
In proceedings of ARSPA-WITS’10. Springer LNCS.

Match It or Die: Proving Integrity by Equality ?

Matteo Centenaro and Riccardo Focardi

Università Ca’ Foscari Venezia,
{mcentena,focardi}@dsi.unive.it

Abstract. Cryptographic hash functions are commonly used as modifi-
cation detection codes. The goal is to provide message integrity assurance
by comparing the digest of the original message with the hash of what is
thought to be the intended message. This paper generalizes this idea by
applying it to general expressions instead of just digests: success of an
equality test between a tainted data and a trusted one can be seen as a
proof of high-integrity for the first item. Secure usage of hash functions
is also studied with respect to the confidentiality of digests by extending
secret-sensitive noninterference of Demange and Sands.

Keywords: Information Flow, Language-based Security, Security Type
System, Hash Functions.

1 Introduction

A hash function takes as input an arbitrary message and ‘summarizes’
it into a digest. In cryptography, hash functions are commonly used as
modification detection codes [9]: we are guaranteed of the integrity of a
message M whenever the hash of M coincides with a previously com-
puted digest of the original message. Moreover, hash functions are also
commonly employed to protect data secrecy as done, e.g., in Unix pass-
word files. To provide both integrity and confidentiality, hash functions
are required to respectively be collision resistant and one-way [9], mean-
ing that it should be infeasible to exhibit two messages with the same
digest and to find a message whose digest matches a given one.

A first example of everyday usage of hash functions is password-based
authentication: a one-way hash of the user password is securely stored in
the system and is compared with the hash of the password typed by the
user at the login prompt, whenever the user wants to access her account.
The following code is a simplified fragment of the Unix su utility used to
let a system administrator perform privileged actions. The password file
is modeled as an array passwd[username].
? Work partially supported by Miur’07 Project SOFT: “Security Oriented Formal

Techniques”

trial = hash(t_pwd);
if (trial = passwd[root]) then

<< launch the administrator shell >>

The typed password t pwd is given as input to the program thus we regard
it as untrusted. In fact, from the program perspective there could be an
enemy ‘out there’ trying to impersonate the legitimate administrator.
The same holds for trial, which is computed from an untrusted value.
Existing type systems for noninterference would consequently consider
the guard of the if branch as tainted, or low-integrity, since its value
is computed from untrusted data and possibly under the control of the
enemy. For this reason, the code in the if-then branch would be required
to never modify high-integrity values. Clearly the administrator shell can
make any change to the system including, e.g., modifying user passwords,
and this program would be consequently rejected.

One of the motivations for hashing passwords is to protect confiden-
tiality. In fact, if the hash function is one-way, it is infeasible for an
opponent to find a password whose hash matches the one stored in the
password file. In practice, brute force dictionary attacks suggest that the
password file should be nevertheless kept inaccessible to non administra-
tors, as it is done, e.g., in the shadow password mechanism of Unix. How-
ever, if password entropy is ‘high enough’ it might be safe to let every user
access the hashed passwords. Formally, this would correspond to assign-
ing the array passwd[] a low-confidentiality security level. Consider now
the following update of Alice’s password to the new, high-confidentiality
value alice pwd:

passwd[alice] := hash(alice_pwd);

This assignment would be rejected by usual type systems for noninterfer-
ence, as it downgrades the confidentiality level of the password.

Hash functions are also often used for integrity checks. We consider a
software producer who wants to distribute an application on the Internet,
using different mirrors in order to speedup the downloads. A common way
to assure users downloading a binary file my blob.bin from mirrors of its
integrity, is to provide them with a trusted digest swdigest of the original
program. The browser would then run a code similar to the following:

if (hash(myblob.bin) = swdigest) then
trusted_blob.bin := my_blob.bin;
<< install trusted_blob >>

The idea is that the user will install the given binary only if its digest
matches the one of the original program provided by the software com-
pany. In fact, if the hash function is collision resistant, it would be infea-
sible for an attacker to modify the downloaded program while preserving
the digest. Once the check succeeds, my blob.bin can be safely ‘promoted’
to high-integrity and installed into the system. This is modelled by assign-
ing my blob.bin to the high-integrity variable trusted blob.bin. This is
usually regarded as a direct integrity flaw and rejected by usual type
systems for noninterference. Moreover, installing the application can be
thought as writing into a high-integrity area of the file system and, as for
the root shell above, would be forbidden in a branch with a low-integrity
guard.

Our contribution. We have discussed how typical examples of programs
that use cryptographic hash functions break standard notions of nonin-
terference, even if they are intuitively secure. In this work, we study how
to extend noninterference notions so that such kinds of program can be
type checked and proved secure. We model hash functions symbolically:
the hash of a value v is simply h(v). We do not assume any deconstruc-
tor allowing to recover v from h(v) thus modelling the fact h is one-way,
and we also assume h(v) = h(v ′) if and only if v = v ′, modelling colli-
sion resistance. As is customary in symbolic settings, what has negligible
probability in the computational world becomes here impossible.

