting keys, in an encrypted form. Note that, having a
wrapping key (CKA WRAP) which can also be used for decryption (CKA DECRYPT)
is dangerous and leads to the following simple ‘wrap-decrypt’ API-level attack:

h_myKey = C_GenerateKey({CKA_DECRYPT, CKA_WRAP});

wrapped = C_WrapKey(h_sensitiveKey, h_myKey);

leak = C_Decrypt(wrapped, h_myKey);

First, we ask the token to generate a new key with attributes CKA DECRYPT,
CKA WRAP set. Then, we use this key to wrap an existing sensitive key referenced
by h sensitiveKey. Finally, we ask the token to decrypt the resulting ciphertext
using again the freshly generated key. Since it is the same key used for wrapping,
we obtain the value of the sensitive key in the clear.

A recent work [4] has shown that the state of the art in PKCS#11 security
tokens is rather poor: many existing commercially available devices are vulner-
able to attacks similar to the above one; the secured ones, instead, prevent the
attacks by completely removing wrapping functionalities. However, it has been
shown that the API can be ‘patched’ without necessarily cutting down so much
on its functionalities [4,10]: this can be done by (i) imposing a policy on the
attributes so that a key cannot be used for conflicting operations; (ii) limiting
the way attributes can be changed so to avoid that conflicting attributes are
set at two different instants; (iii) either adding a wrapping format which binds
attributes to wrapped keys [10] or limiting very carefully the usage of imported
keys to a subset of non-critical functions [4].

In our opinion, formal tools to reason about the security of different im-
plementations of PKCS#11 APIs, such as Tookan [4], are fundamental to help
developers and hardware producers to detect and better understand the causes
of the bugs affecting the implementations, and they are very important for the
testing of new patches.

Our contribution. In this paper we (i) define a simple imperative programming
language, suitable to code PKCS#11 APIs for symmetric key management; (ii)
formalize a Dolev-Yao attacker and API security in this setting; (iii) present
a type system to statically enforce API security; (iv) propose a new fix for
PKCS#11 based on key-diversification; (v) apply the type system to validate
our new fix and one previously proposed in [4,5]. We only consider functions for
encryption/decryption of data and wrap/unwrap of keys as these are the most
relevant ones for what concerns API-level attacks.

The language is, by itself, an original contribution as PKCS#11 is typically
modelled following a ‘black-box’ approach: each API function takes some in-

put values and a (representation of a) device, and returns new values possibly
modifying the device state. This is done in one step, disregarding the internal
single steps (see, e.g., [10]). Our target is to perform a language-based analysis
of the API specification, and this requires that APIs are specified as sequences
of internal commands and lower level calls to the device. The attacker is mod-
elled in a classic Dolev-Yao style: he can perform any cryptographic operation
once he knows the corresponding key. He can also execute any API call passing,
as parameters, values that he knows, and incrementing his knowledge with the
returned value. API security requires that sensitive keys that are not already
known by the attacker, and always-sensitive keys (special sensitive keys that
have been generated inside the token) will never be disclosed to the attacker.

Our type system statically enforces API security by checking that keys can
only be wrapped using trusted keys and every key has a clear, unambiguous
role. Typing is parametrized with respect to a policy dictating the possible at-
tributes that can be simultaneously set on a key and the ones that are set when
unwrapping/importing a new key in a device. We prove that type-checked APIs
are secure against a Dolev-Yao attacker. Using the proposed type system we
analyse the Secure Templates fix proposed in [4,5], and we prove it secure. We
then propose a new patch, based on key-diversification, a standard cryptographic
technique to derive a new key from a known one. Our idea, is to explicitly re-
quire that keys for different roles will always be different. To the best of our
knowledge, key-diversification has previously never been adopted as a system-
atic mechanism to secure key management of cryptographic tokens. We finally
prove that this new patch type-checks.

Related work. The most established work on formal analysis of PKCS#11 is
[10]. In this paper, it is given a model of a fragment of PKCS#11 and a model-
checking procedure to look for possible attack sequences. Interesting abstractions
to reduce state explosion and to analyse unbounded fresh data have been given
in [14]. In [4], the theory has been engineered into Tookan, a tool for the analysis
of real devices. The tool is able to build a formal model of a real token, perform
model-checking and try the theoretical attacks on a real device. Once the model
is extracted from the token, it is also possible to try new fixes are check again
for existing attacks.

Our present contribution extends this line of research by exploring a language-
based, static analysis technique that allows for proving the security of PKCS#11
APIs and their fixes. We in fact intend to integrate this type-based analysis in
Tookan. The contribution is also in the line of other type-based analyses on dif-
ferent settings: For what concerns Bank APIs in [6] it is studied the security
of PIN managements Hardware Security Modules and it is given a type system
to prove their security; in [11] we have given a type system for the security of
rechargeable disposable RFID tickets.

A recent line of research [12,13] investigates models of PKCS#11 based on
first-order linear time logic extended by past operators. The motivation is, again,
to check the security of the PKCS#11 configuration, but the underlying model

is completely different. A comparison between the two models is for sure an
interesting future issue.

In [15] Keighren, Aspinall, and Steel propose a type system to check informa-
tion flow properties for cryptographic operations in security APIs. There seem
to be many differences with our contribution: (i) the target property is differ-
ent: Here we consider confidentiality of sensitive keys while in [15] the authors
investigate noninterference, a much stronger property. In this sense their result
is more in the line of [6]; (ii) their model is very general and allows for reasoning
on cryptographic operations so that the wrap/decrypt attack is modelled as a
forbidden information flow from secret to public. No language is given to express
internal commands. Our language allows for specifying PKCS#11 key manage-
ment APIs at a fine granularity, and the same attack is prevented by avoiding
conflicting roles for the same key. This is why we can avoid the complex treat-
ment of noninterference and only focus on key confidentiality; (iii) Keighren,
Aspinall, and Steel only considers confidentiality and do not treat integrity (or
trust) that is one of the crucial ingredient of our analysis: only trusted keys
should be used to wrap sensitive keys. A more detailed comparison will be the
subject of future work.

Paper structure. The paper is organized as follows. In section 2 we introduce the
simple imperative language for PKCS#11 key management, the attacker model
and the notion of API security; in section 3 we present the type system statically
enforcing API security; in section 4 we type-check known implementations of
PKCS#11 key management APIs, and we propose our new fix based on key-
diversification, which we prove to be secure. We conclude in section 5.

2 A language for PKCS#11 key management

In this section we first introduce a simple imperative language suitable to specify
PKCS#11 key management APIs. We then formalize the attacker model and
define API security.

