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Abstract

A variant of the Mobile Ambient calculus, called Boundary Ambients, is introduced,
supporting the modelling of multi-level security policies. Ambients that may guar-
antee to properly protect their content are explicitly identified as boundaries: a
boundary can be seen as a resource access manager for confidential data. In this
setting, absence of direct information leakage is granted as soon as the initial process
satisfies some syntactic conditions. We then give a new notion of non-interference
for Boundary Ambients aiming at capturing indirect flows, too. We design a Control
Flow Analysis that computes an over-approximation of all ambients that may be
affected at run-time by high-level data and we show that this static analysis can be
used to enforce non-interference, i.e., to statically detect that no (direct or indirect)
information leakage is ever possible at run-time.

1 Introduction

The Mobile Ambient calculus [12] is a very interesting workbench to reason
about mobility related issues, in which security plays a crucial role. Our start-
ing point is the “core” version of Mobile Ambients, where no communication
primitives are present and the only possible actions are represented by the
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moves performed by mobile processes. We choose this basic calculus because
it allows us to study a very general notion of information flow security which
should be easily scalable also to more refined versions of the calculus such as,
e.g., Boxed Ambients [10], Safe Ambients [26], or BioAmbients [33].

Among the security models, the Bell-LaPadula model (BLP) [2] provides a
framework for handling data of different clearance levels (high and low, for
simplicity), and for this reason is also called multi-level security model. The
purpose of the model is to confine sensitive data at its correct level by means
of two access rules that are imposed by the system: No Read up prevents
users from accessing information for which they are not cleared to access;
No Write down prevents users (or more importantly software) from taking
more sensitive information and writing it into a less sensitive document. In
this way, the BLP model guarantees that data from a high security level can
never flow downwards to a lower security level. However, these two access
control rules are not sufficient to guarantee absence of information leakage,
as they do not prevent confidential information to be indirectly transmitted
through system side effects. For example, a user with a low clearance may
request to create a file of a given name. Suppose that a highly classified file of
the same name already exists, then the system might reply “request denied”
or, arguably worse, “request denied, a file with this name already exists”.
This represents a so-called covert channel that could potentially be exploited
to signal high-level information to a low process. The BLP model does not
prevent indirect information leakage due to the presence of shared resources.
It is then necessary to integrate this discipline with a covert channel analysis,
considering the whole flow of information.

In [5], we investigated how to express the BLP model in the Mobile Ambients
framework. To this aim, we introduced the notion of security boundary, that
allows us to identify ambients that may guarantee to properly protect their
content. The intuition is the following: a boundary separates the untrusted
environment from the trusted entities and data. Depending on the context, a
boundary may represent different security mechanisms. For example, it may
model cryptography, which protects data sent on public networks, or it may
represent a protected part of a file-system where confidential data are stored
in order to enforce some access control policy. Once the concept of security
boundary is introduced, it becomes easy to define what absence of (direct)
information leakage means: at run-time, every high-level data or process should
be always encapsulated into a boundary. Thus, a direct flow is defined as
a boundary crossing and may be statically detected by a suitable nesting
analysis.

As a first example of direct information flow, consider the following process,



that models how a bank may communicate a credit card number:
bank_db[ cc.number[out bank_db.Q] | P] .

The [] notation denotes an ambient, while [ ] is used to denote security
boundaries. The out capability, when it applies, moves the enclosing ambient
out of the target ambient bank_db, reaching a state of the system where the
credit card number is exposed to the possibly untrusted environment:

bank_db[ P] | cconumber[Q].

Notice that the flow illustrated above might happen after many interactions
with the bank database have been performed. As a consequence, it could be
non-trivial to discover the flaw by checking all possible executions, thus the
importance of an automatic method for the detection of these kinds of flows.

In this paper, we go one step further, facing the issue of detecting also indirect
information leakage. Consider the following example:

bank_db[[ cconumber[ P] | open cc.number. signal[out bank_db.S| | Q] .

As the credit card number is not moving out of the database, in this case no
direct information leakage ever arises. Instead, the presence of the credit card
number in the database may be tested through an open capability which can
be activated only if the target ambient is present as sibling and, only after
that, a low-level signal is sent out of the database. The reached state is:

bank_db[ P | Q] | signal[ S].

Since signal is low-level, this does not constitute a direct information leak-
age. However, we know that ambient signal exits the database only if the
credit card number cc_number is present, i.e., the presence of signal at the
environment level is caused by a confidential datum in the database. For this
reason, process open cc_number. signal [ out bank_db.S| can be seen as a Tro-
jan Horse program that has been erroneously downloaded and run inside the
bank database, which indirectly leaks high-level information.

In order to face both direct and indirect information flows, we proceed as fol-
lows. First, we extend the language by including boundaries in the semantics.
The advantage of this choice is that it allows to enforce a simple access control
policy that guarantees the absence of direct information flow, still leaving open
the much more intriguing issue of facing indirect information flow. Informally,
there is no confidential data leakage (both direct and indirect) if the system
behaviour is not influenced by high-level values/processes, i.e, if the high-level
part of the system is not able to “interfere” with the low-level one [22]. We
formalise this idea as in [1] by requiring that an interference-free process is



equal to the same process in which the names of high-level ambients have been
modified.

For instance, assume that the high-level value cc_number of the example above,
is changed into cc_number’: 1

bank_db] cconumber'[ Q] | open cc.number. signal[ out bank_db.S| | P].

Since the open capability cannot be performed anymore, the signal ambient
cannot move out the database. This difference is observable by a low-level
observer, and it makes the initial process not equivalent to the perturbed one.
This is due to the fact that there exists a causality between the actual high-
level values and the behaviour of signal. This casual influence gives rise to an
implicit information flow.

In order to automatically verify if a process is interference-free, we extend the
control flow analysis of [5] in two directions:

(1) the presence of boundary names in the language allows us to improve the
accuracy of the analysis, as constraints on boundary crossings reduce the
occurrences of possible nestings and prevent direct leakage to happen;

(7i) a set of suspect ambients is computed, which contains all high-level ambi-
ents and is closed under the following condition: every ambient that may
exercise a capability on a suspect ambient is suspect too.

Informally, this set of suspect ambients is an over-approximation of ambients
whose behaviour could be influenced by high-level ambients. We prove that if
the set of suspect ambients is protected inside security boundaries, then the
observable behaviour of the system does not change, i.e., there is no indirect
leakage.

The main contributions of our paper can be summarized as follows:

e Boundary Ambients: we extend Mobile Ambients by including in the seman-
tics the notion of boundaries. This provides a simple translation of the BLP
access control model into a core model of mobility. As mentioned above, the
concept of boundary has been first introduced in [5] to model BLP rules and
capture direct information leakage. However, in that work, boundaries had
no semantic import and were only used to check BLP violations and not to
enforce the BLP access control rules, as done in the new calculus presented
here;

e non-interference: we formalize non-interference in the Boundary Ambient
setting. As discussed above, this is done similarly to [1]. We will see, however,

1 We are assuming that the Trojan Horse open cc_number. signal [ out bank_db.S |
is not part of the initial process, this is why it is not affected by the substitution.



that our setting requires some technical subtleties in order to restrict the
set of observational contexts to the “well-behaving” ones, i.e., the ones that
do not leak information. This non-interference notion is orthogonal to the
idea of boundaries and should scale, with no substantial modifications, to
different settings, e.g., to other variants of Mobile Ambients.

e control flow analysis for non-interference: we extend the control flow analysis
of [5] in order to track potential causal relations among high and low level
ambients. This is done through the notion of suspect ambients introduced
above. The analysis of [5] is an extension of [28] in which we separate the
set of nestings occurring inside or outside a boundary, achieving a more
accurate over-approximation of the actual process behaviour. The extension
presented here would also work on the basic nesting analysis of [28], but with
strictly less precision, as we will show in Section 4.

To the best of our knowledge, there are no results in literature concerning
indirect information leakage detection in the communication-free fragment
Mobile Ambients [3]. The only related work we are aware of, follows a different
approach aiming at defining a type system that guarantees non-interference in
Boxed Ambients [13]. Moreover, the Control Flow Analysis approach allows
us to infer an over-approximation of ambient nestings and suspect ambients.
Thus, it leads to positive information also when process P is not recognised
as interference-free, as it may dramatically reduce the size of code inspection
either to find possible causes of information leakage, or to recognise it as a
false positive. This is valuable when compared with the verification approach
by prescriptive rules like in type-system approaches.

The rest of the paper is organised as follows. In Section 2, we introduce the
Boundary Ambient calculus and we formalise multi-level security in this set-
ting. In Section 3, we define the notions of direct and indirect information
leakage, whereas in Section 4, we introduce a control flow analysis to stati-
cally verify absence of indirect information leakage in the Boundary Ambients
framework. Section 5 concludes the paper with final remarks and comparisons
with related works.

2 The Boundary Ambient Calculus

The Mobile Ambient calculus was introduced in [12] with the main purpose
of explicitly modelling mobility. The notion of ambient captures simply and
powerfully the structure and properties of wide-area networks, mobile comput-
ing, and mobile computation. Ambients are arbitrarily nested boxes which can
move around through suitable capabilities. Boundary Ambients ( B-Ambients,
for short) extend Mobile Ambients with special ambients, called boundaries,
that are responsible of confining confidential information, thus enforcing an



access control mechanism.

In this section, we introduce the syntax and the semantics of the B-Ambient
calculus. Then, we introduce the Morris-style contextual equivalence [27] for
the ambient calculus as a way of equating process behaviours. Finally, by
exploiting the notion of boundary and a simple labelling of the core syntax
primitives, we describe how to formalise the Bell-LaPadula model [22] in the
setting of Mobile Ambients.

2.1 Syntax and Operational Semantics

The syntax of processes is the same of Mobile Ambients, except for the set of
ambient names Names, which is partitioned into two disjoint sets, Amb and
Bound: Amb represents the set of all ambient names and Bound represents the
set of all boundary names. The syntax is given in Figure 1, where n € Names,
i.e., n is either an ambient or a boundary.

Intuitively, the restriction (vn)P introduces the new (and unique) name n
and limits its scope to P; process 0 is the null process (no action) ? ; P | Q
indicates P and () running in parallel; replication is a technically convenient
way of representing recursion and iteration as ! P denotes any number of copies
of P in parallel. An ambient/boundary is written n[P] with n the name of
the ambient/boundary, and P the process running inside. In the following,
when writing n[ P] we implicitly assume that n is an ambient, i.e., n € Amb,
whereas the notation n P] will be used to denote the fact that n is a bound-
ary, i.e., n € Bound. The capabilities inn and out n move their enclosing
ambients/boundaries in and out n, respectively; the capability open n is used
to dissolve a sibling ambient/boundary n. The novelty of the calculus is the
fact that moves over boundaries are controlled: out n and open n, when n is
a boundary, are allowed only when the executing ambient is itself a boundary.
These requirements are enforced by side-conditions on the reduction rules for
the open and the out capabilities, as reported in Figure 2. The only name
binding operator is v: names that are not bound by a v operator are thus free
names. We denote by fn(P) the set of free names of process P, and by bn(P)
the set of bound names.