We focus on what we informally call ‘match-it-or-die’ programs which,
like the above examples, always perform integrity checks at the outer level
and fail whenever the check is not passed. For these programs, the at-
tacker is not interested in causing a failure, as no code would be executed
in such a case. This enables us to type check programs that assign to high-
integrity variables even in a low-integrity if branch, as in the Unix su ex-
ample. We then observe that assignments such as trusted blob.bin :=
my blob.bin are safe under the check hash(myblob.bin) = swdigest.
In fact, since swdigest is high-integrity, when its value matches the one
of hash(myblob.bin), we are guaranteed that myblob.bin has not been
tampered with. This allows us to type check programs like the application
downloading example.

Moreover, we investigate the confidentiality requirements for using
hash functions to preserve data secrecy. We first observe that if the en-
tropy of the hashed value is low an attacker might try to compute, by
brute force, the hash of all the possible values until he finds a match.
We thus select, as our starting point, a recent noninterference variant

called secret-sensitive noninterference [6] which distinguishes small and
big secrets and allows us to treat their corresponding digests accordingly.
If a secret is big, meaning that it is infeasible to guess its actual value,
then the brute force attack above is also infeasible. We show that it is
safe to downgrade the hash of a big secret, assuming some control over
what secret is actually hashed. In fact, two hashes of the same big secret
are always identical and the opponent might deduce some information by
observing equality patterns of digests. This requires a nontrivial exten-
sion of the notion of memory equivalence so to suitably deal with such
equality patterns.

Finally, we give a security type system to statically enforce that pro-
grams guarantee the proposed noninterference notions.

Structure of the paper. In Section 2 we give the background on secret-
sensitive noninterference [6]; Section 3 extends the noninterference notions
so to correctly deal with hash functions. Integrity check by equality is
analyzed in Section 4. The security type system enforcing noninterference
is given in Section 5 while Section 6 discusses related works. The paper
closes with some final remarks and ideas for future work in Section 7.

2 Secret-sensitive Noninterference

Secret-sensitive noninterference (SSNI) [6], by Demange and Sands, is
a variant of noninterference which distinguishes small, guessable secrets
from big, unguessable ones. As discussed in the introduction, this dis-
tinction will be useful to discipline the downgrading of digests of secret
values, as we will see in Section 3.

Size aware security lattice. Secrets are partitioned into big (Hb) and

Fig. 1 Size aware Lattice

small (Hs) ones. Preorder vC among con-
fidentiality levels is defined as L vC
Hb vC Hs, meaning that public, low data
can be regarded as secret and, as dis-
cussed above, small secrets need to be
treated more carefully than big ones. We
extend this size aware confidentiality lat-
tice by composing it with the basic two-
level integrity lattice in which H vI L.
Notice that integrity levels are contravari-
ant: low-integrity, tainted values have to

be used more carefully than high-integrity, untainted ones. The product

of these two lattices is depicted in Figure 1. We will write ` = `C`I to
range over the product lattice elements. The ordering between the new
security levels ` is denoted by v and is defined as the componentwise
application of vC and vI .

Language. Programs under analysis are written in a standard impera-
tive while-language. We assume a set of variables Var ranged over by x , a
set of values Val ranged over by v and a set of arithmetic and boolean op-
erations ranged over by op . The syntax for expressions e and commands
c follows.

e ::= x | e1 op e2

c ::= skip | x := e | if e then c1 else c2 | while e do c | c1; c2

Memories M : Var → Val are finite maps from variables to values. We
write e ↓M v to note the atomic evaluation of expression e to value
v in memory M. Command semantics is given in terms of a small-step
transition between configurations 〈M, c〉. Transitions are labeled with an
event α ∈ Var ∪ {τ} indicating that an assignment to variable α (or
no assignment if α is τ) has happened. Command semantics rules are
standard and are omitted here for lack of space; they can be found in the
full version of the paper [4].

Observable behaviour. We assume to have a security environment Γ
mapping variables to their security levels. Users at level ` may only read
variables whose level is lower or equal than `. Let M|` be the projection
of the memory M to level `, i.e., memory M restricted to variables visible
at level ` or below.

Definition 1 (Memories `-equivalence). M and M′ are `-equivalent,
written M =` M′, if M|` = M′|`.

Intuitively, users at level ` will never be able to distinguish two `-equivalent
memories M and M′.