Values. We let C and G, with C ∩ G = ∅, respectively be the set of atomic
constant and fresh values. The former is used to model any public data, including
non-sensitive keys; the latter models the generation of new fresh values such as
sensitive keys. We associate to G an extraction operator g ← G, representing
the extraction of the first ‘unused’ value g from G. Extracted values are always
different: two, even non-consecutive, extractions g ← G and g′ ← G are always
such that g 6= g′. We let val range over the set of all atomic values C ∪G and we
define values v as follows:

v ::= val | enc(v , v ′) | dec(v , v ′) | kdf(v , v ′)

where enc(v , v ′) and dec(v , v ′) denote value v respectively encrypted and de-
crypted under key v ′, and kdf(v , v ′) represents a new key obtained via diversi-
fication from a value v and another key v ′. Key diversification may be imple-
mented in many different ways. For example, using the encryption scheme, we

can directly obtain kdf(v , v ′) as enc(v , v ′). We explicitly represent decrypted
values in order to model situations in which a wrong key is used to decrypt an
encrypted value: for example, the decryption under v ′ of enc(v , v ′) will give, as
expected, value v ; instead, the decryption under v ′ of enc(v , v ′′), with v ′′ 6= v ′

will be explicitly represented as dec(enc(v , v ′′), v ′). This allows us to model a
cryptosystem with no integrity check, as the one used in PKCS#11 for symmet-
ric keys: decrypting with a wrong key never gives a failure.

Expressions. Our language is composed of a core set of expressions for manip-
ulating the above values. Expressions are based on a set of variables V ranged
over by x, and have the following syntax:

e ::= x | enc(e, x) | dec(e, x) | kdf(val , x)

The explicit tag val will simplify typing for key diversification. A memory M :
x 7→ v is a partial mapping from variables to values and e ↓M v denotes that the
evaluation of the expression e in memory M leads to value v . Let e ↓M v and
M(x) = v ′. The semantics of expressions follows:

x ↓M M(x) if M(x) is defined

enc(e, x) ↓M enc(v , v ′)

dec(e, x) ↓M
{

v ′′ if v = enc(v ′′, v ′)
dec(v , v ′) otherwise

kdf(val , x) ↓M kdf(val , v ′)

The modeled encryption mechanism does not perform any integrity check on the
messages, so the decryption of a ciphertext under a wrong key gives dec(v , v ′).

Templates. Properties and capabilities of keys are described by templates, ranged
over by T , represented as a set of attributes. When a certain attribute is con-
tained in a template T we will say that the attribute is set, it is unset otherwise.
A key can be sensitive, and a sensitive key can also be always-sensitive if it
has been generated (as a sensitive key) by a secure device. These two properties
are described by the attributes S (sensitive), and A (always-sensitive). Four at-
tributes identify the capabilities of a key: data encryption (E) and decryption
(D), wrap (W) and unwrap (U), i.e., encryption and decryption of other keys.
Formally, a template T is a subset of {S,A,E,D,W,U} under the constraint
S 6∈ T implies A 6∈ T , i.e., non-sensitive keys can never be always-sensitive.

APIs and tokens. An API is specified as a set A = {a1, . . . , an} of functions,
each one composed of simple sequences of assignment commands:

a ::= λx1, . . . , xk.c
c ::= x := e | x := f | return e | c1; c2
f ::= getObj(y) | checkTemplate(y, T) | genKey(T) | importKey(y,T)

We will only consider API commands in which return e can only occur as the
last command. Internal functions f represent operations that can be performed
on the underlying devices. Note that these functions are used to implement the
APIs and are not directly available to the users. Intuitively, getObj retrieves the
plaintext value of a key stored in the device, given its handle y; checkTemplate
is similar but it additionally queries the template of the stored key: if the key
template ‘matches’, i.e., is a superset of, the given one T , the key is returned;
genKey generates a key with template T ; finally, importKey imports a new key
with plaintext value y and template T . The first two functions fail (i.e., are stuck)
if the given handle does not exists or refers to a key with a wrong template. A
call to an API a = λx1, . . . , xk.c, written a(v1, . . . , vk), binds x1, . . . , xk to values
v1, . . . , vk, executes c and outputs the value given by return e.

Example 1 (PKCS#11 C WrapKey command). The language introduced is suit-
able to implement PKCS#11 commands. Each API command will be modeled
as a procedure reading inputs from pre-defined variables and returning a value as
output. The following is a possible specification of the wrap command. It takes
the handles of a key to be wrapped and the one pointing to the wrapping key
(whose flags W and S have to be set, as it has to be a sensitive wrapping key)
returning an encrypted byte-stream. For the sake of readability, we will always
write a(x1, . . . , xk) c in place of a = λx1, . . . , xk.c to specify an API function:

C WrapKey(h key, h w)
w := checkTemplate(h w, {S,W});
k := getObj(h key);
return enc(k,w);

Device keys are modelled by the handle-map H : g 7→ (v , T), a partial mapping
from the atomic (generated) values to pairs of keys and templates. Each key has
a handle to be referred with, and a template. Notice that we do not distinguish
between one or many devices: we consider all keys available to the API as a
unique ‘universal’ PKCS#11 token. This corresponds to a worst-case scenario in
which attackers can simultaneously access all existing tokens. Notice, also, that
this does not limit the multiple presence of the same key value under different
handles or templates, as for example, with H(g) = (v , T) and H(g′) = (v , T ′).

An API command c working on a memory M and handle-map H is noted as
〈M,H, c〉. Semantics is reported in Table 1, where ε denotes the empty API. We
explain the first rule for assignment x := e: it evaluates expression e on M and
stores the results in variable x , noted M[x 7→ v]. In case x is not defined in M
the domain of M is extended to include the new variable, otherwise the value
stored in x is overwritten. Other rules are similar in spirit. Notice that genKey
and importKey also modify the handle-map. The last rule is for API calls on an
handle-map H: parameter values are assigned to variables of an empty memory
Mε, i.e., a memory with no variables mapped to values (recall memories are
partial functions); then, the API commands are executed and the return value
is given as a result of the call. This is noted a(v1, . . . , vk) �H,H

′
v where H′ is the

resulting handle map. Notice that at this API level we do not observe memories

e ↓M v

〈M,H, x := e〉 → 〈M[x 7→ v],H, ε〉
H(M(y)) = (v , T)

〈M,H, x := getObj(y)〉 → 〈M[x 7→ v],H, ε〉

H(M(y)) = (v , T ′) T ⊆ T ′

〈M,H, x := checkTemplate(y, T)〉 → 〈M[x 7→ v],H, ε〉

g, g′ ← G
〈M,H, x := genKey(T)〉 → 〈M[x 7→ g],H[g 7→ (g′,T)], ε〉

g ← G
〈M,H, x := importKey(y,T)〉 → 〈M[x 7→ g],H[g 7→ (M(y),T)], ε〉

〈M,H, c1〉 → 〈M′,H′, ε〉
〈M,H, c1; c2〉 → 〈M′,H′, c2〉

〈M,H, c1〉 → 〈M′,H′, c′1〉
〈M,H, c1; c2〉 → 〈M′,H′, c′1; c2〉

a = λx1, . . . , xk.c 〈Mε[x1 7→ v1 . . . xk 7→ vk],H, c〉 → 〈M′,H′, return e〉 e ↓M
′
v

a(v1, . . . , vk) �H,H′ v

Table 1. API Semantics

that are, in fact, used internally by the device to execute the function. The only
exchanged data are the input parameters and the return value.