The operational semantics of a process P is given through a reduction relation
— and a structural congruence = between processes. They are depicted in
Figures 2 and 3, respectively. Reduction is defined by a family of inference
rules. Intuitively, P — () represents the possibility for P of reducing to @)
through some computation. We will write P —* () to denote, as usual, the

2 For the sake of readability, we will sometimes omit the terminating 0 at the end of
every process specification, e.g., we will write inn | n[] in place of inn.0 | n[0].



reflexive and transitive closure of P — (). The structural congruence, as for
Mobile Ambients, rearranges the syntax of a Boundary Ambient process in
order to bring potential interactors together. In addition, we identify processes
up to renaming of bound names: (vn)P = (vm)P{n «— m} if m & fn(P).
This means that these processes are understood to be identical, as opposite
to structurally equivalent.

Example 2.1 Let P; be a process modelling a query sent from a client to a
database:

P, = client| query[out client.in database.)|] |

database| open query.R] .

Initially, query is inside client. Then, it exits the client and enters the database
by applying its capabilities out client and in database, respectively. Thus,
process P; moves to:

client[0] | database[ query[ Q] | open query.R].

Once the database has received the query, it reads its content by consuming
its open query capability. At this point, P, reaches the state client[0] |
database[@Q | R]. The query is then processed by the interaction of @ and
R. Observe that in the example there is no restriction over the moves because
none of the actors in P; is a boundary. o

Example 2.2 We can now exploit boundaries in order to model a simple
access control mechanism. In some situations, critical operations need to be
executed in a secure and protected environment. For example, let P, be a
process modelling a safe inside a bank caveau caveaul, i.e.,

Py = caveaul| safe] out caveaul.in caveau2 | Q] |
|
open safe

caveau2 [ open safe] .

Notice that, in this case, caveaul, caveau2 and safe are boundaries, thus,
according to the semantics of B-Ambients, the open safe capability can be
performed only when safe is inside one of the caveaux, which prevents safe to



be opened by any ambient at the environment level. Thus, P, moves to

Py = caveaul[ 0]

open safe | safe[in caveau2 | Q]

caveau2[ open safe] ,

but the open capability cannot be performed on the boundary safe at the
environment level. For this reason, the only possible reduction leads the system
to:

Py = caveaul[[0]
|

open safe

caveau2[ open safe | safe[ Q] ]

where, safe can finally be opened. o

2.2 Observational Equivalences

We now recall some definitions in [23] about contexts and observables that will
be useful in the following sections. In fact, the notion of information leakage
we will introduce in Section 3.2 is based on a form of Morris-style contextual
equivalence [27] (otherwise known as may-testing equivalence) for the ambi-
ent calculus. Two processes are contextually equivalent if and only if they
admit the same observations whenever they are inserted inside any arbitrary
context. In the setting of the ambient calculus, contextual equivalence is de-
fined in terms of observing the presence, at the top-level of a process, of an
ambient /boundary whose name is not restricted.

Definition 2.3 (Context: C) A context C is a process containing zero or
more holes. In the following, we write C(P) for the outcome of filling each
hole in the context C with process P.

Example 2.4 Let P; be a process of the form P; = s[Q] | b[R], and C a
context of the form C(_) = ¢[S] | d[-]. Then, C(Ps) = t[S] | d[ s[Q] |
b[R] ] . Notice that names which are free in P may become bound in C(Ps).
Hence, we do not identify contexts up to renaming of bound names. o



The following definitions formally introduce the notion of what may be ob-
servable in a B-Ambient process, i.e., ambient/boundary names not restricted
at the top-level. This notion is then exploited to define to well-known process
equivalences, namely contextual equivalence and barbed congruence.

Definition 2.5 (Exhibition of a Name: P | n) Let P be a process, and n
€ Names the name of either a boundary or an ambient. Then, P exhibits
name n (P | n) iff there are my, my,...,my with m; # n Vi < k, and two
processes P' and P" such that P = (vmy, ma,...,my)( n[P'] | P").

Furthermore, a process P is said to converge to a name n € Names (written
P | n) if P exhibits n after some parameterised reductions, i.e., if P —* @
and Q) | n.

The following definition is a parameterised version of the contextual equiva-
lence described in [23] which considers only a subset C of all possible contexts.

Definition 2.6 (Contextual Equivalence up to C: P ~¢ P') Let C be a
set of contexts. Two processes P and P’ are contextually equivalent up to C,

denoted (P ~¢ P'), iff for alln € Names andC € C, C(P) | n< C(P') | n.

Example 2.7 To show that two processes are contextually inequivalent, it
suffices to find a context that distinguishes them. For example, let C(.) =
m[_] beacontext in C.If m # n, then C(p[out m.0]) | p, but C(p[out n.0])
¥ p. Thus, p[out m.0] %¢ p[outn.0]. o

In general, it is hard to prove that two processes are contextually equivalent,
since one must consider their behaviour when placed in an arbitrary context. In
the technical proofs we will use the following definition of barbed bisimilarity
and barbed congruence, since barbed congruence is a sufficient condition for
proving contextual equivalence as shown in Proposition 2.10.

Definition 2.8 (Barbed bisimilarity: P ~ P’) A barbed bisimulation is a
symmetric relation S such that whenever (P, P') € S,

e P | n implies P' | n;
e P — Q implies that 3Q" such that P' —* Q" and (Q,Q') € S.

Barbed bisimilarity is the union of all barbed bisimulations. In other words,
two processes P and P’ are barbed bisimilar (P =~ P') iff there exists a barbed
bisimulation S such that (P, P') € S.

Definition 2.9 (Barbed congruence up to C: P =¢ P’) Let C be a set
of contexts. Two processes P and P’ are barbed congruent up to C, denoted

(P ~¢ P'), iff for all C € C, C(P) = C(FP").



The following result shows that, as expected, barbed congruence is stronger
than contextual equivalence, i.e., ~¢ is a sound proof-technique for contextual
equivalence.

Proposition 2.10 Let C be a set of contexts. P ~¢ P’ implies P ~¢ P’.

Proof. Assume P ~¢ P’ and consider a context C € C and a name n €
Names. We prove that C(P) || n implies C(P’) |} n. C(P) | n means that 3Q
s.t. C(P) =* QAQ | n. Since P ~¢ P" and C € C we also have C(P) ~ C(P’).
By definition of barbed bisimilarity, 3@’ such that C(P’') —* @', with Q ~ @',
thus @ | n implies @’ | n, hence proving that C(P’) | n.

The fact that C(P’) || n implies C(P) | n may be symmetrically proved. We
thus have that for all C € C and for all names n € Names, C(P) | n iff
C(P’) || n, and so the thesis P ~¢ P’ O

2.8  Modelling Multi-level Security

Let us now formalise the Bell-LaPadula model in the setting of Mobile and
Boundary Ambients. Figure 4 summarises all the flows allowed by the BLP
model, including covert channels. Security levels are arranged into a lattice
(L, <), where ¢; < ¢, means that ¢; has a security level lower than (s, i.e., {5
dominates ¢;. For the sake of simplicity, we use a simple lattice (L, <) with
L = {low,high} and low < high. In order to express the Bell-LaPadula model
in the context of Mobile Ambients, the following issues must be taken into
account:

(1) both subjects and objects must be classified into different security levels;

(2) the No-Read up and No-Write down rules must be interpreted and for-
malised in the Mobile Ambients framework, specifying how read/write
actions are implemented.

As it is customary in static analysis, labels ¢* € Lab® on boundaries and
ambients, and labels ¢! € Lab’ on transitions are introduced, both to deter-
mine the program points of interest during the analysis computation, and to
assign different security levels to ambients. The syntax of processes is then en-
riched with labels as follows, where only the affected primitives are reported.
Semantics is changed accordingly.
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PQ =

n*[P] ambient or boundary

|

| in’ n.P capability to enter n
] out’ n.P capability to exit n

|

open’ n.P capability to open n
The set of ambient labels Lab® is partitioned into three disjoint sets:

- Labj;, labels of ambients classified high,

- Lab7, labels of ambients classified low,

- Lab%, labels of boundaries, which are neither low or high since they only
aim at confining confidential information.

In all the examples, we will use the following notation for labels: b € Lab’;, h €
Lab},;, m € Lab{ and ¢ € Lab’, and the special label env € Lab} to represent
the external environment. In the rest of the paper, we will also assume that
the ambient and capability labels occurring in a process P are all distinct
and consistent, i.e., an ambient n is never labelled both as high and as low.
Performing the Control Flow Analysis with all distinct labels produces a more
precise result that can be later approximated by equating some labels.

Since we consider the communication-free fragment of MA, we regard the am-
bient itself both as a subject and an object, i.e., both as an active member
performing a read/write operation, and as a passive resource. This means
that both data, processes and locations are abstractly represented as ambi-
ents. Moreover, there are not explicit read and write actions, so they will be
expressed in terms of capability actions.

As formalised by the barbed congruence notion presented in the previous
section, an ambient is observable (i.e., accessible) only at the environment
level. Thus, in order to protect high-level ambients, we always enclose them
inside boundaries. In fact, the semantics of boundaries enforces two access
rules that intuitively correspond to the BLP ones:

- a boundary can only be opened by another boundary: this forbids bound-
aries to be dissolved by external low level ambients;

- only boundaries can exit other boundaries: this forbids a high-level ambient
to exit its protective boundary.

Notice that the first rule controls access from low to high while the second
one regulates access from high to low. Intuitively, we can read these two rules
as the BLP No Read up and No Write down. Entering a boundary is always
allowed modelling unrestricted information flow from low to high.

11



Example 2.11 As an example, consider the following labelled process:

P, = container® [ hdata"[ out® container] |

send”[ out® container] .

This process is an example of how boundaries may prevent direct informa-
tion flow. Ambient container is a boundary protecting high level data hdata
(note that data are abstractly represented as ambients): ambient hdata can-
not perform the out capability from boundary container, as it is prevented by
the semantics of B-Ambients. For this reason, hdata is never exposed to any
ambient at environment level.

On the other hand, send, which is a boundary, may go out of container without
causing any direct information leakage. In particular, P, may only evolve to
the state:

container® [ hdata"| out®! container] ]

|
send”[0].