Similarly, users may only observe transitions assigning to variables at
or below their level. Transition α−→` is defined as the least relation among
configurations such that:

〈M, c〉 x−→ 〈M′, c′〉 Γ (x) v `
〈M, c〉 x−→` 〈M′, c′〉

〈M, c〉 α−→ 〈M′, c′〉 α = τ or α = x with Γ (x) 6v `
〈M, c〉 τ−→` 〈M′, c′〉

We write α⇒` to denote τ−→
∗
`
α−→`, if α 6= τ , or τ−→

∗
` otherwise. Transitions

τ⇒` are considered internal, silent reductions which are unobservable by
anyone. Notice, instead, that for observable transitions x⇒`, the level of x
is always at or below `, i.e., Γ (x) v `.

Secure programs. The main idea of SSNI [6] is that for unguessable
secrets, brute force attacks will terminate only with negligible probability.
Intuitively, this allows for adopting a termination insensitive equivalence
notion when comparing program behaviour. Guessable secrets, instead,
can be leaked by brute force using ‘termination channels’, and for those
values it is necessary to distinguish between terminating and nontermi-
nating executions.

A configuration 〈M, c〉 diverges for `, written 〈M, c〉 ⇑`, if it will
never perform any `-observable transition x−→`. A termination insensitive
`-bisimulation requires that observable transitions of the first program
are simulated by the second one, unless the latter diverges on ` meaning
that it cannot execute any observable action at or below `.

Definition 1 (Termination insensitive `-bisimulation)
A symmetric relation R on configurations is a termination insensitive `-
bisimulation (`-TIB) if 〈M1, c1〉 R 〈M2, c2〉 implies M1 =` M2 and when-
ever 〈M1, c1〉

α−→` 〈M′1, c′1〉 then either

– 〈M2, c2〉
α⇒` 〈M′2, c′2〉 and 〈M′1, c′1〉 R 〈M′2, c′2〉 or

– 〈M2, c2〉 ⇑`

Configurations 〈M1, c1〉, 〈M2, c2〉 are termination insensitive `-bisimilar,
written 〈M1, c1〉 ≈` 〈M2, c2〉, if there exists a `-TIB relating them.

Termination sensitive bisimulation, instead, always requires observable
actions to be simulated.

Definition 2 (Termination sensitive `-bisimulation)
A symmetric relation R on configurations is a termination sensitive `-
bisimulation (`-TSB) if 〈M1, c1〉 R 〈M2, c2〉 implies M1 =` M2 and when-
ever 〈M1, c1〉

α−→` 〈M′1, c′1〉 then 〈M2, c2〉
α⇒` 〈M′2, c′2〉, 〈M′1, c′1〉 R 〈M′2, c′2〉.

Configurations 〈M1, c1〉 and 〈M2, c2〉 are termination sensitive `-bisimilar,
written 〈M1, c1〉 '` 〈M2, c2〉, if there exists a `-TSB relating them.

A secure program will preserve small secrets from being leaked via the
termination channel while will be more liberal with respect to the big ones.
This is achieved by requiring termination sensitive bisimilarity whenever
the inspected memories are the same at level HbL, meaning they only

differ on small secrets. Notice that, as usual, the attacker is assumed to
be at level LL.

Definition 3 (Secret-sensitive NI)
A command c satisfies secret-sensitive NI if ∀ M1 =LL M2 it holds

1. 〈M1, c〉 ≈LL 〈M2, c〉 and
2. M1 =HbL M2 implies 〈M1, c〉 'HbL 〈M2, c〉.

3 Hash Functions and Secrecy

This section extends secret-sensitive NI to programs that use hash func-
tions. As already observed, hash functions could be subject to brute force
attacks, unless the hashed messages are big enough to make exhaustive
search infeasible. The idea is to take advantage of the two distinct se-
cret levels Hb and Hs to protect digests of small secrets and treat more
liberally the digests of big secrets.

Hash expressions. The language of the previous section is augmented
with a new hash expression whose semantics is defined in terms of a special
constructor h. Formally, hash(e) ↓M h(v) if e ↓M v with v ∈ Val . We then
partition Val into the sets of small and big values Vals, Val b, ranged
over by vs and vb. We define the sets of small and big digests as Valdδ =
{h(v) | v ∈ Val δ}, with δ ∈ {s, b}. As discussed in the introduction,
this simple modelling of hash functions is coherent with the assumption
of being one-way (no deconstructor expressions) and collision resistant
(digests of different values never collide).

Memories `-equivalence. Lifting the notion of memory equivalence
when dealing with digests requires to carefully handle equality patterns.
In fact, in our symbolic model, equal digests will correspond to equal
hashed messages.

Consider the program x := hash(y), where x is a public variable and
y is a secret one. It must be considered secure only if y is a big secret
variable, indeed leaking the digest of a small secret is equivalent to directly
reveal the secret since an attacker could perform a brute force attack on
the hash.