Example 2 (Semantics of C WrapKey). To illustrate the semantics, we now show
the transitions of the C WrapKey command specified above. Suppose that the
device associates the handle g to (v , {A,S,E,D}) and g′ to (v ′, {S,W,U}). We
consider a memory M where all the variables are set to zero except for h key
and h w which store respectively g and g′, i.e., M = Mε[h key 7→ g, h w 7→ g′].
Then it follows,

〈M,H,w := checkTemplate(h w, {S,W}); k := getObj(h key); return enc(k,w)〉
→ 〈M[w 7→ v ′],H, k := getObj(h key); return enc(k,w)〉
→ 〈M[w 7→ v ′, k 7→ v],H, return enc(k,w)〉

which gives C WrapKey(g, g′) �H,H enc(v , v ′) meaning that the value returned
invoking the wrap command is thus the encryption of v under v ′. Obviously, this
is safe as long as v ′ is not know outside the device, otherwise a user knowing
the raw value of the key used to wrap could retrieve v by simply computing
dec(enc(v , v ′), v ′).

Attacker Model. We now formalize the attacker in a classic Dolev-Yao style.
In particular, the attacker knowledge K(V) deducible from a set of values V is
defined as the least superset of V such that v , v ′ ∈ K(V) implies

(1) enc(v , v ′) ∈ K(V);
(2) kdf(v , v ′) ∈ K(V);
(3) if v = enc(v ′′, v ′) then v ′′ ∈ K(V);
(4) if v 6= enc(v ′′, v ′) then dec(v , v ′) ∈ K(V).

Given a handle map H, representing tokens, and an API A = {a1, . . . , an},
the attacker can invoke any API function giving any of the known values as a
parameter. The returned value is then added to the knowledge. Formally, an
attacker configuration is represented as 〈H, V 〉 and evolves as follows:

a ∈ A v1, . . . , vk ∈ K(V) a(v1, . . . , vk) �H,H
′

v

〈H, V 〉 A 〈H′, V ∪ {v}〉

We assume that the attacker initially knows an arbitrary subset V0 of the con-
stant atomic values C and we consider an initial empty handle map H0. In the
following, we use the standard notation ∗A to note multi-step reductions.

API security. The main property required by PKCS #11: “Sensitive keys cannot
be revealed in plaintext off the token” [18, page 30], is modelled by requiring
that sensitive keys, that are not already known by the attacker, should never
be learned by the attacker. Moreover, we formalize the intuitive property that
always-sensitive keys and all keys derived from them, are never known by the
attacker. This will be useful to guarantee that such keys have not been imported
by the attacker and can be trusted.

Formally, sensitive keys are the ones that only appear in the handle map with
the attribute sensitive set. Always-sensitive keys additionally have the always-
sensitive attribute set.

Definition 1 (Sensitive and always-sensitive values). Let val be an atomic
value and H a handle-map. If val is such that H(g) = (val , T) implies S ∈ T
we say that val is sensitive in H. If we additionally have that H(g) = (val , T)
implies A ∈ T we say that val is always-sensitive in H.

The definition of API security follows.

Definition 2 (API Security). Let A be an API. We say that A is secure if
for all reductions 〈H0, V0〉 ∗A 〈H, V 〉 ∗A 〈H′, V ′〉 and for all atomic values val
we have

1. val 6∈ K(V) and val is sensitive in H imply val 6∈ K(V ′);
2. val is always-sensitive in H implies val , kdf(v , val) 6∈ K(V) ∪ K(V ′).

3 Type system

We enforce the security of an API through a type system requiring that (i) every
key has a clear, unambiguous role, and (ii) keys can only be wrapped using
trusted keys. This latter idea is, in fact, suggested in PKCS#11 v2.20 [18]:
CKA TRUSTED keys are added by the security officer in a protected environment.
Keys with the CKA WRAP WITH TRUSTED attribute (that we do not model here)
set can only be wrapped via such security officer keys. In fact, here it is like we
were assuming that CKA WRAP WITH TRUSTED is always set.

Our type system generalizes this idea of trusted keys by also including the
ones generated by the device (always-sensitive). Even in this case, in fact, we

A 6∈ T, S ∈ T ¬data(T) ∨ wrap(T)

` T : Any

A 6∈ T, S ∈ T data(T) ¬wrap(T)

` T : Data

A,S ∈ T data(T) ¬wrap(T)

` T : TData

A,S ∈ T ¬data(T) wrap(T)

` T : Wrap

A,S ∈ T data(T)⇔ wrap(T)

` T : Seed

A,S 6∈ T
` T : Un

Table 2. Typing templates

are guaranteed that their value has never appeared as plain-text outside the
device. This will allow us to propose and analyse configurations in which always-
sensitive keys can be exchanged by users. This is not allowed for trusted security
officer keys. In the following we will then use the word trusted to refer to a key
that is guaranteed to be unknown to the attacker. We will use the attribute
always-sensitive to capture this fact, but we could easily extend the analysis
to incorporate the above discussed attribute trusted. We consider the following
types.

ρ ::= Any | Data | TData | Wrap | Seed | Un
τ ::= ρ | Wrap[ρ]

Intuitively, Any is the top type including all possible data and keys; type Data
and TData are, respectively, for secret and trusted keys used to encrypt and
decrypt data; Wrap is for trusted wrapping keys, i.e., keys used to encrypt
other keys, and Seed is for trusted keys used to
derive other keys via diversification; Wrap[ρ] is
for trusted wrapping keys transporting keys of
type ρ, obtained via diversification from some
(trusted) seed; finally, Un represents untrusted
values. Types are related by a subtyping rela-
tion ≤ depicted on the right. Notice that the
level of secrecy can only grow while the level
of trust can only decrease. Promoting a type
via subtyping, in fact, should not compromise
security. This will be proved in lemma 1 below.

Typing keys. We now describe how PKCS#11 key templates are converted to
key types. Key templates represent the ‘types’ of the keys stored in the de-
vices. Attributes describe how keys are supposed to be used and which security
properties the device enforces on them.