3 Information Flow

The access control modelled in the ambient calculus is rather naive: a process
may move into or out of a particular ambient only if it owns the appropriate
capability. The notion of security boundary can be seen as a stricter access
control mechanism, where some capability can be used only in a “secure”
controlled way. Direct information flow is avoided “by construction” in the B-
Ambient calculus. The intuition is the following: absence of direct information
flow is guaranteed if, at run-time, every high-level datum or process is encap-
sulated into at least one boundary ambient. In B-Ambients only boundaries
may exit from, or open, boundaries, thus high-level ambients always remain
protected during the process execution if they are encapsulated inside a bound-
ary since the beginning. The problem of detecting indirect information flow is
more subtle: implicit information flow results from transmitting information
via system side effects. In this case, the casual chain of events needs to be
detected, since a low-level action may depend on the presence of a high-level
ambient.

This section is devoted to the formalisation of these concepts. The first subsec-
tion discusses direct information leakage, while the second one defines indirect
information leakage in the B-Ambients setting.

12



3.1 Direct Information Flow

The flow of high-level ambients outside security boundaries is the downward
flow that the Bell-LaPadula model intends to avoid. It may be formalised as
follows. In the definition, we use both the function Nest, reported in Figure 5
and the predicate Unprotected, (¢, R) described below.

The function Nest, collects all the nestings among ambients/boundaries and
capabilities of a given process P with respect to an enclosing ambient /boundary
labelled with ¢: if P contains at top-level either an ambient/boundary labelled
0% or a capability labelled ¢*, then the pair (¢, £*) or (¢, '), respectively, is added
to the result of the function.

Given an ambient/boundary labelled ¢ and a set R C (Lab® x (Lab® U
Lab’)) representing nestings among ambients and capabilities, the predicate
Unprotectedy (¢, R) asserts that there is at least one path in R from ¢ down
to £, in which none of the labels is of a boundary. In other words, there is
no boundary protecting ¢ with respect to the enclosing ambient /boundary la-
belled ¢'. In the following, we will write Unprotected (¢, R) whenever ¢’ = env.

Definition 3.1 (Unprotected) Given a labelled process P and a set R C
(Lab” x (Lab® U Lab")), Unprotected, (¢, R) = true iff 3 {1, ..., {, & Lab%(P)
s.t (gla gl)a (Ela €2), sy (én—ly €n>a (Ena g) € R.

On the converse, the predicate Protectedy (¢, R) = —Unprotectedy (¢, R) as-
serts that an ambient labelled / is protected only if it is contained inside at least
one boundary within ¢’. The above notion of Protected and Unprotected is
extended to paths as follows: a path P = {4, ..., £, is unprotected (protected) if
Vi € [1,n], ¢; € Laby, (Fi € [1,n] s.t. ¢; € Lab%). To simplify the notation, we
often write (Un)Protected (¢, P) in place of (Un)Protected (¢, Neste,,(P)).

Example 3.2 Consider again process P, of Example 2.11. The function
Neston, (P;) computes all the nestings among ambients/boundaries and ca-
pabilities of process P, with respect to the external environment, that is
Nesten(Py) = {(env,bl), (b1, h), (h,cl), (b1, b2), (b2,c2)}. It is easy to verify
that Protected(h, P;) is true, as h is protected inside boundary b1. o

Intuitively, a process P directly leaks information if, in at least one of its
possible executions, one of its high-level ambients results to be unprotected
with respect to the external environment enwv.

Definition 3.3 (Direct Information Leakage) Given a labelled process P,
P directly leaks secret h € Lab¥, iff 3Q, P —* Q) such that Unprotected (h, Q).

We can prove that any high level ambient which is initially nested inside (at

13



least) one boundary, is never leaked at run-time, i.e., B-Ambient access control
rules forbid direct information leakage.

Proposition 3.4 (Absence of Direct Information Leakage) Given a la-
belled B-Ambient process P and a high level label h € Lab%;, if Protected (h, P)
then P does not directly leak secret h.

Proof. First, it can be easily proved by induction on the depth of deriva-
tions of P = @) that congruence between processes preserves their nestings,
i.e., Nesty(P) = Nesty(Q). Then, it is sufficient to prove by induction on
the derivation of P — @ that if Protected,(h, Nest;(P)) and P — @, then
Protected,(h, Nest;(Q))) with respect to an enclosing ambient/boundary la-
belled /.

Base Step: By case analysis on the axioms of Figure 2.

(InRed) Let P = n[in” m.P'| Q'] | m* [R'] and Q = m [ n“[P'| Q'] |
R']. In this case, we have that:
- Nesten(P) = {(env, %), (env, %), (02,01} U Nestpa(P') U Nesty(Q') U

Nest,or (R');

- Nesten, (Q) = {(env, (), (£, 4%)} U Nestya(P') U Nestya (Q') U Nestyu (R').
In other words, after the reduction step, a new pair (£%,¢%) is added in
Neston, (Q), modelling the nesting resulting after the move, while (env, £*)
and (€%, (") are absent since the capability has been consumed yielding am-
bient n inside m. All the other pairs are the same as in Neste,,(P). Assume
Protected (h, Nest.,,(P)) with h € Lab§,. This means that there are no
paths of the form (env, 1), (¢1,02), ..., (ln_1,4n), (ln,h) € Neste,,(P) with
ly, ..., 0, ¢ Lab%. Suppose that the new pair generates an unprotected path,
ie., (env, £7), (07, 0%), (0%, £1), ..., (lp, h) € Neston,(Q) with €4 04 0y, ..., 0, &
Lab%. In this case, also path (env, £%), (€%, £1), ..., ({n, h) € NeSten,(P) would
be unprotected. This leads to a contradiction since we assumed that
Nesten,(P) is protected. Thus, Protected(h, Neste,,(Q)) holds.

(OutRed) Let P = mza,[ nlout” m.P' | Q] |R] and Q = n [P | Q'] |
méa,[R’] , with m € Bound = n € Bound. In this case, we have that:
- Nesten(P) = {(env, ), (£, 0%), (£*,£)} U Nesta(P') U Nesta(Q') U

Nestyor (R');

- Nesten,(Q) = {(env, (%), (env, £*)} U Nestza (P') U Nestya (Q') U Nest,a (R').
In other words, after the reduction step, a new pair (env,¢*) is added in
Neston,(Q), modelling the nesting resulting after the move, while (£, (%)
and (£, (') are absent since the capability has been consumed yielding
ambient n out of m. All the other pairs are the same as in Nest.,,(P).
Let us assume Protected(h, Nest.,,(P)) with h € Lab§,, i.e., there are no
paths of the form (env, 1), (01,02), ... (ln_1,0n), (ln,h) € NeSten,(P) with
l, .., 0, ¢ Lab%. If n is a boundary, then ¢* € Lab%, and the only new
pair added to Nest.,,(Q), i.e., (env,¢*), cannot create any unprotected
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path from env to any h. If n is not a boundary, then also m is not a
boundary, and (¢, (% ¢ Lab$%. Let us suppose there is a new unprotected
path (env, £%), (0%, 01), ..., (bn-1,0n), (ln, h) € Nesten,(Q), with £ 0y, ... 0, &
Lab%. In  this case, also path  (env, %), (0%, £%), (0% 0), ...,
(bn-1,01), (ln, h) € Nesten,(P) would be unprotected, which leads to a con-
tradiction since we assumed that Nest.,,(P) was protected. Thus, we can
conclude Protected(h, Nesle,,(Q)) holds.

(OpenRedl) Let, P = n‘[open’ m.P' | mzal[Q’] | R'] and process Q =
n“[P'"| Q' | R'] with m € Bound = n € Bound. In this case, we have
that:

- Nesteno(P) = {(env,£9), (£2,07), (€2, ")} U Nesta(P') U Nest,u (Q') U

Nestya (R');

- Neston, (Q) = {(env, £*)} U Nestya (P") U Nestya (Q') U Nestya (R).

In other words, after the reduction step, the pairs (£2, %) and (£*, (") are ab-
sent since the capability has been consumed dissolving the ambient labelled
(“. As a consequence, process (', which was contained inside the opened
ambient labelled ¢*', has been inherited by the dissolving ambient labelled
0%, i.e.,in Nesten, (Q) we have Nestpa (()') instead of Nest,os (()'). All the other
pairs are the same as in Nest,,(P). Assume Protected (h, Nest.,,(P))
holds with h € Lab{,, i.e., there are no paths of the form (env, (1), (¢1,¢3), ...,
(ln-1,0y),(ln, h) € Nesten,(P) with ¢1,...,¢, ¢ Lab%. If n is a boundary,
then ¢* € Lab%, thus the fact that in Nest,,,(Q) there is Nests (Q)') instead
of Nest,o (') cannot create any unprotected path from env to any h. If n is
not a boundary, then also m is not a boundary, i.e., £*,(* ¢ Lab%. Thanks
to this condition, the level of protection of the paths in @)’ is unchanged
when the process is inside either ¢ or £'. Thus, Protected(h, Nesten,,(Q))
holds. ,

(OpenRed?) Let, P = open” m.P' | m* [Q'] and Q = P' | @, with m €

Amb. In this case:

- Nesten, (P) = {(env, £*), (env, £¢)} U Nestep,(P') U Nest,o (Q');

- Neston, (Q) = Nestop, (P') U Nesten, (Q').

In other words, after the reduction step, the pairs (env, ¢*) and (env, (%)
are absent since the capability has been consumed dissolving the ambi-
ent labelled ¢¢'. For this reason, process (', which was contained inside
the opened ambient labelled ¢7', is at top-level, i.e., in Nesten,(Q) we have
Nesten,(Q') instead of Nest,r (Q'). All the other pairs are the same as in
Nesteny(P). Assume Protected(h, Nest.,,(P)) with h € Lab¥, i.e., there
are no paths of the form (env, £y), (¢1,03), ..., (lp_1,y), (ln, h) € Nesten,(P)
with ¢y, ..., ¢, & Lab%. Since m can be only an ambient, with /% ¢ Lab%,
the level of protection of the paths in ' is unchanged when the process is
inside either env or £*. Thus, Protected(h, Nest.,,(Q)) holds.

Inductive Step: By case analysis of the last rule applied among the ones in
Figure 2.
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(ResRed) Let P = (vn)P’, Q = (vn)Q', and P’ — @'. By induction hypothe-
sis, we have that Protected,(h, Nest,(P’)) implies Protected,(h, Nest,(Q')).
Then, since Nest,,,((vn)P") = Nesten,(P') and Neste,, ((vn)Q") = Nesten,(Q'),
the implication holds on P and @) as well.