The equivalence notion between memories needs, however, to be re-
laxed in order to capture the fact that big secrets are, in practice, ran-
dom unpredictable values. We illustrate considering again x := hash(y)
and assuming y to be a big secret variable. We let M1(x) = 0 = M2(x),

M1(y) = vb 6= v ′b = M2(y), then it holds M1 =LL M2. Executing the above
code the resulting memories differ on the value stored in the public vari-
able x: M′1(x) = h(vb) 6= h(v ′b) = M′2(x). It follows that M′1 6=LL M′2 and
the program does not respect noninterference so it would be rejected as in-
secure. However, vb and v ′b are two big random numbers and we can never
expect they are equal. Thus, the only opportunity for the attacker is to
see if they correspond to other big values in the same memory. Requiring
the equality of big secrets and digests across memories is, consequently,
too strong.

This boils down to the idea of patterns, already employed in [5,7,8]
for cryptographic primitives. We illustrate through an example. Consider
program z := hash(x); w := hash(y) where z and w are public variables and
x and y are big secrets. Consider the following memories:

M1 M2

x : vb x : vb
y : v ′b y : vb
z : 0 z : 0
w : 0 w : 0

(1)

executing the above code would make public two different digests in M1

and the very same digests in M2. The attacker is able to learn that the
first memory stores two different secrets values while the second does
not. In summary, we do not require the equality of big secrets and digests
across memory but only that the equality patterns are the same.

As the last example shows, in order to safely downgrade digests of big
secrets we need to control how big secrets are stored in the memories.
We do this by projecting out from memories big secret values which are
either stored in big secret variables or hashed and observable from `. This
is done by the following function r, taking as parameters the value v and
the level `v of a variable.

r`(v , `v) =

v if v ∈ Val b and `v = Hb`I
v ′ if v = h(v ′), v ′ ∈ Val b and `v v `
0 otherwise

A big secret projection r`(M) is defined as r`(M)(x) = r`(M(x), Γ (x)), for
all x ∈ Dom(M). Two memories will be comparable if their big secret
projections can be matched by renaming big values , i.e., if two big values
are the same in one projection then it will also be the case that they are
equal in the other one.

Definition 4 (Comparable memories)
Two memories M1 and M2 are `-comparable, noted M1 ./` M2, if there
exists a bijection µ : Val b → Val b such that r`(M1) = r`(M2)µ.

Example 1. The two above memories (1) are not comparable if observed
at level LL, i.e., M1 6./LL M2. In fact, r`(M1)(x) = vb 6= v ′b = r`(M1)(y)
while r`(M2)(x) = vb = vb = r`(M2)(y). Thus there exists no bijection µ
such that r`(M1) = r`(M2)µ, since µ cannot map vb to both vb and v ′b.

Two memories are `-equivalent if they are `-comparable and their observ-
able big digests expose the same equality patterns. A digest substitution
ρ is a bijection on digests of big values: ρ : Valdb → Valdb .

Definition 5 (Memory `-equivalence with hash functions)
Two memories, M1 and M2, are `-equivalent, written M1 =h

` M2, if M1 ./`
M2 and there exists a digest substitution ρ such that M1|` = M2|` ρ.

Secure programs. The bisimulation definitions given in the previous
section are left unchanged except for the relation used to compare memo-
ries which is now =h

` in place of =`. Secret-sensitive NI is thus rephrased
as follows.

Definition 6 (Secret-sensitive NI with hash functions)
A command c satisfies secret-sensitive NI if ∀ M1 =h

LL M2 it holds

1. 〈M1, c〉 ≈LL 〈M2, c〉 and
2. M1 =h

HbL
M2 implies 〈M1, c〉 'HbL 〈M2, c〉.

4 Proving Integrity by Equality

In a recent work [5], we prove integrity of low-integrity data using Mes-
sage Authentication Codes (MACs). The secrecy of the MAC key ensures
the integrity of the exchanged data: once the MAC is recomputed and
checked, we are guaranteed that no one has manipulated the received
data. This work generalizes the idea by applying it to the simpler case
of an equality test with respect to a high-integrity value: if the test is
successful we are guaranteed that the compared, low-integrity, value has
not been tampered with.

Integrity can be checked via noninterference by placing the observer
at level HsH. This amounts to quantifying over all the values in low-
integrity variables and observing any interference they possibly cause on
high-integrity variables.

Definition 7 (Integrity NI)
A program c satisfies integrity NI if for all M1,M2 such that M1 =HsH M2

it holds 〈M1, c〉 ≈HsH 〈M2, c〉.

Consider the program if (x = y) then c1 else c2 where x is a low-
integrity variable and y is a high-integrity one. If either c1 or c2 mod-
ifies high-integrity variables this program is rejected. If it were not, an
opponent manipulating the low-integrity variable x might force the pro-
gram to execute one of the two branches and gain control on the fact
high-integrity variables are updated via c1 or c2.

Consider now the case of the simplified su utility discussed in the in-
troduction. Similarly to what we have seen above, an attacker might insert
a wrong administrator password making the check fail. However, the pro-
gram is in what we have called match-it-or-die form: the else branch is
empty and nothing is executed after the if-then command. In the defi-
nition we have given, we obtain that the program diverges and the ter-
mination insensitive notion of Integrity NI would consider the program
secure.