First we notice that attribute sensitive (S) indicates that the key should be
regarded as secret. If, additionally, always-sensitive (A) is set we know that the
key is trusted. In fact, the always-sensitive PKCS#11 attribute cannot be set
by a user when generating or unwrapping a key (see [18], Table 15 footnotes
4 and 6). This attribute is meant to be automatically managed by the tamper
resistant token whenever a key is generated as sensitive. Data and wrapping keys
are instead determined by attributes E,D and W ,U , respectively. We require

that these pairs of attributes cannot coexists on data and wrapping keys, so to
disambiguate key roles. Trusted keys that are neither wrapping not data keys
are considered seeds while sensitive keys with mixed roles, e.g., E plus W , are
given type Any.

We let data(T) be E ∈ T ∨D ∈ T and wrap(T) be W ∈ T ∨ U ∈ T . Types
for keys are derived through the judgment ` T : τ formalized in Table 2. It is
easy to see that any possible template is associated to exactly one type: non-
sensitive keys are typed as Un; sensitive but not always-sensitive keys are typed
Data if they have at least E or D set, and Any otherwise; always-sensitive keys
are typed TData if they have E or D set, otherwise they are typed Wrap or Seed
depending on the presence of W and U . Notice that no wrapping untrusted keys
are allowed, in fact secret non-data keys are typed as Any.

The following lemma states that subtyping does not compromise the security
of keys: non-sensitive keys can be regarded as sensitive and always-sensitive keys
can be regarded as just sensitive ones. Intuitively, it is safe to increase the level
of secrecy and decrease the level of trust.

Lemma 1 (Subtyping preserves security). Let ` T : ρ and ` T ′ : ρ′ with
ρ ≤ ρ′. Then S ∈ T implies S ∈ T ′ and A ∈ T ′ implies A ∈ T .

Proof. S ∈ T implies that ρ 6= Un meaning that ρ′ 6= Un. Since Un is the only
type for non-sensitive templates we have the thesis. Let A ∈ T ′. We have ρ′ ∈
{Wrap,TData,Seed} which implies ρ ∈ {Wrap,TData,Seed} giving the thesis.

Security policy. As we have already discussed in the introduction, PKCS#11
security tokens present different flaws, it is thus very important to fix them
by imposing some extra security policies on them. In [4] it has been observed
that real devices often limit the possible templates of keys, in order to have
more control on their usage. It is possible that different operations such as key
generation and key import restrict templates in different ways. At the level of
static analysis, we abstract away the exact point where restrictions happen, and
we consider T the set of all possible templates of keys.

Another very important aspect is to be clear about which keys are wrapped
and unwrapped as the standards do not add any information about the template
when encrypting a key with another one (one solution to this is, in fact, to add
wrapping formats [9], solution which is however out of the standard). Types are
useful here, as we can just establish a default type transported by wrapping keys.
As we will see, thus this is limiting, it is however possible to rise the number of
transported types via key diversification.

A security policy is thus defined as a pair (T, ρ), where T is the set of all
possible templates of keys, and ρ is the default type for wrapped keys.

Expressions. In order to type expressions and commands we introduce a typing
environment Γ : x 7→ τ which maps variables to their respective types. Type
judgment for expressions is noted Γ `ρ e : τ meaning that expression e is of
type τ under Γ and assuming ρ as the default type for wrapped keys.

[var]
Γ (x) = τ

Γ `ρ x : τ
[sub]

Γ `ρ e : τ ′ τ ′ ≤ τ
Γ `ρ e : τ

[kdf-w]
Γ `ρ x : Seed

Γ `ρ kdf(wρ′ , x) : Wrap[ρ′]

[kdf-d]
Γ `ρ x : Seed

Γ `ρ kdf(d, x) : Data
[kdf-un]

Γ `ρ x : Un v = wρ′ , d

Γ `ρ kdf(v , x) : Un

[enc]
Γ `ρ x : Data Γ `ρ e : Un

Γ `ρ enc(e, x) : Un
[dec]

Γ `ρ x : Data Γ `ρ e : Un

Γ `ρ dec(e, x) : Un

[wrap]
Γ `ρ x : Wrap Γ `ρ e : ρ

Γ `ρ enc(e, x) : Un
[unwrap]

Γ `ρ x : Wrap Γ `ρ e : Un

Γ `ρ dec(e, x) : ρ

[wrap-div]
Γ `ρ x : Wrap[ρ′] Γ `ρ e : ρ′

Γ `ρ enc(e, x) : Un
[unwrap-div]

Γ `ρ x : Wrap[ρ′] Γ `ρ e : Un

Γ `ρ dec(e, x) : ρ′

[enc-any]
Γ `ρ x : Any Γ `ρ e : Un ρ 6= Wrap

Γ `ρ enc(e, x) : Un
[dec-any]

Γ `ρ x : Any Γ `ρ e : Un

Γ `ρ dec(e, x) : Any

Table 3. Typing expressions

Typing rules are reported in Table 3. Rules [var] and [sub] are standard and
derives types directly from Γ (for variables) or via subtyping. Rules [kdf-w] and
[kdf-d] state that given a seed x we can derive a new wrapping key of type
Wrap[ρ′] as kdf(wρ′ , x), and a new data key as kdf(d, x). Notice that we use
values wρ′ and d as tags to diversify keys, we can thus consider them as constant
values established a-priori to this purpose. We do not assume any secrecy on
them: security of this operation is given by the trusted seed x. Rule [kdf-un]
allows for diversification from untrusted seeds, always generating an untrusted
key. Rules [enc] and [dec] are for data encryption and decryption, and only work
on untrusted values. Rules [wrap] and [unwrap] are more interesting: given a
wrapping key we can wrap/unwrap other keys of type ρ, the default wrapping
type specified in the security policy. Rules [wrap-div] and [unwrap-div] are similar
but work on type ρ′ given by the above rule [kdf-w]: diversification is in fact
useful to obtain keys that can wrap keys of various types, as we will see in the
case studies of section 4. Finally, rules [enc-any] and [dec-any] are conservative
rules for cryptographic operation using generic keys of type Any. The former
states that it is safe to encrypt with such keys as far as the default import
type is not Wrap, otherwise we would be able to encrypt a broken key and then
unwrap/import it as trusted in the device. The latter allows for decryption if
the resulting value is considered of type Any. In section 4 we will see an example
of application of these extremely conservative rules.