(AmbRed) Let P = n*[P'], Q = n*[Q'], and P' — Q'. Assume that
Protected(h, Nest.,,(P)) holds with h € Lab%; and Nest.,,(P) = {(env, (")}
UNesta (P'). Tt follows that ambient n is not a high-level ambient (oth-
erwise there would be an unprotected path from env to ¢%), ie. (* #
h, and that Protected.(h, Nesty(P’)). By induction hypothesis, we have
that Protectedya(h, Nesta(Q')). Then, since Neste,,(Q) = Nestp(Q') U
{(env, ")} and (* # h, Protected (h, Neste,,(Q)) holds as well.

(CompRed) Let P = P | R, @ = Q' | R, and P — (@'. Assume that
Protected(h, Neste,,(P)) with h € Lab% and Nest.,,(P) = Nestep,(P') U
Nestony(R). Then, Protected(h, Neste,,(P')) and Protected(h, Nesten,(R)).
By induction hypothesis, it holds that Protected(h, Nest,,(Q’)). Then,
since Nesten, (Q) = Nesten, (Q')UNestn, (R), Protected(h, Neste,,(Q)) holds
as well.

(= Red) Let P =P and Q = Q' and P’ — @'. By the fact that congruence
between processes preserves their nesting (i.e., Nest,(P) = Nest,(P') if P =
P’), we have that Nest,,,(P) = Nesten,(P’). Assume Protected(h, Neste,,(P))
holds, with h € Lab{;, then Protected(h, Nest.,,(P’)) holds as well. By
induction hypothesis, Protected(h, Nest.,,(Q’)). Again, since congruence
between processes preserves their nesting, Protected(h, Nest.,,(Q)) holds
as well. a

Example 3.5 Consider a simple cryptographic protocol, with two principals,
alice and bob, willing to exchange some confidential information that need to be
protected during the communication process. This can be modelled by defining
two boundaries, one for each principal, and one high level ambient representing
the confidential information. We need a mechanism for securely moving con-
fidential data from one boundary to the other. This may be achieved through
the introduction of a third boundary, encrypt, containing the critical data,
which moves out from the first protected area and into the second one (i.e.,
behaving as a sort of encryption mechanism of the confidential data sent from
one actor to the other). The protocol may be formalised as follows:

Ps = alice® [ encrypt®?[ out® alice.in® bob] | hdata[in® encrypt] ]

bob® [ open* encrypt | Q] .

The confidential datum hdata has the capability to enter encrypt ambient,
which then migrates out of its parent ambient alice and inside the sibling
ambient bob. Process Ps may then evolve to the following state (see steps (a)
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to (d) of Figure 6):

alice? [ ]

bob®? [ open* encrypt | Q | encrypt®®[ hdata"[]] ],

and, finally, through step (e) of Figure 6, it reduces to:

alice® [ ] | bob*®*[Q | hdata"[]].

Observe that encrypt is labelled as a boundary. Thus, the high-level datum
hdata is protected by at least one boundary ambient during the whole execu-
tion of the process, i.e., Protected (h, Q) is true for all () such that Ps —* Q.
If it was not a boundary, it could not exit from alice because of the No Write
down access control rule. Furthermore, notice that alice could send an empty
message to bob in case the encrypt ambient moves out of alice before hdata
enters it: such a situation can be avoided by making the specification of the
protocol more deterministic. o

3.2 Indirect Information Flow

In this section, we turn to implicit information flows. To this aim, we follow
the standard approach based on non-interference [22]. Informally, there is no
information flow from high to low if and only if the system behaviour is not
influenced by high-level values/processes, i.e, if and only if the high-level part
of the system is not able to influence the low-level one (see, e.g., [18,19,21] for
more detail on non-interference-based properties).

Example 3.6 Let s be the following process:

Ps = container® [ send??[[in® hdata.out® hdata.out® container] |

open®t download] .

In this process, send may exit from container because of the presence of hdata
(e.g., in a downloaded application which is opened once it enters container).
There is no direct flow, i.e., no high-level ambient exits container, but a low-
level user may deduce information about the presence of a high-level ambient
in an implicit way, by observing the overall system behaviour. o
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A formal definition of absence of information leakage based on non-interference
can be obtained by adopting the approach introduced in [1]. The key idea is
that any perturbation, i.e. a substitution of high-level ambients’ names, should
not affect the observable behaviour of the system. If this happens, we should
be guaranteed that no interference is possible from level high to low.

The perturbation is obtained by means of a substitution o which is a function
that maps names in a set N to different names, and leaves all the other names
unchanged.

Definition 3.7 (Substitution Function oy) Let N € Names be a set of
names. A substitution function on over N is a function oy : Names —
Names, such that on(s) = s, whenever s ¢ N. We denote with Poy the
process P in which oy is applied to all the name occurrences.

The effect of applying a substitution oy to a process P is essentially to replace
each free occurrence of each name in P. However, the replacement must be
done in such a way that unintended capture of names by binders is avoided,
i.e., we assume that the bound names of processes are chosen to be different
from their free names and from the names of the substitutions.

If the set N represents a set of names that should be protected, i.e., high-level
ambients, we may compare the behaviour of the system before and after the
perturbation using the contextual equivalence introduced in Section 2.2, as
follows.

Definition 3.8 (Absence of Indirect Information Leakage) Let P be a
process, N C Names be a set of names and C be a set of contexts. P does not
leak secrets N to C if and only if, for all substitution functions oy, we have

PﬁchN.

Intuitively, N represents a set of names that should be protected, i.e., high-
level ambients. Given a set of contexts C, we say that P does not leak high-level
information to C if and only if any perturbation of such information is not
visible whenever P is executed in every context C € C. If this is the case,
even after the perturbation, the names that can be observed at the top-level
of the process during the whole execution are the same, i.e., the observational
behaviour of P remains unchanged.

Example 3.9 Consider again process Py of Example 3.6. We show that it
leaks name hdata by finding a context that distinguishes Fs from Pso(ndata}-
Consider  context  C(-) = _ | download®[in® container |
hdata"[0] ], and substitution o(jaqtay(hdata) = hdata’. Then, process C(Ps)
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is as follows:

C(Ps) = container [ send”?[in“ hdata.out®® hdata.out® container] |

open® download ]

download”[ in® container | hdata"[0]].

It is easy to verify that C(Fs) | send, since after download enters container
and it is opened, send can perform the in and out capabilities over hdata, and
then exit at top-level. On the contrary, in process C (P6a{hdata}), ambient send
is blocked inside container:

C(PsO{ndatay) = container® [ send”?[in" hdata'.out® hdata'.out® container] |

open® download ]

download®[ in® container | hdata"[0]].

In fact, after the renaming of hdata into hdata’, ambient send is stuck, trying
to perform the in and out capabilities over hdata’ before exiting container.
Thus, send never reaches the top-level, i.e., C(Ps0{ndatay) ¥ send. Therefore,
we can conclude that Ps #cy Ps0ndata}, i-€., that Py indirectly leaks hdata to
C(.). o

4 Control Flow Analysis for Information Leakage Detection

So far, we have described how direct flows are correctly prevented by suitable
access control rules based on boundaries, while indirect flows are still possible.
In Section 4.1, we define a control flow analysis to statically verify that a sys-
tem P does not indirectly leak information. This new analysis is an extension
of the one presented in [5] which, in turns, extends the one of [28]. They all
aim at computing a safe approximation of the dynamic behaviour of Mobile
Ambients programs. In particular, in [28], the control structure computed by
the analysis is expressed by the hierarchical structure of ambients, given by
the father-son relationship between the nodes of the tree structure, i.e., the
analysis returns a set which contains all the ambient nestings that are possible
during run-time. In [5], we have considered nesting inside and outside security
boundaries separately, distinguishing between run-time nestings which are ei-
ther protected, or unprotected, as formalized in Definition 3.1. This leads to
a more precise (i.e., less false negatives) and a more efficient (i.e., less spuri-
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ous pairs recorded) analysis with respect to [28]. In order to detect indirect
information flow, we further extend the analysis in two directions:

- we add a new component collecting an over-approximation of suspect ambi-
ents, i.e., ambients whose behaviour may be influenced by the presence of
high-level information during the run-time execution, causing information
to be indirectly leaked;

- we exploit the special semantics of boundaries, forbidding direct leakages, to
achieve an even more precise and efficient analysis: given that some moves
are forbidden, the possible nestings in Boundary Ambients are usually less
than in the standard Mobile Ambients.

The correctness of the analysis is reported in Section 4.2. In Section 4.3, we
show how the security result is obtained by post-processing the result of the
analysis: if the set of suspect ambients is protected during the whole run-time
execution, we are guaranteed that the system is interference-free.

4.1 Specification of the Analysis for Boundary Ambients

The control flow analysis is expressed in terms of a tuple (S , I B, I B, H ), where:

- The first component S (suspect ambients) is an element of o(|Names)),
where | Names| denotes the set of stable names which are defined below. If
a process contains an ambient n which is a high-level ambient, or whose exe-
cution is influenced by high-level ambients (e.g., which performs capabilities
over suspect ambients), then n should be in S.

- The second component Iz is an element of p(Lab® x (Lab® U Lab')). If
a process contains either a capability or an ambient labelled ¢ inside an
ambient labelled ¢* which is a boundary or an ambient nested inside a
boundary (referred as protected ambient from Definition 3.1), then (€%, /) is
expected to belong to Ip. Thus, I is the set of protected run-time nestings,
with B standing for Boundary.

- The third component Iy is still an element of p(Lab® x (Lab® U Lab')).
If a process contains either a capability or an ambient labelled ¢ inside an
ambient labelled ¢* which is not protected, then (£%, ) is expected to belong
to 5. Thus, I is the set of unprotected run-time nestings, with F standing
for External environment.

- The forth component H € p(Lab® x |Names|) keeps track of the corre-
spondence between names and labels. If a process contains an ambient or a
boundary labelled ¢* with name n, then (¢*,n) is expected to belong to H.

Notice that the usage of stable names aims at keeping the analysis result finite,
as, by restriction and replication, a process may generate an infinite number
of different names at run-time. By following [28], we assume that a-conversion
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preserves stable names, i.e., whenever n is a-converted to m we require that
n| = |m]. Intuitively, |n| is a representative for a class of a-convertible
names. For the sake of readability, we always omit the |-| notation in the
analysis specification.

The set of solutions ({(S, I, I, H)}, E) is a complete lattice, with C defined
as (S, Iy, Iy, H') T (S, Ip, Iy H")iff ' CS" NIy CIp ATy CIj A H' C
H". The least upper bound operator, LI, used to combine the information
from the two lattices, is defined by component-wise union. By exploiting the
ordering operator, we are able to compare the precision of different analyses:

a “smaller” analysis is more precise than a “larger” one.

According to the control flow framework in [29], the analysis is defined by
a representation function and an analysis specification. They are depicted,
respectively, in Figure 7 and Figure 8.