A special case of integrity test is the one which involves the compari-
son between the on-the-fly hash of a low-integrity message and a trusted
variable. Upon success, integrity of the untrusted data will be proved and
it will be possible to assign it to a high-integrity variable. Consider the
following program where y and z are trusted variables while x is a tainted
one.

if (hash(x) = y) then
z := x;

As in the software distribution example of the introduction the assignment
is safe, since it will be executed only if the contents of the variable x has
been checked to be high-integrity by comparing its digest with the high-
integrity digest y.

5 Security Type System

This section presents a security type system to statically analyze programs
that use hash functions and derive data integrity by equality tests.

The proposed solution is based on the type system by Demange and
Sands [6]. We only report typing rules for expressions and integrity check
commands. All the remaining rules are as in [6].

We distinguish among four different types of values: small, big and
their respective digests. Value types V T are S (small), B (big), S# (hash

of a small) and B# (hash of a big) and are ranged over by vt. These value
types are populated by the respective values:

(v-small)
v ∈ Vals
` v : S

(v-big)
v ∈ Valb
` v : B

(v-hashs)
v ∈ Valds

` v : S#
(v-hashb)

v ∈ Valdb

` v : B#

Security types are of the form τ = λ`, where λ ∈ {P,D} distinguish
between plain values and digests, while ` is the associated security level. A
security type environment ∆ is a mapping from variable to their security
types. Given τ = λ` the two functions T and L give respectively its
variable type and security level, i.e., T(τ) = λ and L(τ) = `.

A subtype relation is defined over security types, it is meant to pre-
serve λ, as we do not want to mix plain values with digests. Moreover
plain big secrets do not appear in the relation meaning that they can
only be picked from Val b. Subtyping ≤ is the least relation such that
τ1 ≤ τ2 if T(τ1) = T(τ2) = D and L(τ1) v L(τ2) or T(τ1) = T(τ2) = P,
L(τi) 6= Hb`I and L(τ1) v L(τ2).

To prove that the type system enforces the security properties stated
above it must be that plain big secret variables really store big values. To
guarantee that small values are never assigned to big variables a conserva-
tive approach will be taken: every expression which involves an operator
and returns a plain value lifts the confidentiality level of its result to
Hs, whenever it would be Hb. The following function on security levels
performs this upgrade:

`t =
{

Hs`I if ` = Hb`I
` otherwise

A variable x respects its security type τ = λ` with respect to a memory
M if λ = P and ` M(x) : S or ` M(x) : B and similarly if λ = D then
` M(x) : S# or ` M(x) : B#. A memory will be said to be well-formed if it
respects the type of its variables, more precisely the expected properties
are:

1. All variable respects their security types
2. Public variables do not store plain big values
3. Plain big secret variables only store big values.

From now on it will be supposed that all the memories are well-formed
and indeed it can be proved that memory well-formedness is preserved by
typed programs.

Expression typing rules are depicted in Table 1. Rules (var) and (sub)
are standard. Rule (eq) types the equality test of two expressions requiring
that they type the same τ and judging the (boolean) result as a plain small

Table 1 Security Type System - The Most Significant Rules
Expressions

(var)
∆(x) = τ

∆ ` x : τ
(sub)

∆ ` e : τ ′ τ ′ ≤ τ
∆ ` e : τ

(eq)
∆ ` e : τ ∆ ` e2 : τ L(τ) = `

∆ ` e1 = e2 : P`t
(op)

∆ ` e1 : P` ∆ ` e2 : P`

∆ ` e1 op e2 : P`t

(hash-b)
∆ ` x : PHb`I

∆ ` hash(x) : DL`I
(hash-s)

∆ ` x : P`

∆ ` hash(x) : D`

Integrity Test Commands

(int-test)

∆ ` x : τ ∆ ` y : τ ′ T(τ) = T(τ ′)
L(τ) = `CL L(τ ′) = `CH `C vC Hb ∆ ` c : (`CH, t, f)

∆ ` if x = y then c else FAIL : (`CH, t t `CL, ↑)

(int-hash)

∆ ` x : P`CL ∆ ` y : D`CH
∆(z) = P`CH `C vC Hb ∆ ` c : (`CH, t, f)

∆ ` if hash(x) = y then z := x ; c else FAIL : (`CH, t t `CL, ↑)

value. Rule (op) let any operator to be applied only to plain expressions,
since in our symbolic model of the hash function no operation is defined on
digests except for the equality test. These two rules use the `t function to
promote the confidentiality level of their result to Hs whenever necessary,
as already discussed above.