APIs. We now type APIs via the judgment Γ `T,ρ c meaning that c is well-typed
under Γ and the policy T, ρ. The judgment is formalized in Table 4. Rules [assign]
and [seq] are standard, and they amount to recursively type the expression and

[API]
∀a ∈ A Γ `T,ρ a

Γ `T,ρ A
[assign]

Γ (x) = τ Γ `ρ e : τ

Γ `T,ρ x := e
[seq]

Γ `T,ρ c1 Γ `T,ρ c2
Γ `T,ρ c1; c2

[getobj]
Γ (x) = Any Γ `ρ y : Un

Γ `T,ρ x := getObj(y)
[checktmp]

Γ (x) = LUB(T ,T) Γ `ρ y : Un

Γ `T,ρ x := checkTemplate(y,T)

[genkey]
Γ (x) = Un T ∈ T

Γ `T,ρ x := genKey(T)
[impkey]

Γ (x) = Un ` T : τ Γ `ρ y : τ T ∈ T
Γ `T,ρ x := importKey(y,T)

[return]
Γ `ρ e : Un

Γ `T,ρ return e
[function]

Γ `ρ x1 : Un . . . Γ `ρ xk : Un Γ `T,ρ c

Γ `T,ρ λx1, . . . , xk.c

Table 4. Typing APIs

the sequential sub-part of a program, respectively. Rule [getobj] states that when
getting a key from the token with no template check, we need to be conservative
and assign the result to a variable of type Any. In fact, we cannot deduce any
specific usage or security level for the obtained key; rule [checktmp], instead,
approximates the type of the obtained key by getting the least upper bound of
all types for templates T ′ matching T , i.e., such that T ⊆ T ′:

LUB(T,T) =
⊔
{τ ′ | ∃T ′ ∈ T.T ⊆ T ′∧ ` T ′ : τ ′}

Rule [genkey] checks that the template for the new key is in the set of the admit-
ted template T, while [impkey] additionally checks that the type of the imported
value is consistent with the given template. Rules [return] and [function] state
that the return value and the parameter of an API call must be untrusted. In
fact they are the interface to the external, possibly malicious users. Finally, by
rule [API] we have that an API is well-typed if all of its functions are well-typed.

3.1 Type soundness

We give a notion of value well-formedness in order to track the value integrity at
run-time. The judgment is based on a mapping Θ : val 7→ ρ from atomic values
to types, excluding Wrap[ρ] that is derived for diversified non-atomic keys. Tags
wρ′ and d for key diversification are implicitly assumed to be untrusted, i.e.,
Θ(wρ′) = Θ(d) = Un. Rules are given in Table 5 and follow very closely the ones
of Table 3 used for expressions.

Definition 3 (Well-formedness). Γ,Θ `T,ρ M,H if

– Γ,Θ `T,ρ M, i.e., M(x) = v, Γ (x) = τ implies Θ `ρ v : τ ,
– Θ `T,ρ H, i.e., H(v ′) = (v , T), ` T : τ implies Θ `ρ v : τ and T ⊆ T

We now prove that if we only give the attacker untrusted atomic values, all the
values he will be able to derive (according to section 2) will also be untrusted.
Intuitively, having type Un is a necessary condition for a well-formed value to
be deducible by the attacker. The following holds:

[atom]
Θ(val) = ρ′

Θ `ρ val : ρ′
[sub]

Θ `ρ v : τ ′ τ ′ ≤ τ
Θ `ρ v : τ

[kdf-w]
Θ `ρ v : Seed

Θ `ρ kdf(wρ, v) : Wrap[ρ]

[kdf-d]
Θ `ρ v : Seed

Θ `ρ kdf(d, v) : Data
[kdf-un]

Θ `ρ v , v ′ : Un

Θ `ρ kdf(v ′, v) : Un

[enc]
Θ `ρ v : Data Θ `ρ v ′ : Un

Θ `ρ enc(v ′, v) : Un
[dec]

Θ `ρ v : Data Θ `ρ v ′ : Un v ′ 6= enc(v ′′, v)

Θ `ρ dec(v ′, v) : Un

[wrap]
Θ `ρ v : Wrap Θ `ρ v ′ : ρ

Θ `ρ enc(v ′, v) : Un
[unwrap]

v ′ 6= enc(v ′′, v)
Θ `ρ v : Wrap Θ `ρ v ′ : Un

Θ `ρ dec(v ′, v) : ρ

[wrap-div]
Θ `ρ v : Wrap[ρ′] Θ `ρ v ′ : ρ′

Θ `ρ enc(v ′, v) : Un
[unwrap-div]

v ′ 6= enc(v ′′, v)
Θ `ρ v : Wrap[ρ′] Θ `ρ v ′ : Un

Θ `ρ dec(v ′, v) : ρ′

[enc-any]
Θ `ρ v : Any Θ `ρ v ′ : Un ρ 6= Wrap

Θ `ρ enc(v ′, v) : Un
[dec-any]

v ′ 6= enc(v ′′, v)
Θ `ρ v : Any Θ `ρ v ′ : Un

Θ `ρ dec(v ′, v) : Any

Table 5. Value well-formedness

Proposition 1. Let Θ `T,ρ H and let V be a set of atomic values such that
val ∈ V implies Θ(val) = Un. Then, v ∈ K(V) implies Θ `ρ v : Un.

Proof. By an easy induction on the length of the derivation of values in K(V).
For length 0 we trivially have that v ∈ V which gives the thesis. We assume the
proposition holds for length i and we prove it for length i + 1. We show case
enc(v , v ′) ∈ K(V) because of v , v ′ ∈ K(V). The other cases are analogous. By
rule [enc] and observing that Un ≤ Data we obtain the thesis.

Next lemma proves that we can never type a value with two types that are not
related via subtyping. As a consequence, we have that trusted values can never
be typed as untrusted and vice-versa.

Lemma 2. Θ `ρ v : τ and Θ `ρ v : τ ′ implies τ ≤ τ ′ or τ ′ ≤ τ .

Proof. By an easy induction on the (sum of the) length of the derivations of Θ `ρ
v : τ and Θ `ρ v : τ ′. Base case is length 0 and trivially gives τ = τ ′ = Θ(v). We
show once case of the inductive step. Suppose v = kdf(v ′, v ′′). We have three
different rules for typing v : [kdf-w],[kdf-d],[kdf-un]. For example, types Data and
Wrap[τ] given by the first two rules are unrelated, however the typed values differ
for a tag which excludes the case. More interestingly, Un and Wrap[τ] are also
unrelated but, by induction, we know that the key v should be typed with two
related types, which is not the case since Seed and Un are not in the subtyping
relation. Other cases follow similarly.

This last lemma states that evaluating an expression of type τ on a well-formed
memory, gives a value of type τ .

Lemma 3. Let Γ `ρ e : τ and e ↓M v. If Γ,Θ `T,ρ M then it holds Θ `ρ v : τ .

Proof. By induction on the structure of e. Base case is when e is x . Thesis
directly follows by memory well-formedness. For the inductive step, in some
cases we use Lemma 2: for example, when dealing with decryption [dec] we
might have a value encrypted under the right key that we know to type Un. Now
looking at the possible cases in Table 5 we see that the encrypted values can be
obtained in different ways, but the information about the type of the key (Data)
allows us to pick either [enc] or [enc-any], both of which prove the plaintext to
be of type Un as required. Other cases follow analogously.