The representation function aims at mapping concrete values to their best
abstract representation. It is given in terms of a function (¢ p,.(P) which

recursively builds sets S , I B, I g, and H corresponding to process P, with
respect to an enclosing ambient labelled with ¢. Moreover, Proct is a Boolean
flag which is used to indicate if the considered process is nested inside at
least one boundary. In case Proct = true, all the forthcoming nestings will be
recorded as protected in I5. The representation function S2(P) of a process
P is defined as (3}, pors(P). Intuitively, function §°(P) collects in Iy (in Ig)
all the nestings of ambients and capabilities initially (not) contained inside at
least one boundary, whereas in H it records all the mappings between labels
and ambients/boundaries. Finally, S collects the name of high-level ambients,

by exploiting the amb-rule.

Example 4.1 Consider again process P, introduced in Section 2.3:

P, = container®[ hdata"[ out container] |

send”[ out® container] ] .

The representation function of P, is 8%(P;) = ({hdata},{(b1,h), (b1,b2),
(h,cl), (b2,c2)}, {(env,b1)}, {(b1, container), (h, hdata), (b2, send)}). The first
component records that hdata, a high-level ambient, is a suspect ambient, while
the second and the third components capture all ambient nestings. The corre-
spondence between ambients and labels in P, are kept by the last component,

i.e., {(bl, container), (h, hdata), (b2, send)}. o

The specification states a closure condition of a tuple (5’ I, Ip, H ) with re-
spect to all possible moves executable in a process P. The specification rules
of Figure 8 depict how the process transforms one abstract representation to
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another one, mimicking the process execution. They mostly amount to recur-
sive checks of sub-processes except for the three capabilities open, in, and out.
After briefly discussing the rules, in the next section we will prove the cor-
rectness of the analysis by showing that every reduction of the semantics is
properly mimicked in the analysis. Within the specification of the analysis, the
predicate pathg (¢, ¢) is used to simplify the notation. Intuitively, it represents
the existence of an unprotected path of nestings from ambient labelled ¢* to
ambient labelled ¢, in which none of the ambients is a boundary. The rules
for capabilities are divided in two parts: (1) the construction of sets Iz and
I g, which is done by refining the analyses of [5,28] in order to correctly han-
dle boundaries and the new access control rules introduced in the B-Ambient
calculus, and (2) the construction of set S of suspect ambients.

We now describe the intuition behind the rule for the open-capability. The rule
looks for all ambients m labelled ¢ with an open-capability open’ n on an
sibling ambient n labelled ¢*'. Then, the result of performing open’ n should
also be recorded in either Iy or Ip, depending on the level of protection of
the newly generated nestings. This step is split into two distinct cases: (7)
the open is performed between unprotected (non-boundary) ambients (ii) the
open is performed between protected ambients/boundaries, requiring that if n
is a boundary then also m should be a boundary (because of the access control
rule introduced by the B-Ambients semantics). To record the effect of firing
the open-capability, all the children of the opened ambient n become children
of min I and I, respectively.

The second part of the rule aims at collecting information about suspect ambi-
ents/boundaries: it requires that ambients/boundaries potentially performing
an open capability on a suspect ambient/boundary, have to be considered
suspect, as well.

The rules for the in and out-capabilities behave similarly. They mainly differ
in the first part of the rule, where I 5 and I g are constructed. The differ-
ence depends on the operational semantics of the B-Ambient calculus: a in-
capability can be performed independently on the “context” around the per-
forming thread, whereas an out-capability is constrained by the access control
rule of Figure 2. Moreover, in order to increase the precision of the analysis, by
considering the “context” around the ambient performing the capability, i.e.,
by distinguishing between a protected and an unprotected environment, the
rule is split into three sub-cases which correspond to the different scenarios
that may happen.

Example 4.2 Let P, be the process of Example 4.1. It is possible to prove
that the least solution of the analysis for P, is the tuple (5’ g, Ip, H ), where
S = {hdata}, Iz = {(b1,h), (b1,b2), (h,c1), (b2,c2)}, Ig = {(env,bl), (env, b2)},
and H = {(b1, container), (h, hdata), (b2, send)}. Notice that, with respect to
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(3B(Py), the analysis adds in I the pair (env, b2), representing the possibility
for boundary send to exit the container. As there is no ambient/boundary
performing capabilities over hdata, the set S of suspect ambients /boundaries
is not incremented, and contains hdata only.

To see how information about suspect ambients/boudaries helps in detecting
indirect information leakage, consider again process Py of Example 3.6.

Ps = container® [ send??[[in®* hdata.out® hdata.out® container] |

open® download] .

We proved, in Example 3.9, that Fy indirectly leaks hdata. Consider now
the least solution of the analysis for Fgs, with hdata € S‘, i.e., the tuple
(S,Ip,Ig, H), where S = {hdata,send}, Iz = {(b1,b2), (b2, c1), (b2,c2),
(b2, ¢3), (b1,¢4),}, Iz = {(env,bl), (env,b2)}, and H = {(bl,container),
(b2, send)}. In this case, send is suspect because of the capability performed
on hdata. Notice also that the analysis reports a potential presence of send at
the environment level, thus capturing an indirect information leakage. In fact,
send reaches the environment only after testing the existence of the high level
hdata ambient. o

Example 4.3 We now give an example to motivate why we introduced the
concept of suspect ambients in the analysis of [5], instead of starting from the
simpler nesting analysis of [28]. The motivation is actually the same that we
followed when developing the analysis of [5], i.e., increasing the precision by
refining the domain of the analysis from a “flat” set of nestings into the two
distinct set of protected (I) and unprotected (Iz) nestings.

Consider the following process:

P; = container® [ test’?[ in® hdata.out®® hdata.in® ldata.out® ldata] |

| ldata'[in® container

This process is intuitively secure since boundary test, which is suspect be-
cause of its access to high level data, never exits container thus remaining
protected in every possible execution. The least solution of the analysis for
P,, with hdata € S, can be shown to be the tuple (S,fB,fE, ﬁ), where § =
{hdata,test}, Iy = {(b1,02),(b2,cl), (b2,c2),(b2,c3), (b2, c4), (b1,1), (I, c5),
(1,b2)}, Ip = {(env,bl), (env,1), (I,c5)}, and H = {(b1, container), (b2, test),
(I,ldata)}. Analogously to the previous example, test is suspect because of
the capability performed on hdata. Notice also that the analysis reports the
potential presence of test inside ldata, but this happens only after [data enters
the container, i.e., when ldata is protected. In fact, the pair (I,52) only ap-

pears into the set I. From this analysis we can conclude that process P; does
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not leak hdata. In case we would use the simpler nesting analysis of [28], w

would obtain all the pairs in /5 U I plus new nestings that might result When
merging the two sets of nestings. In this particular case, since ldata can be at
the environment level and test can exit from Ildata, we also obtain that test
can be at the environment level, i.e., the analysis returns the pair (env, b2),
which would erroneously make P; appear insecure. The problem is that, when
merging the nestings, we loose the information about the fact that (I, 52) only
happens when [ is protected. This shows that choosing the simpler approach
of just one domain for nestings may lead to a strictly less precise analysis. ¢

It is trivial to prove that the set {(S, 15,1z, H) | BP(P) C (S,Ip,Ig, H) A
(5”, fB,_fE,]:I) =B P} of solutions for a process P is a Moore family, i.e., it
is closed under greatest lower bound with respect to the ordering C. As a
direct consequence, a least solution of the analysis always exists and it may
be computed as follows: first apply the representation function to process P,
then apply the analysis to validate the correctness of the proposed solution,
adding, if needed, new information to the tuple until a fixed-point is reached.
More formally, the fixed-point algorithm works as follows:

Algorithm 1 (Fixed-Point Algorithm)

Input: a labelled process P.

(i) Apply the representation function B2 to process P to get a tuple of the

form (5°,19,19, H);

(ii) for all the constraints of the specification of the analysis, validate the

tuple (S, 1%, Iy, H) generated in (i):

(1) if the constraint is satisfied, continue;

(2) else, in case the constraint is not satisfied, this is due to the fact that
either S% does not consider suspect ambients, or I 4 and I ¢ do not
consider nestings that may actually occur. In this case, modify S’,
f}é, or f}; by adding the “missing” names or pairs, thus getting a new
tuple (S*1, I 1571 H). Then, go back to (i) with i =i + 1.

The algorithm always terminates, since the number of process labels and
names is finite. The complexity is polynomial, as there is at most a quadratic
number of nestings, bounding the number of iterations, and each iteration
is polynomial in the number of universal quantifications. For more efficient
versions of the above algorithm, please refer to [7,31,32].
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4.2 Correctness of the Analysis

The correctness of the analysis is proven by showing that every reduction of the
semantics is properly mimicked in the analysis. Intuitively, the theorem states
that whenever (S, I, I, H) =P P and the representation of P is contained in
(S Ig, Ip, H ), we are sure that every ambient that may exercise a capability
on a suspect ambient is suspect too and that every nesting of ambients and
capabilities in every possible derivative of P is also captured in (S , I 5. Ip, H ).

Theorem 4.4 (Sub ject reductlon) Let P and Q be two processes such that
ﬁfProct( ) (S IBylE7H) A (S IBij; ) ):B P N P — Q Then

A

BZ,Proct<Q) = <§7fB7IE7 A) <S7IBJIE7 ) ):B
Proof. We proceed by induction on the derivation depth of P — Q.