Hashes are typed either by (hash-b) or (hash-s). Rule (hash-b) per-
forms a controlled declassification, the idea is that since the message is a
plain big value its secrecy is not broken by releasing its digest. Indeed it
can be proved that this does not break noninterference. The latter typ-
ing rule does nothing special and just preserve the security level of its
argument.

The type system has to enforce a termination insensitive noninterfer-
ence for big secrets and termination sensitive for small ones. This latter
requirement can be achieved by some strong limitations on the while loops
[13] or by accounting for the termination effect of a command [3,11]. De-
mange and Sands type system [6] is built upon the work of Boudol and
Castellani [3]. For lack of space, we only illustrate the two new rules added
to the SSNI original type system [6]. The remaining type system can be
found in the full version of the paper [4].

A command type is a triple (w, t, f) where w and t are security levels
and f is a termination flag ranging over ↓ and ↑ which respectively note

that the command always terminates or that it could not terminate. A
program is considered to be always terminating if it does not contain any
while loop. The two flags are ordered as ↓v↑. A type judgement of the
form ∆ ` c : (w, t, f) means that c does not assign to variables whose
security level is lower than w (w is the writing effect of c), observing the
termination of c gives information on variables at most at level t (t is the
termination effect of c) and the termination behaviour is described by f .

Rules (int-test) and (int-hash) are new contributions of this work and
implement the integrity verification tests discussed in Section 4. The for-
mer one let a trusted computation happens if the integrity of a tainted
variable is proved by an equality test with an untainted one. The latter
is pretty similar but is specific for the hash case and asserts that the in-
tended original message, stored in the untrusted variable used to compute
the on-the-fly digest, can be assigned to a trusted variable, whenever the
check succeeds.

The else branch in both cases must be the special command FAIL. It is
a silent diverging while loop of the form while true do skip. Requiring that
each integrity test command executes such a program in case its guard
condition is not satisfied assure that all the typed programs are in the
‘match-it-or-die’ form. In fact, upon failure no observable actions will be
ever executed which is equivalent to say that, from an attacker point of
view, no code would be run.

The confidentiality level of the variables involved in (int-test) and
(int-hash) guard is constrained to be at most Hb to avoid brute force
attacks to small secrets. The command in the if branch (c) is typed with
a writing effect which has an high-integrity level, thus letting it to have
write clearance to high-integrity variables, and the same confidentiality
level as the two expressions compared in the guard. The termination effect
of the overall command is constrained by the one of c and by `CL since
the test contains variables which are at most at that security level. Note
that the two integrity tests would be potentially non terminating due to
the FAIL branch.

Results. The proposed type system enforces the security properties given
in Section 3 and Section 4: If a program type checks then it is both secret-
sensitive and integrity noninterferent.

Theorem 1 (SSNI by typing)
If ∆ ` c : (w, t, f) then c satisfies Secret-sensitive NI.

Theorem 2 (Integrity NI by typing)
If ∆ ` c : (w, t, f) then c satisfies integrity NI.

Proofs are omitted here for lack of space but can be found in the full
version of the paper [4]. In the Appendix the simplified su utility and
the software distribution examples given in the introduction, are shown
to type check. A program which let a user update its password is also
presented and typed.

6 Related Works

This section discusses related work in the literature.

Hash functions. A secure usage of hash function in the setting of infor-
mation flow security has been already explored by Volpano in [12]. There
are, however, many difference with respect to our work. First, Volpano
does not account for data integrity and, consequently, integrity checks,
which is one of the major contributions of our work. On the other side, we
limit our study to a symbolic treatment of hash functions, distinguishing
between two different kind of secrets, while Volpano aims at a computa-
tional result.

Secrecy. The use of patterns to define a memory equivalence notion
suitable to be used to compare digests, originates from the work of Abadi
and Rogaway [2] and Abadi and Jürjens [1] whose aim was to establish a
link between the formal and computational treatment of encryption. The
same idea has recently been applied in the information flow security [7,8]
to prove that randomized cyphertexts could be leaked without breaking
noninterference. Deterministic encryption has been modeled in a symbolic
setting for information flow by Centenaro, Focardi, Luccio and Steel [5]
extending the idea of pattern. That work anyway does not account for
hash functions. The distinction between big and small secrets and the two
different bisimilarity notions which have to be applied to protect them is
completely inspired by Demange and Sands [6].

Integrity checks. A recent work on the type checking of PIN process-
ing security APIs [5] already implements an integrity test by means of
Message Authentication Codes (MACs). It might appear that this was
possible thanks to the usage of a secret key in the computation of the
MAC. Instead, this work shed new light on the fundamental reasoning
underlying such integrity checks, which are generalized to a less restric-
tive context and also applied to the special case of the hash function.

7 Conclusions

We have studied the security of programs that use hash functions in the
setting of information flow security. We have shown how to prove data
integrity via equality tests between a low and a high-integrity variable.