We now give a subject-reduction result stating that well-typed programs remain
well-typed at run-time and preserve memory and handle-map well-formedness.

Theorem 1. Let Γ,Θ `T,ρ M,H and Γ `T,ρ c . If 〈M,H, c〉 → 〈M′,H′, c′〉 then

(i) if c′ 6= ε then Γ `T,ρ c′;
(ii) ∃Θ′ ⊇ Θ such that Γ,Θ′ `T,ρ M′,H′.

Proof. (Sketch.) Proof of item (i) is by trivial induction on the structure of c.
In fact almost all commands reduce to ε. Item (ii) is again by induction on the
structure of c: for expressions we just apply Lemma 3. For genKey and importKey
the returned handle and the new key are fresh names that we add to Θ in order
to type the new memory (this is why we have Θ′ in the thesis). Template T is
checked to be compatible with respect to T, and the type of the imported key
value is checked to be the same as the one derived from the template. getObj
assigns to type Any so there is nothing to prove, while checkTemplate approxi-
mates the type of the key using a least upper bound which guarantees that the
value can be typed the same as the variable x via subtyping.

We can now state the main result of the paper: well-typed APIs are secure,
according to definition 2.

Theorem 2. Let Γ `T,ρ A. Then A is secure.

Proof. We first prove, by induction on the length of reduction 〈H0, V0〉 ∗A
〈H, V 〉, that there exists Θ such that Θ `T,ρ H and Θ `ρ v : Un for each v ∈ V .

Base case is length 0, meaning that H0 = H and V0 = V . If we take Θ such
that Θ(v) = Un for each v ∈ V0, since H is empty, we easily obtain the thesis.

For the inductive case we have 〈H0, V0〉 ∗A 〈Hn, Vn〉 A 〈H, V 〉. By induc-
tive hypothesis there exists Θ such that Θ `T,ρ Hn and Θ(v) = Un for each
v ∈ Vn. We consider the last step 〈Hn, Vn〉 A 〈H, V 〉. By definition, this is
due to a call to a function a ∈ A. In particular, we have a(v1, . . . , vk) �Hn,H v
with v1, . . . , vk ∈ K(V) and V = Vn ∪ {v}. This, in turns, happens because
a = λx1, . . . , xk.c and 〈Mε[x1 7→ v1 . . . xk 7→ vk],Hn, c〉 → 〈M′,H, return e〉 with
e ↓M′

v . From Γ `T,ρ A we have Γ `T,ρ a which requires Γ `ρ x1 : Un . . . Γ `ρ
xk : Un and Γ `T,ρ c. Since x1, . . . , xk are the only variables in the domain
of M0 = Mε[x1 7→ v1 . . . xk 7→ vk], we easily obtain that Γ,Θ `T,ρ M0. We

have proved that Γ,Θ `T,ρ M0,H and Γ `T,ρ c, thus by Theorem 1 we obtain
Γ `T,ρ return e and ∃Θ′ ⊇ Θ such that Γ,Θ′ `T,ρ M′,H. Now, Γ `T,ρ return e
requires Γ `ρ e : Un, by Lemma 3 we have Θ′ `ρ v : Un which gives the thesis.

We have proved that there exists Θ such that Θ `T,ρ H and Θ `ρ v : Un for
each v ∈ V . For item 1, if Θ `ρ val : Un, meaning that Θ(val) = Un, since we

have val 6∈ K(V) and val is sensitive, we can change Θ into Θ̃ = Θ[val 7→ Data]
while preserving Θ̃ `T,ρ H and Θ̃ `ρ v : Un for each v ∈ V . In fact, if S appears
in all the templates for value val and val is different from all values in V , we
have that its type is never required to be Un, since none of the templates will be
typed as Un. Notice that Θ̃(val) = Data implies that Θ̃ 6`ρ val : Un. We consider
now 〈H, V 〉 ∗A 〈H′, V ′〉. By following the same proof scheme as above, we can
prove that Θ′ `T,ρ H′ and Θ′ `ρ v : Un for each v ∈ V ′ with Θ′ ⊇ Θ̃. Thus,
Θ′(val) = Data meaning that Θ′ 6`ρ val : Un. From Proposition 1 we obtain that
val 6∈ K(V ′) which gives the thesis.

For item 2, we have that that all templates of val are typed with one of
Wrap,TData,Seed. This, by lemma 2, implies Θ 6`ρ val : Un which by Proposi-
tion 1 gives val 6∈ K(V). We can now apply item 1 to obtain val 6∈ K(V ′). Recall,
in fact, we have assumed that A ∈ T implies S ∈ T .

4 Type-based analysis

In this section we consider different implementations of (a subset of) PKCS#11
API and we analyse them using our type-based approach. We only consider the
functions for encryption/decryption of data and wrap/unwrap of keys.

RSA PKCS#11 Standard. We show that an implementation of PKCS#11 that
exactly follows the standard, fails to type-check, as expected, since it is known
to be vulnerable to attacks. This is useful to show how these attacks can be
prevented by statically requiring a precise unambiguous role for each key, as
done by our type system.

The API is defined in the RSA standard, which specifies what are the input
parameters and the result of each function. C Encrypt takes a byte-stream and
a handle to a key having the encrypt (E) flag set, and returns an encrypted
byte-stream. Similarly C Decrypt takes a byte-stream and decrypts it using the
key pointed by the given handle, with the decrypt (D) flag set; it then returns
to the user the decrypted message:

C Encrypt(data, h key)
k := checkTemplate(h key, {E})
return enc(data, k);

C Decrypt(data, h key)
k := checkTemplate(h key, {D});
return dec(data, k);

C WrapKey takes the handle of a key to be wrapped and the one pointing to the
wrapping key, having the wrap (W) flag set, and returns an encrypted byte-
stream. The unwrap command (C UnwrapKey) reads a byte-stream, decrypts it
using a key having the unwrap (U) flag set, imports the resulting key in the
device and returns a handle to it. The standard allows the user to specify the

template for the new key. In this example, we assume the key is imported as
sensitive (S).

C WrapKey(h key, h w)
w := checkTemplate(h w, {W})
k := getObj(h key);
return enc(k,w);

C UnwrapKey(data, h w)
w := checkTemplate(h w, {U})
k := dec(data, w);
return importKey(k, {S});

The standard does not impose any rule on the usage of encrypt, decrypt, wrap
and unwrap attributes. Thus the policy is the most permissive one, i.e., T is
the set of all the possible templates T . In section 1 we have seen an attack
that exploits C Decrypt and C WrapKey. We now show that the latter does not
type-check, confirming that we cannot prove the security of the API. Command
return enc(k,w) requires Γ `ρ return enc(k,w) : Un. Command k := getObj(h key)
requires that Γ `ρ k : Any. Typing w := checkTemplate(h w, {W}) requires w to
have type LUB({W},T) = Any since the permissive policy allows for templates
with mixed roles such as {S,E,D,W,U}. Since there is no rule for typing expres-
sions of type Any with key of type Any we can never obtain Γ `ρ return enc(k,w) :
Un, giving a contradiction.