Base Step: By case analysis on the axioms of Figure 2:

InRed) Let process P = n®[in" m.Py | Q; m* [R,] and process () =
(

m [0 [Py | Q] | Ri]. Assume that 35, (P) C (S, 1p.Ip, H) A

(5’ g, g, H ) =B P. We obtain three different cases depending on the value

of Proct and on the label ¢°: S
(Proct = True) : B3, Pmt( ) Q (S,Ip,Ig, H) implies {(£*", (%), (02", ¢%),

(r, 0} C IB, by (S, Ip, I, H) =B P (case 1 of the in rule) we know that
(0%, (%) € Ig. By definition, 3B, PTOCt(Q) = (s, {(£", 07), (£, £9)},0,0) U
ﬁé“,Proct(Pl) = ﬁé“,Proct(Q1> U ﬂ?z’,pmd(Rl)a differing from 52//,proct(P)
only on (¢%,¢%), which we have just proved to belong to I5. Thus, we
have that ﬁg”,Proct(Q> C (g, Ip, I, ﬁ) Moreover, @) differs from P only
in two nestings and in the absence of the in capability. Since changes just
in the nestings do not have any impact on the analysis (see rule amb),
then (S,Ig, Iy, H) =B P 1rnphes (S,1g,1g, H)E"Q

(Proct = False, (* € Labf) : ea” o P) E (S, IB,IE,H) implies {(¢£2", 02,

(0" )} C I and {(¢*,0))} C IB, the proof proceeds similarly to the
case above by exploiting case 2 of the in rule;

(Proct = False, * ¢ Lab%) : 68, , (P) C (5, 1p, Ip, H) implies {(£*", ¢,

(09", 07), (02, 1)} C I1; the proof proceeds similarly to the cases above by
exploiting case 3 of the in rule;

(OutRed) Let process P = m® [ n’[out” m.P, | Q1] | Ri] and process
Q=n"[P|Qi] | mza/[Rl]. We have that P — @ only if (% € Labf or
(¢ Labg. Assume that 3, , (P)C (S,1p, I, H) A (S,Ip,Ip, H) =B
P. We obtain three different cases depending on the value of Proct and on
the label /¢

(Proct = True) : 8%, , (P) C (S,Ip,Ip, H) implies {(¢*", (<), (¢, (%),
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(02,01} C I; by (S,Ip,Ip, H) =B P (case 2 of the out rule) we know
that ((*",¢%) € Ip. By definition, 32, ' proat(@) = (5, {(0" 00, (09" 02)},
®7 @) U ﬁZG,Proct(Pl) U ﬂé“,Proct(Q1> U ﬁg’,Proct(Rl)v diﬁering from
Bin proet(P) only on (¢ ¢*) which we have just proved to belong to 5.

Thus, ﬁBa,,’Pmct(Q) C (g,fB,fE, ﬁ) Moreover, ) differs from P only in
two nestings and in the absence of the out capability. Since changes just
in the nestings do not have any impact on the analysis (see rule amb),
then (S, 1g, Iz, H) =P P implies (S’,fB,fE,{:I) EBQ

(Proct = False, (* € Lab%) : Pmct(P) C (S,1p, Iy, H) implies that the
pair (647, (%) € I, (1, (%) € IB UIp and (£,0') € Ip; the proof proceeds
similarly to the case above by exploiting case 1 of the out rule;

(Proct = False, (* ¢ Lab%) : by the semantic constraint over boundaries we
know that £* ¢ Lab% implies (' ¢ Labf; thus 5, (P) £ (S,1p,15, H)
implies {(£*",¢%"), (0%, £%), (¢*,0")} C Ig; the proof proceeds similarly to
the cases above by exploitlng case 3 of the out rule

(OpenRedl) Let process P = n'[open’ m.P, | mt [@Q1] | R1] and process

Q= n"[P, | Q1| Ri]. We have that P — Q only if £* € Lab% or v ¢

Lab%. Assume that ﬁéa/, (D) E (S, Ip,Ip,H) N (S,Ip,1p H) =B P

We obtain three dlfferent cases depending on the value of Proct and on the

label ¢

(Proct = True) : 32, proct(P) E (S, I, I, H) implies {(¢*, (%), (£2, 0+,
(t*, 01} C Ip; by (S Ig, Iz, H) =B P (case 2 of the open rule) we
know that {(¢%,€)|(¢¥,¢) € Ip} C Ig. By definition, 32, ' Proat( @) =

(87 {(ga”)ga)})q), Q)) U ﬂé“,Proct(Pl) U 6@“,Proct(Q1> U BE“,Proct(R1>7 differ-
ing from 3, Pmct(P) only on (i p,oe(Q1) in place of 52,7 Proct(@1) Which
is covered by the set {({7, )|(€“', ¢) € Ig} proved to belong to Iz. Thus,
ﬁéa,, Proc (Q) C (S IB,]E,H). Moreover, () differs from P only in one
nesting and in the absence of the open capability. Since changes just in
the nestings do not have any impact on the analysis (see rule amb), then
(S,Ip,Ip, H) =B P implies (S, I, I, H) =B Q

(Proct = False, (* € Lab%) : the proof is the same as the case above apart
from (¢2”,¢*) belonging to Iy instead of 5.

(Proct = False, (* ¢ Lab%) : by the semantic Constraint over boundaries we
know that /% ¢ Lab% implies ¢ ¢ Lab%; thus za” Proc (D) E (S,Ip,Ip, H)
implies {(£9",¢7), (0%, %), (¢*, 1)} C Ig; the proof proceeds similarly to
the cases above by exploiting case 1 of the open rule;

(OpenRed?) Let P = open’ m.P, | mea/[Ql] and Q = P, | Q1. We have
that P — Q only if /¢ ¢ Lab’. The proof is analogous to the previous case.

Inductive Step: it is easy by observing that renaming of bound names (a-
conversion) and structural congruence do not have any effect on the pro-
cess representation and on the analysis. In other words, P =, Q or P =
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Q@ imply ﬁg,PmCt(P) = ngroct(@) and (g,fB,fE,f[) =B P if and only if
(S7fBajE7]f[> ):B Q u

4.8 Absence of Indirect Information Leakage

The result of the analysis should be read, as expected, in terms of indirect
information flow: no indirect/implicit leakage of information in a process P
is possible at run-time if the set of suspect ambients remains protected inside
security boundaries during the whole execution. The main theorem shows that
a process satisfying this condition does not indirectly leak information towards
any context that well-behaves with respect to the same set of suspect ambients,
i.e., contexts which do not introduce flows by themselves.

Before stating the theorem, some additional definitions and a lemma need to be
introduced. First, we need to extend the Protected predicate of Definition 3.1
to deal with a set of ambient names rather than with the label of a single
ambient. Second, we define the set of processes in which the set of suspect
ambients remains protected during the run-time execution, and we call them
protective processes. Finally, we prove that a process which is protective with
respect to §, remains protective when executed inside a context which well-
behaves with respect to the same set S,

Given an analysis (S, Ip, I, H) =" P, we write Protected (S, (Ig, H)) to
denote that all suspect ambients in S are protected with respect to the nestings
I and the labelling H. Formally, for every n € S and for every label ¢ such
that 3(¢,n) € H, it holds Protected(l, I ).

The set Pz of all the processes which are protective with respect to a given
set of suspect ambients .S, is defined as follows. Notice that the definition can

be extended to contexts: a context C well-behaves with respect to S , Written
CeCqifC(0)eP

Definition 4.5 (Protective Process) A process P is protective with re-
spect to S, written

P e PS‘ if
(i) 3lp, Ig, H : BB(P)C (S,1p,1p, H) and (S, Ip, I, H) =5 P
(7i) Protected (S ( ))

Given the definition of protective process, the following lemma states that a
process which is protective with respect to S, remains protective when exe-
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cuted inside a context which well-behaves with respect to the same set S.
Lemma 4.6 Let P € Py and C € Cg. Then, C(P) € P

Proof. By Definition 4.5, we need to prove that, let 5°(P) E (S, Iy, Iy, H'),
(S [g,ICE,H’) =" P and Protected (S, ([J’E,H’)) and let 3°(C(test'[0])) C
(S, []’é,[g,H”) (S [g,[g,H”) =B C(test![]), with test € S U fn(C), and
Protected (S, (I}, H")), then:

" " B & T Tm frm & T Tm frm B .
() EIIB7IE)}I 5 ( ( )) (S7IB7]E7H )and (S7IB7]E7H )): C(P)7
(i) Protected (S, (I}, H")).

In order to build a valid analysis of C (P) it suffices finding a suitable tuple
(S,Ip,Ig, H) as an input to the fixed-point algorithm 1. Sets I, /g, and H
can be easily chosen as follows:

e I can be built by taking the union of sets I%, I% and I}, (it could be the
case that the hole in the context is protected, thus every nesting in P may
become protected as well), with all the occurrences of env in I}y (or If)
substituted with the label ¢ of ambient test (step 1). Then (step 2), test
ambient, which is only a placeholder of the hole in context C is passed.
Finally (step 3), all the pairs containing the label ¢ of ambient test are
removed. 5 is built similarly; the only difference is in step 1, where only
the union of I}, and I% is taken.

step 1: Iy = I}, U I} U I}[t/env] and Iy = Iyt /env] U I,

step 2: Ip = Ig U {((,0) | (,1),(t,0) € AB} and Iy = IpU{((,0) |
(0,1), (t,0) € I}

step 3: Ip = Ig\ {(,0) | (V0 =t} and Iy = I\ {((,0) | LV U =t}
Sets Iz and I represent all the nesting of process C(P), in which no inter-
action between the context C and P have been considered, i.e., where the
execution of C and P have been considered separately by the two control
flow analyses.

e Since labels are supposed to be all different, we can build H as the union
of H and H", ie., H=H UH".

Starting with (5' g, Ip, H ), we apply a standard fixed-point algorithm to find
a solution of the set of constraints specifying the analysis of process C(P). The
algorithm checks all the constraints and, in case one of them does not hold, it
adds either the missing nesting to I or I, or the name of a suspect ambient
to the set S, or both. The algorithm terminates when a fixed-point is reached,
which constitutes a valid analysis that satisfies case (i) above.

We prove, by induction on the algorithm steps, that the algorithm never adds
a suspect name to S, i.e., the solution is of the form (S, I, Ip, H), with n
being the number of algorlthm s steps performed to reach the fixed-point,
and with IB D Ip and I" D Ip (that is, St = 50 for all i > 1). Moreover,
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by contradiction, we prove that for any new pair added to In (new pairs in
I do not change the protectivity of a process) the process remains protective
with respect to S, i.e., Protected (S, (I35, H)) still holds (case (ii) above).

Base Step (i = 0): The only pairs that can violate the Case 2-clause of the
in, out, or open rules are the ones that have been added when building I
from Ij, and I% (the same holds for 1 [5) which are of the form (¢, ¢') such
that (¢,1), (¢, E’) € Iy. Assume that one of these pairs requires a name m to
be added to S°: this would imply that ¢ is the label of a capability which
has a suspect name as target. Thus, also ¢ should be the label of a suspect
ambient. Since t represents env in I 5, we would have env suspect in P,
contradicting the fact that Protected (S, (I}, H')). Thus, no new names
are added to go, and S = S9,

Set I, constructed from I}, and I}, is such that Protected (S, (I, H)).
This follows by the construction of C(P), and by the fact that we have that
Protected (S, (I}, H')) and Protected (S, (1%, H")).