We have extended secret-sensitive noninterference to guarantee that
leaks via the hash operator could not occur: the intuition is that the digest
of a big enough secret s would not be subject to a brute force attack and
so releasing it to the public will not break the confidentiality of s.

A classical noninterference property has been instead used to check
that secure programs do not taint high-integrity data. Equality tests to
enforce data integrity have been introduced: this idea is a generalization
of the integrity proof performed using Message Authentication Codes
(MACs) in [5]. The equality of a tainted variable with a trusted one is
regarded as an evidence of the fact that the value stored in the untrusted
variable is indeed untainted. This kind of integrity proof is widely adopted
in real applications and this work gives the tools to reason about its
security.

Future Work. Hash functions could be used in commitment protocols.
Suppose Anna challenges Bruno to solve a problem and claims she has
solved it. To prove her statement Anna takes the answer and appends it
to a random secret nonce, she then sends the hash of such message to
Bruno. When the challenge finishes or when Bruno gives up, Anna has
to reveal him the secret nonce thus he can check that the correct answer
was sent in the first step of the process.

Formally studying this scenario in an information flow setting would
be challenging. Some form of declassification would be allowed since at
certain point in time the secret nonce has to be released. When the ran-
dom will be downgraded then the digest could not be thought to protect
Anna’s answer anymore. Analyzing the security of this problem will re-
quire an interaction of a declassification mechanism, suitable to reason
about the when dimension of downgrading [10], with the solution pre-
sented here for the secure usage of hash functions.

To guarantee that small values are never assigned to big variables we
have taken the very conservative approach of forbidding expressions to
return a big secret. In practice, this might be relaxed by adding some
data flow analysis in order to track values derived from big secrets. For
example, the xor of two different big secrets might be considered a big
secret, but the xor of two equal big secrets is 0. We intend to investigate
this issue more in detail in the next future.

One of the anonymous reviewer has let us notice a strong similarity
between our notion of memory equivalence, based on patterns, and the
notion of static equivalence in process calculi. Big secrets resemble the
notion of bound names which can be α-converted preserving equality
patterns. We leave as a future work the intriguing comparison between
the two formal notions.

Acknowledgements. We would like to thank the anonymous reviewers
for their very helpful comments and suggestions.

References

1. Mart́ın Abadi and Jan Jürjens. Formal eavesdropping and its computational in-
terpretation. In Proceedings of the 4th International Conference on Theoretical
Aspects of Computer Software (TACS), volume 2215 of LNCS, pages 82–94, To-
hoku University, Sendai, Japan, October 29-31 2001. Springer.

2. Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). JCRYPTOL: Journal of Cryptol-
ogy, 15(2):103–127, 2002.

3. Gérard Boudol and Ilaria Castellani. Noninterference for concurrent programs. In
Proceedings of International Colloquium on Automata, Languages and Program-
ming (ICALP), volume 2076 of LNCS, pages 382–395, Crete, Greece, July 2001.
Springer.

4. Matteo Centenaro and Riccardo Focardi. Match it or die: Proving integrity by
equality. http://www.dsi.unive.it/~mcentena/cf-hash-full.pdf, 2009.

5. Matteo Centenaro, Riccardo Focardi, Flaminia L. Luccio, and Graham Steel. Type-
based analysis of pin processing apis. In Proocedings of the 14th European Sym-
posium on Research in Computer Security (ESORICS), volume 5789 of Lecture
Notes in Computer Science, pages 53–68, Saint-Malo, France, September 21-23
2009. Springer.

6. Delphine Demange and David Sands. All secrets great and small. In Programming
Languages and Systems, 18th European Symposium on Programming (ESOP), vol-
ume 5502 of Lecture Notes in Computer Science, pages 207–221, York, UK, March
22-29 2009. Springer.

7. Riccardo Focardi and Matteo Centenaro. Information flow security of multi-
threaded distributed programs. In Proceedings of the 3rd ACM SIGPLAN Work-
shop on Programming Languages and Analysis for Security (PLAS), pages 113–124,
Tucson, AZ, USA, June 8 2008. ACM Press.

8. Peeter Laud. On the computational soundness of cryptographically masked flows.
In George C. Necula and Philip Wadler, editors, 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), pages
337–348, San Francisco, Ca, USA, January 10-12 2008. ACM Press.

9. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

10. Andrei Sabelfeld and David Sands. Declassification: Dimensions and principles.
Journal of Computer Security, 17(5):517–548, January 2009.

11. Geoffrey Smith. A new type system for secure information flow. In Proceedings of
the 14th IEEE Computer Security Foundations Workshop (CSFW), pages 115–125,
Cape Breton, Nova Scotia, June 11-13 2001. IEEE.

12. Dennis Volpano. Secure introduction of one-way functions. In Proceedings of the
13th IEEE Computer Security Foundations Workshop (CSFW), pages 246–254,
Cambridge, England, July 3-5 2000. IEEE.