Secure Templates. We now analyse and prove the security of a fix proposed in
[4,5]. Note that, it is the first proposed patch that does not require the addition
of any cryptographic mechanisms to the standard. The idea is to limit the set
of admissible attribute combinations for keys in order to avoid that they ever
assume conflicting roles at creation time. This is configurable at the level of
the specific PKCS#11 operation. For example, different secure templates can be
defined for different operations such as key generation and unwrapping.

More precisely, the fix includes three templates for the key generation com-
mand: a wrap and unwrap one for importing/exporting other keys, here mapped
into {A,S,W,U} with type Wrap; an encrypt and decrypt template for crypto-
graphic operations, here encoded as {S,E,D} with type Data and an empty
template, corresponding to {}, i.e., Un. The unwrap command is instead allowed
to set either an empty template or one which has the unwrap and encrypt at-
tributes set and the wrap and decrypt ones unset. This is a mixed-role template
that corresponds to type Any that we pick as the default unwrapping type ρ.

We use the policy T such that T ∈ T and {W} ∈ T implies T = {A,S,W,U},
moreover {D} ∈ T implies T = {S,E,D}, i.e., wrapping and decryption keys
are respectively encoded with the unique templates {A,S,W,U},{S,E,D}. With
such a policy, whenever a checkTemplate expression queries a handle for a de-
cryption key ({D}) then the type returned is Data, since the only matching
template is {S,E,D}. When we query for an encryption key ({E}) then the
type returned is Any since, for example, {S,E,U} ∈ T. When querying for a
wrapping key ({W}) the result will be typed as Wrap since the only template
satisfying the query is {A,S,W,U}. Finally, when querying for an unwrapping
key ({U}) the results is Any since, again, {S,E,U} ∈ T. We now show that
the standard API as defined above type-checks under the above more restrictive

policy. Recall that we let ρ = Any, i.e., the default type for wrapped key is Any.

C Encrypt(data, h key)
k := checkTemplate(h key, {E}) (Γ (k) = Any)
return enc(data, k); (Γ `ρ enc(data, k) : Un)

C Decrypt(data, h key)
k := checkTemplate(h key, {D}) (Γ (k) = Data)
return dec(data, k); (Γ `ρ dec(data, k) : Un)

C WrapKey(h key, h w)
w := checkTemplate(h w, {W}) (Γ (w) = Wrap)
k := getObj(h key); (Γ (k) = Any)
return enc(k,w); (Γ `ρ enc(k,w) : Un)

C UnwrapKey(data, h w)
w := checkTemplate(h w, {U}) (Γ (w) = Any)
k := dec(data, w); (Γ (k) = Any)
return importKey(k, {S,E,U}); (Γ `ρ importKey(k, {S,E,U}) : Un)

By theorem 2 we have that this fix is secure and never leaks sensitive and always-
sensitive keys. It strongly limits, however, the set of possible templates, and this
could be an issue if an application in use on a given system fails to obey such
requirements. On the other hand, compatibility with other devices is not broken,
since the implementation of the above functions is the same as in the standard.
However, even if interoperability is guaranteed, the usage of an unsafe token
would obviously expose the keys to attacks.

Finally, notice that the patch is presented here in an extended version: origi-
nally it allowed the generation of sensitive keys only, we instead let non-sensitive
keys to be accepted by the policy.

Key Diversification. We present a novel fix to PKCS#11. The idea is to use key
diversification to avoid the same key to be used for conflicting purposes. This
ensures that the same key will never be used for encrypting and decrypting both
data and other keys. The fix is completely transparent to the user as far as all
the devices implement it. It must be noted, in fact, that a key wrapped by a
token implementing this patch cannot be correctly imported by one acting as
described by the standard, i.e., not using key diversification (and vice versa).
The same holds for encrypted data. To the best of our knowledge, this is the
only patch that correctly enforces the security of sensitive keys and, at the same
time, is transparent to existing applications.

We define a policy that allows for templates typed as Seed, Any, Data, Un.
Formally T = {T | ` T : ρ and ρ ∈ {Seed,Any,Data,Un} }. We now specify the
fixed functions and the typing for each variable/expression.

C Encrypt(data, h key)
k := checkTemplate(h key, {A,S}) (Γ (k) = Seed)
dk := kdf(d, k); (Γ (dk) = Data)
return enc(data, dk); (Γ `ρ enc(data, dk) : Un)

C Decrypt(data, h key)
k := checkTemplate(h key, {A,S}) (Γ (k) = Seed)
dk := kdf(d, k); (Γ (dk) = Data)
return dec(data, dk); (Γ `ρ dec(data, dk) : Un)

Notice, in particular, that Γ `ρ checkTemplate(h key, {A,S}) : Seed since
LUB({A,S},T) = Seed. In fact, Seed is the only type in T with A set (we
have excluded from the policy Wrap and TData).

Key diversification allows to choose at run-time the wrapping and unwrap-
ping of different kind of keys: different instances of each command will be pro-
vided, each of them using a different tag when diversifying the seed retrieved
from the device. Since the code is exactly the same, we just parametrize it on the
tag value wρ. With Tρ′ we identify a template such that LUB(Tρ′ ,T) = ρ′. For
ρ′ = Seed,Any,Data we respectively have Tρ′ = {A,S}, {S}, {S,E,D}. Wrap
and unwrap are specified an typed as follows:

C WrapKeywρ′ (h key, h w)
w := checkTemplate(h w, {A,S}) (Γ (w) = Seed)
k := checkTemplate(h w, Tρ′) (Γ (k) = ρ′)
dk := kdf(wρ′ , w); (Γ (dk) = Wrap[ρ′])
return enc(k, dk); (Γ `ρ enc(k, dk) : Un)

C UnwrapKeywρ′ (data, h w)
w := checkTemplate(h w, {A,S}) (Γ (w) = Seed)
dk := kdf(wρ′ , w); (Γ (dk) = Wrap[ρ′])
k := dec(data, dk); (Γ (k) = ρ′)
return importKey(k, Tρ′); (Γ `ρ importKey(k, Tρ′) : Un)

Since the API type-checks, by theorem 2 we have that it is secure and never leaks
sensitive and always-sensitive keys. Notice that, since it is possible to exchange
seeds we have that new wrapping keys can be easily shared between users. Notice
also that, in practice, the parameter wρ needs to be somehow fixed, in order to
have a single implementation of wrap and unwrap commands. The way this value
is picked is not relevant, since we prove that all these instances are secure even
if they coexist on the device. For example, it might be derived at run-time from
the CKA UNWRAP TEMPLATE attribute which specifies, for each wrapping key, the
template to be assigned to the unwrapped key.