Inductive Step (i): Assume that at this step the algorithm is adding the
pair ((,0') to I}y (or I4), e, It =T U{(4, )} (or I = T U{(€,0)}).
By inductive hypothesis assume also that 57 = S° for all j < i. We consider
all the clauses in which the pair (¢, ¢') could have been added:

(in): Case 2 of in-rule requires m € S if ¢ € Laby (i.e., if the target
ambient of the capability is high-level), with S™1 = 5%U {m} and m the
name of an ambient containing the capability i in® n. If ¢ € Lab? 4 then,
since (¢,n) € ]:I, n € go, i.e., ambient n is suspect since the first step
of the fixed-point algorithm. In addition, consider the in’ n capability
inside m:

- either it is inside m since the first step of the algorithm. In this case,
m in C(P) is of the form m![in® n.P | Q], and m is suspect in S°
since the construction of the starting tuple (S’, fB, fE, H),

- or it has been inherited at one the previous steps of the algorithm
(step k, with 0 < k < i), by the application of the open-clause
to an ambient x containing the in-capability. In this case, m is of
the form mel[openei .P | 2"[in” n.Q] | R] and x is a suspect
ambient, since it contains a capability with a suspect ambient as a
target; moreover, z € S* and S* = S° by inductive hypothesis. Case
2 of the open-rule requires m € SHLf ¢ e Sk, and, by inductive
hypothesis, we have that Skl = G0 e also ambient m is suspect
since the first step of the algorithm.

In both cases, we have that m € S%. Thus $'+! = §¢ (= §9).

It remains to show that the process remains protective. Assume by
contradiction that the new pair (¢¢') makes a suspect ambient become
unprotected, that is, 3s € S, with (7, s) € H s.t. Unprotected(?, Ig), i.e
there exists a path (env, 01), (01, 05),--- , (6, 0)), -, (ln,?) € I: such
that 01,0y, -+, 0,, 0,0 ¢ Lab%. However, the in-rule adds the pair (¢, ¢)
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to I, only if there exists a label ¢’ such that:

Sy, (00, (070 € I U Ty and ¢ € Lab%, which leads to a
contradiction.

- (0".0") € Iy and (¢”,0) € Ii. Also in this case we obtain a con-
tradiction, since we would have that s is unprotected also at the
previous step because there would have been an unprotected path
(env, 0y), (L1, 0s), -, (0", 0), - (0p,0) € IS with 04,05,
Un, 0,0 0" ¢ Lab%,, which leads to a contradiction.

(out): Case 2 of out-rule requires m € S if £ € Lab¥, (i.e., if the target
ambient of the capability is high-level), with S™1 = §¢U {m} and m the
name of an ambient containing the capability out® n. If ¢ € Lab¥%, then,
since (¢,n) € f[, n € SO, i.e., ambient n is suspect since the first step
of the fixed-point algorithm. In addition, consider the out’ n capability
inside m:

- either it is inside m since the first step of the algorithm. In this case
m in C(P) is of the form m![out” n.P | Q], and m is suspect in
S0 as derived when building the starting tuple (S I Ip, H );

- or it has been inherited at one the previous steps of the algorithm
(step k, with k < ), by the application of the open-clause to an
ambient x containing the out-capability. In this case, m is of the form
mél[openﬁi z.P | 2" [out” n.Q] | R] and z is a suspect ambient,
since it contains a capability with a suspect ambient as a target;
moreover, r € Sk and SF = §O by inductive hypothesis. Case 2
of the open-rule requires m € St ¢ € S'k, and, by inductive
hypothesis, we have that SRt — 5’0, i.e., also ambient m is suspect
since the first step of the algorithm.

In both cases, we have that m € S7, thus S = §7 (= §9).

It remains to show that the process remains protective. Assume by
contradiction that the new pair (¢,¢) makes a suspect ambient become
unprotected, that is, 3s € S, with (7, s) € H s.t. Unprotected(?, I), i
there exists a path (env,ly), (€1,03), -+, (£, 0'), -+ (ln, 0) € [’“ such
that €1, 0, -+, £,, 0, 0’ & Lab%. However, the out-rule adds the pair (¢, ')
to 1%, only if there exists a label ¢/ such that:

- (0,0 e I, (0'.0) € I, U Tk, and ¢ € Lab%, which leads to a

contradiction.

- (,0") € Iiy and (¢”,¢") e Ii. Also in this case we obtain a con-
tradiction, since we would have that s is unprotected also at the
previous step because there would have been an unprotected path
(env, by), (01, 0a), - (£, "), (" 0), -+, (bn, 0) € I“r1 with 44, ly, - - -
ln, 0,0 0" & Lab%, which leads to a contradiction.

(open): Case 2 of open-rule requires m € Sitlif ¢ e Lab¥%, (i.e., if the target
ambient of the capability is high-level), with S*1 = S’ U {m} and m the
name of an ambient containing the capability open’ n. If ¢ € Lab?%, then,
since (¢,n) € H, n e go, i.e., ambient n is suspect since the first step of
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the fixed-point algorithm. In addition, consider the open’ n capability
inside m:

- either it is inside m since the first step of the algorithm. In this case,
m in C(P) is of the form m"[open’ n.P | Q], and m is suspect in
S0 as derived when building the starting tuple (S I, Ip, H),

- or it has been inherited at one the previous steps of the algorithm
(step k, with k < 1), by the application of the open-clause to an
ambient x containing the open-capability. In this case, m is of the
form mel[opendS z.P | 2"[open” n.Q] | R] and z is a suspect
ambient, since it contains a capability with a suspect ambient as a
target; moreover, x € Sk and S* = §° by inductive hypothesis. Case
2 of the open-rule requires m € Sk+Lif 3 € Sk and, by inductive
hypothesis, we have that S¥*! = S°, i.e., also ambient m is suspect
since the first step of the algorithm.

In both cases, we have that m € S°. Thus $+! = 5% (= §°).

It remains to show that the process remains protective. Assume by
contradiction that the new pair (¢, ¢') makes a suspect ambient become
unprotected. In this case, Is € S, with (¥, s) € Hst. Unprotected(f Ig),
i.e., there exists a path (env, £1), (€1, 43),- -+, (£,€"), -+, (£,,0) € ’H such
that 0,05, 0,, 0,0 & Lab%. The open—rule adds the pair (E, ') to
Ii, only if there exists a label ¢ such that (¢,¢"), (¢",¢) € Ii and
(" ¢ Lab%. This means that s is unprotected also at the previous step
because there would have been an unprotected path (env, ), (¢1,/s),

0,00, (070, (0, 0) € T5, with labels €y, €y, - £, 0,0 0" &
Lab%;, thus leading to a contradiction.

The algorithm above always terminates since at most all possible (finite) nest-
ings are added to I and I5. Let n be the number of algorithm’s steps per-
formed in order to reach a fixed-point, and let Ig’ = IIB‘ Ig = Ig, and H" = H,
then we have proved that 317, I, H" such that (S, I[§, I}, H") =B C(P) (the
second part of case (i) of the Lemma). Moreover, by 3%(C(P)) C (S,Ip,Ip, H)
(easily proved by the hypotheses 3°(P) E (S I, ]jE, H), BP(C(test'[])) C

(S, fg,fg,ﬁ")), and”l/)y the fact that I% D Ip and Ip D I, it follows that

BB(C(P))C (S, Iy Iy, Hy) (the first part of case (i) of the Lemma). We have
also proved that Protected (S, (I, H")) still holds (case (i) of the Lemma).

O

The proof of the main theorem relies on a function, ns, which takes as ar-
guments a process P and a set S of ambient /boundary names, and returns
process P with all ambients/boundaries belonging to S, together with the sub-
processes they include, syntactically replaced by 0. More formally, a transfor-
mation function ns(P, S) on process P with suspects names S is defined as
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follows:

. ns(P, S) ifn e S
ns((vn)P,S) = . .
{ (vn)ns(P,S) ifn¢g S

ns(0,5) = 0

ns(P | Q,S) =ns(P,S) | ns(Q,S)
ns(IP,S) = Ins(P,S)

. 0 ifn €S
nS(n[P],S)_{ . .
n[ns(P,S)] ifn &S

ns(inn.P,S) = inn.ns(P,S)
ns(out n.P,S) = out n.ns(P, S)
ns(openn.P,S) = open n.ns(P,S)

The following properties immediately follow from the definition above, and
will be useful when proving the main theorem.

Lemma 4.7 Let P € Proc be of the form P = n[inm.P, | Q1] | m[R]
n,m&S. If ns(P,S) =ns(P',S"), then P = (vky, - ,k.)n[inm.Py | Q2] |

—mn%S’ and k; ES"V’2<22>0

- ns(Pl,S) = ns(P, S"), ns(Q1, ) = ns(Qq, S ), ns(Rl,g) = ns(RQ,S’),
and ns(Ps, 5') = 0.

Lemma 4.8 Let P € Proc be of the form P = m[n[outm.P, | Q1] | R ]

m,n & S. Ifns(P,S) =ns(P',S"), then P' = (vky,--- ,k.)m[ n[out m.Py | Q2] |
Rg] | Pg with:

-anS’ and k; ES’Vz<zz>O

- ns(Py, S) = ns(Py, 5", ns(Q1,5) = ns(Qs,5"), ns(Ry,S) = ns(R,, S,
and ns(Ps, S') = 0.

Lemma 4.9 Let P € Proc be of the form P = n[openm.P, | m[Q:] | R1]
m,n € S. [fns(P,S) = nS(P’,S’), then P = (1/]{1’... ,kz)n[Openm.PQ |
| m[Q2] Ra] | P with:

-m,n ¢S, and k; ES"‘V’Z<Z z>0;

- ns(P, S) = ns(Py, 5'), ns(Q1,5) = ns(Qs, 5", ns(Ry,S) = ns(Rs, S),
and ns(Ps, S') = 0.

Lemma 4.10 Let P € Proc be of the form P = openm.P | m[Q,], m & S.

If ns(P,S) = ns(P',S"), then P' = (vky,--- ,k,)openm.Py | m[Qs] | P,
with:
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-mgg’,andkeg’w<zz>0 R )
- ns(Pl,S) =ns(Py, S"), ns(Q1,S) = ns(Qq, S"), and ns(Ps,S") =0

Lemma 4.11 If ns(P, S) =0, then P = (vny, -+ ,ng,ma, -+ yme)ng[Pr] |
| ng[Py] withn; € SYi<k, k>0,0<t>k, andm; € S'"Vi<z,2z2>0.

We now show how the previously defined control flow may be applied to prove
absence of (indirect) information flow in a given process P: if the set of suspect
ambients is protected during the whole run-time execution, we are guaranteed
that the system is interference-free.

Theorem 4.12 (Absence of Information Leakage) If P € Pg, then, P
does not leak N C S to Cg. Proof. We have to prove that, if (S‘, I, Ip, FI) =B
P A Protected (S, (_fE, I:I)), then, for all substitution functions oy, we have
P ~c, Poy, ie., that P does not leak NV to Cg. To do this, by exploiting
Proposition 2.10, we prove P ~cg Poy. This amounts of proving that, for all
well-behaving contexts C € Cg, we have C(P) = C(Poy).