13. Dennis Volpano and Geoffrey Smith. Eliminating covert flows with minimum
typings. In Proceedings of the 10th Computer Security Foundations Workshop
(CSFW), pages 156–169, Rockport, Massachusetts, USA, June 10-12 1997. IEEE
Computer Society.

Appendix

A Case studies

In this section the case studies presented in the introduction are shown
to type check and a new example will be introduced. Note that some
syntactic sugars which were given introducing the examples has been
removed here in order to show fully typed codes.

A simplified su command The first example is a simplified version of
the su Unix utility. Let root shell be a command which requires an high-
integrity level to be computed, i.e., ∆ ` root shell : (`CH, t, f). The user
entered password t pwd will be deemed to be secret and low-integrity, i.e.,
∆(t pwd) = PHbL. root passwd, instead, stores the digest of the admin-
istrator password and it will be a high-integrity data since it is supposed
to be stored in a write-protected file, let ∆(root passwd) = D`CH. Note
that the array notation have been replaced by a single variable, this does
not affect the aim of the example which is proving the security of the
Unix implementation of the password-based authentication mechanism.

trial := hash(t_pwd);
if (trial = root_passwd) then

root_shell;
else

FAIL;

The password is supposed to be strong thus it has been typed as a big
secret. If such an assumption is removed, the code does not type, in-
deed the above program could be used to mount a brute-force attack on
the password. The type system prevents such fact by requiring that the
confidentiality level of the guard is at most a big secret in rule (int-test).

The confidentiality level of root passwd could be either setted to L
or Hb. This models the fact that having strong passwords, they could be
safely stored in a public location.

Let∆(trial) = DHbL, the expression hash(pwd) is typed DHbL by rule
(hash-b) and the first assignment is then typed (HbL, LH, ↓) by (assign).
The if branch is typed (HbH,HbL t t, ↑) by (int-test): if `C = L by sub-
typing root passwd will be typed DHbH while if `C = Hb nothing special
is needed. The sequential composition of the two commands is then typed
by (seq-1), indeed LH v HbL.

Software Distribution A software company distributes an application
using different mirrors on the Internet. Having downloaded the program
from one of the mirrors, a user will install the given binary only if its
digest matches the one of the original application provided by the software
company.

if (hash(my_blob.bin) = swdigest) then
trusted_blob.bin := my_blob.bin;
install := 1;

else
FAIL;

Let my blob.bin be the variable storing the downloaded binary, it is
a low-integrity public variable, i.e., ∆(my blob.bin) = PLL. The trusted
digest given by the software company is stored in the swdigest variable
which is a high-integrity one (∆(swdigest) = DLH). The installation of
the application is simulated by first saving the low-integrity binary in the
trusted location trusted blob.bin (∆(trusted blob.bin) = PLH) and
then by assigning 1 to the high-integrity variable install (∆(install) =
PLH).

The if branch types (LH, LL, ↑) by (int-hash), indeed all the require-
ments on variables are satisfied by letting `C = L in the typing rule and,
the assignment to install types (LH, LH, ↓).

A new case study is now introduced, it shows a program which let a
system administrator to manage the password file.

A simplified passwd This example presents a password update utility.
It is a simplified version of the passwd Unix command where we require
that only the administrator can perform such a task. This is due to the
fact that the integrity of the password file must be preserved.

Three parameters are expected: the administrator password and the
user old and new passwords.

root_trial := hash(t_root);
user_trial := hash(old);
if (root_trial = root_passwd) then

if(user_trial = user_passwd) then
user_passwd := hash(new);

else
FAIL;

else
FAIL;

Variable root passwd stores the digest of the root password while
user passwd the hash of the user one. These model, as in the first exam-
ple, the needed portions of the password file (∆(root passwd) = DHbH
and ∆(user passwd) = DHbH). The typed root password t root is low-
integrity, i.e., ∆(t root) = PHbL as well as the root trial variable used
to store its digest (∆(root trial) = DHbL). Similarly, ∆(old) = PHbL
and ∆(user trial) = DHbL. The new variable which stores the new user
password must be regarded as high-integrity (∆(new) = PHbH). This time
the user input will be considered trusted since the intended user will be
authenticated and only in that case the new password will be used. This
is the only way to make the hash operator to type at a high-integrity
level when storing the digest of the new password to user passwd. In
fact, there is no way to prove the integrity of a fresh new password by
equality test.

The first two assignments type (HbL, LH, ↓) by (assign). The inner-
most if branch types (HbH,HbL, ↑) by (int-test): variable user passwd
types DHbH and user trial DHbL, the assignment to user passwd types
(HbH, LH, ↓) by (assign) and the hash expression is typed by DLH by
(hash-b) and promoted by subtyping to DHbH. In a similar way the main
if branch is again typed by (int-test) obtaining (HbH,HbL, ↑).

The whole program is thus typed (HbH,HbL, ↑) by (seq-1).