5 Conclusions

We have presented a type system to statically enforce the security of PKCS#11
key management APIs. We believe that a formal tool working at the language-
level might help developers and hardware producers to better understand the
crucial issues and limits affecting the design and implementation of this standard.
For example, we have shown that C Decrypt and C WrapKey commands cannot
be both type-checked if implemented as prescribed by the standard [18]. More
precisely, it has been shown that the requirements on the templates of the keys

used to perform such operations are not enough restrictive to avoid keys having
conflicting purposes. Thus, failing to type-check corresponds, in this case, to
the intuitive problematic issue, well understood by developers and hardware
producers, of conflicting roles assigned to a single key.

We have also presented a new fix to PKCS#11, based on key diversifica-
tion: Intuitively, the token avoids conflicting roles for one key by diversifying it
depending on the actual role. We have type-checked both this new fix and the
‘secure templates’ one [4,5], formally proving their security.

Starting from version 2.20, RSA added to the standard the new attribute
CKA WRAP WITH TRUSTED, that could potentially be used to prevent the API-level
attacks discussed in this work. However, a big limitation is that trusted keys, i.e.,
keys whose CKA TRUSTED attribute is set, may be imported into a token only by
a security officer, a special privileged user operating in a protected environment.
Moreover, in order to prevent attacks on a sensitive key, it is required that its
CKA WRAP WITH TRUSTED attribute is set, meaning that it can only be wrapped
under a key imported by the security officer. Here we have generalized this idea
of wrapping keys only under trusted keys. We have used the always-sensitive
attribute, even if the standard does not foresee any special usage for it, in order
to show that what is important is ‘trust’, and not who has imported the key: a
key that has always been sensitive (and has never been known by the attacker)
can be considered trusted the same as one imported by the security officer. So,
intuitively, in our model the always-sensitive and trusted attributes collapse into
the A attribute. This allows for dynamically exchanging new always-sensitive,
trusted keys, wrapped under the one initially imported by the security officer.

Quite surprisingly, in [18] RSA does not discuss any security implication
of the two new attributes and does not provide any guideline about how to
correctly use them to prevent attacks (in fact, attacks are not mentioned even in
the most recent draft of the standard [19]). There are, instead, many problematic
issues that need to be considered. We give a partial list here: (i) trusted keys
should be non-extractable, i.e., not wrappable even under another trusted key.
This is to avoid they are unwrapped with a different template and then leaked;
(ii) a sensitive key with CKA WRAP WITH TRUSTED set might be wrapped under
a trusted key and then unwrapped with CKA WRAP WITH TRUSTED unset, making
it attackable; (iii) trusted keys should not have conflicting roles (such as wrap
and decrypt). While this might be obvious, it is not a good idea to leave the
security officer the freedom of freely configuring such crucial keys. Our type-
based analysis solves all the above issues by enforcing a controlled usage of roles
and templates for keys.

The extension to public-key cryptography and the implementation of the
key diversification fix on a software emulated token are left as a future work.
As already done for the secure template patch [4,5] the starting point for the
implementation would be the open-source project openCryptoki [17].

Acknowledgements. We would like to thank the anonymous reviewers for their
helpful comments and suggestions.

References

1. R. Anderson. The correctness of crypto transaction sets. In 8th International Work-
shop on Security Protocols, April 2000. http://www.cl.cam.ac.uk/ftp/users/

rja14/protocols00.pdf.
2. M. Bond. Attacks on cryptoprocessor transaction sets. In Proceedings of the

3rd International Workshop on Cryptographic Hardware and Embedded Systems
(CHES’01), volume 2162 of LNCS, pages 220–234, Paris, France, 2001. Springer.

3. M. Bond and R. Anderson. API level attacks on embedded systems. IEEE Com-
puter Magazine, 34(10):67–75, October 2001.

4. M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. Attacking and fixing
PKCS#11 security tokens. In Proceedings of the 17th ACM Conference on Com-
puter and Communications Security (CCS), pages 260–269. ACM, 2010.

5. M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. CryptokiX: a cryptographic
software token with security fixes. In Proceedings of the 4th International Workshop
on Analysis of Security APIs (ASA), Edinburgh, UK, July 2010.

6. M. Centenaro, R. Focardi, F.L. Luccio, and G. Steel. Type-Based Analysis of PIN
Processing APIs. In ESORICS, volume 5789 of Lecture Notes in Computer Science,
pages 53–68. Springer, 2009.

7. R. Clayton and M. Bond. Experience using a low-cost FPGA design to crack
DES keys. In Cryptographic Hardware and Embedded System - CHES 2002, pages
579–592, 2002.

8. J. Clulow. On the security of PKCS#11. In 5th International Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES 2003), volume 2779 of Lecture
Notes in Computer Science, pages 411–425. Springer, 2003.

9. S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11. In Proceedings
of the 21st IEEE Computer Security Foundations Symposium (CSF’08), pages
331–344, Pittsburgh, PA, USA, June 2008. IEEE Computer Society Press.

10. S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11 and proprietary
extensions. Journal of Computer Security, 18(6):1211–1245, November 2010.

11. R. Focardi and F.L. Luccio. Secure recharge of disposable RFID tickets. In FAST,
volume 7140 of Lecture Notes in Computer Science, pages 85–99. Springer, 2011.

12. S.B. Fröschle and N. Sommer. Reasoning with Past to Prove PKCS#11 Keys
Secure. In FAST, volume 6561 of Lecture Notes in Computer Science, pages 96–
110. Springer, 2010.

13. S.B. Fröschle and N. Sommer. Concepts and Proofs for Configuring PKCS#11. In
FAST, volume 7140 of Lecture Notes in Computer Science. Springer, 2011.

14. S.B. Fröschle and G. Steel. Analysing PKCS#11 key management APIs with
unbounded fresh data. In ARSPA-WITS, volume 5511 of LNCS, pages 92–106,
York, UK, 2009. Springer.

15. G. Keighren, D. Aspinall, and G. Steel. Towards a Type System for Security APIs.
In ARSPA-WITS, pages 173–192, 2009.

16. D. Longley and S. Rigby. An automatic search for security flaws in key management
schemes. Computers and Security, 11(1):75–89, March 1992.

17. openCryptoki. http://sourceforge.net/projects/opencryptoki/.
18. RSA Security Inc., v2.20. PKCS #11: Cryptographic Token Interface Standard.,

June 2004.
19. RSA Security Inc., Draft v2.30. PKCS #11: Cryptographic Token Interface Stan-

dard., July 2009. Available at http://www.rsa.com/rsalabs/node.asp?id=2133.