In the proof, we proceed as follows:

(1) we define a symmetric relation S, which is proven to be a bisimulation,
i.e, we prove that, if (P, P') € S, then:
(i) P | nimplies P' | n;
(i) P — @ implies that 3@’ such that P —* Q" and (Q, Q') € S
(2) we prove that P and Poy are barbed congruent up to Cyg, i.e., we prove
that (C(P),C(Poy)) € S for all contexts C € Cg.

Without loss of generality, in the following, we will consider only the case
in which P’ does not have high names restricted. By using the function ns
defined above, we are now able to define a relation S as follows:

8:{(P7P,) ‘El<A j j I_AI) (S/ le7f/E'7f{/) s.t. BB(P>E(S7fBajEJﬁ)7
ﬁB(P/) (S' ],5’ f A ) (S ]B7IE7 ) ’:B Pv (Slajbvjé?vﬁ/) ’:B Plv
Protected (S, (Ig, H)),Protected (S, (I}, H')),ns(P,S) = ns(P’,5)}.

We now prove that S is a bisimulation (step 1 of the proof):

(i) By hypothesis (P, P’) € S and, by definition of S, this means that
ns(P,S) = ns(P',S"). The two processes are then structurally equiva-
lent up to suspect names, which are never exhibited since by hypothesis
we have Protected (S, (Ig, H)) and Protected (5, (I}, H')). Thus, P
and P’ exhibit the same names.

(ii) The proof is by induction on the depth of the derivation P — Q:
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Base Step: By case analysis on the axioms of Figure 2.

(InRed) Let P = n[inm.P, | Q1] | m[R1] and Q@ = m[n[P, | Q1] | R1].
Assume that (P, P’ ) € S. Then:
- EI(S IB,IE,H) (5’ Ig, Iz, H) EB P A Protected (S, (IE,H)),
- (S I, Iy, HY) st (S, Iy, Iy, H') EB P’ A Protected (S, (I}, H'));
- ns(P,S) = ns(P', 3.
By Theorem 4.4 and the assumptions above, we derive that (g, Ip I, ]:I) =B
@, and consequently that @ is a protective process. For this reason, n,m ¢
S, then, by Lemma 4.7, P’ = n[inm.P, | Q2] | m[R2] | Ps, with:
(1) n,m & S;
(2) ns(Py,S) = ns(Py, §'),ns(Q1,5) = ns(Qs,5"),ns(Ry, S) = ns(Ry, S'),

and ns(Ps, 5') = 0;

(3) P3 = 0 since we assumed P’ to be a protective process.
By applying (InRed) to P', we get Q" = m[n[ P | Q2] | Re] | Ps, where
P; = 0. By Theorem 4.4, we can derive that (57, I, I}E, H') =B @', and, by
(1), (2) and (3) above, we get that ns(Q, S) = ns(Q’, S"). By the definition
of S, it follows that (Q, Q)eSs

(OutRed) Let P = m[n[outm.P, | Q1] | R1] andQ = n[P | Q1] | m[R1].
Assume that (P, P’) € S, then:
- 3(S,1p,1p, H) s.t. (S, I, Ig, H) =B P A Protected (S, (Ig, H));
- (S I, Iy, HY) st (S, Iy, Iy, H') EB P' A Protected (S, (I}, H'));
- ns(P,S) = ns(P', ).
By Theorem 4.4 and the assumptions above, we derive that (S, Ip, I, ]:I) =B
@, and consequently that @ is a protective process. For this reason, n,m ¢
S, then, by Lemma 4.8, P = m[ n[out m.P, | Q2] | R3] | Ps, with:
(1) n,m ¢ S";
(2) ns(Py,S) = ns(Py, §'),ns(Q1,5) = ns(Qs,5"),ns(Ry, S) = ns(Ry, S'),

and ns(Ps, 5') = 0;

(3) P3 = 0 since we assumed P’ to be a protective process.
By applying (OutRed) to P', we get Q' = n[ P, [ Q2] | m[R2] | P3, where
Py = 0. By Theorem 4.4, we can derive that (5, Ily, I}E, H') =B @', and, by
(1), (2) and (3) above, we get that ns(Q, S) = ns(Q’, S"). By the definition
of S, it follows that (Q, Q) eSs.

(OpenRedl) Let P = n[openm.P, | m[Q1] | R1] andQ = n[P, | Q1| R1].
Let us assume that (P, P') €8, then:
- H(S [B,IE,H) (S IB;[Ey ) ):BP A Protected (S (IE',H)),
- 3(9, IB,[E,H’) st (S, Iy, Ity H') EB P’ A Protected (S, (I}, H'));
- ns(P,S) = ns(P', 3.
By Theorem 4.4 and the assumptions above, we derive that (S, Ig, I, ﬁ) =B
@, and consequently that () is a protective process. For this reason, m ¢ S,
then, it follows that: If n,m ¢ S, then, by Lemma 4.9, P" = n[openm.P, |
m[Qg] | RQA] | Pg, with:
(1) n,m & S’
(2) ns(Py,S) = ns(Py, §'),ns(Q1,5) = ns(Qs,5"), ns(Ry, 8) = ns(Ry, S'),
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and ns(Ps, 8') = 0.

By applying (OpenRed1) to P', we get Q' = m[ P | Q2 | Ro] | Ps, where
P; = 0. By Theorem 4.4, we can derive that (S, IB, I, H') EP @, and, by
(1) and (2) above, we get that ns(Q,S) = ns(Q’,S'). By the definition of
S, it follows that (Q, Q') € S

(OpenRed?2) Let P = openm.P; | m[Q1] and Q = P; | Q1. Assume that
(P, P') €8, then:
- H(S IB,IE,H) (S IB,]E, ) ):B P A Protected (S (IE,H)),
- 38, Iy, Iy, HY) st (S, I, It H') EP P! A Protected (S, (11, H'));
- ns(P,S) = ns(P',S").
By Theorem 4.4 and the assumptions above, we derive that (S, I, Iz, H) EB
@, and consequently that () is a protective process. For this reason, m ¢ S
then, by Lemma 4.10, P’ = openm.P, | m[Q2] | Ps, with:
(1) m¢ S,
(2) ns(Py, S) = ns(Ps, 5),ns(Q1, ) = ns(Qa, §'), and ns(Ps, S') = 0;
(3) P3 = 0 since we assumed P’ to be a protective process as well.
By applying (OpenRed2) to P’, we get Q' = P | Q2. By Theorem 4.4, we
can derive that (S, I}y, I}y, H') =B @', and, by (1) and (2) above, we get that
ns(Q,S) = ns(Q',S'). By the definition of S, it follows that (Q, Q') € S

Inductive Step: By case analysis of the last operational rule applied among
the ones in Figure 2.

(ResRed) Let P = (vn)Py, Q = (vn)@Q1, and P, — Q1. Assume (P, P') € S,
i.e., ns(P,S) =ns(P',S"). In this case, P’ is of the form (vn)P]if n & S, or
of the form P/ if n € S, with ns(P;,S) = ns(P},S"), then (P, P]) € S.
By induction hypothesis, 3Q} s.t. Pi —* Q) and (Q1,Q;) € S, ie,
ns(Qy1,5) = ns( ’1,5’) By applying rule (ResRed), P’ goes into Q' =
(vn)@Y, with ns(Q, S) = ns(Q', ") since ns(Qq,S) = ns(Qy, ). It fol-
lows that (Q, Q') €

(AmbRed) Let P = n[Pl] ,Q=n[Q1],and P, — Q. Assume (P, P') € S,
ie., ns(P,S) = ns(P',S"). In this case, n & S since P is assumed to be
protective. Then, P’ is of the form P’ = n[P/] withn & S and ns(Py, S) =
ns(Pl,S"), and (P, P}) € 8. By induction hypothesis, 3Q7 s.t. P| —* @}
and (Q1,Q}) € S, ie., ns(Q1,S) = ns( it S"). By applying rule (AmbRed)
P’ goes into Q' = (vn)Q}, with ns(Q S) = ns(Q', ") since ns(Qq,5) =
ns(Qy, 5. Tt follows that (Q, Q') €

Once proved that S is a barbed bisimulation, by Lemma 4.6 there exists a
triplet (S, I”, HUH') such that (S, I" HUH’) }:B C(P) and Protected(S, (1",
H U H')). Then, it is easy to see that (SJN,I’ HO‘N UH') =B C(Poy) and
Protected(SaN, (I", HonUH")) and ns(C(P), SonyUS") = ns(C(Poy), SonU
S"). Therefore (C(P),C(Poy)) € S, i.e. they are barbed bisimilar (step 2 of
the proof). This concludes the proof. O
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Example 4.13 Let us compute the analysis over some of the examples de-
scribed throughout the chapter. Recall from Example 2.11 that the least analy-
sis for process P, returns S = {hdata}, Ip = {(b1, h), (b1,b2), (h,c1), (b2, c2)},
Iy = {(enw,b1), (enw,b2)}, and H = {(b1, container), (h, hdata), (b2, send)}.
Since Protected (h, (I, H)) = true, P; does not leak S.

Regarding Py of Example 3.6, we have that the suspect set S computed by the
analysis must contain send as well, as it performs capabilities over high-level
ambients (recall that send®[in“ hdata.out® hdata.out® container] ). More
precisely, the analysis result consists of S = {hdata, send}, Iy = {(b1,02),
(b2, cl), (b2, ¢2), (b2,¢3), (b1,c4), }, Ip= {(env, bl), (env, b2)}, and finally H=
{(b1, container), (b2, send)}. In this case, Protected (b2, (I, H)) = false, thus
process Pg cannot be proved interference-free, and indeed it is not since send,
a suspect ambient, may exit from container. o

Notice that in [20] also deadlocks are shown to be potential sources of infor-
mation leakage. In order to deal with this special kind of information flow, it
is sufficient to strength Definition 3.8 by using an equivalence notion which is
deadlock-suspect, such as bisimilarity. Observe that Theorem 4.12 still holds
even with this stronger notion of information leakage.

5 Related Work and Conclusion

The main novelty of the approach presented in this paper is that we face
the problem of detecting at the same time both direct and indirect informa-
tion leakage (non-interference) in the context of Mobile Ambients. In [4], we
described a tool that implements the analysis for direct information leakage
detection in the core Mobile Ambient calculus, and in [7] we proved that the
complexity of this analysis keeps reasonable (polynomial both in space and
in time). We expect similar experimental results also in the case of the anal-
ysis of indirect information leakage detection, as it can be seen as a more
sophisticated algorithm on a richer language.

The most related contributions in the area mainly focused on either extend-
ing the ambient calculus thus enhancing its expressive power, or on building
suitable type systems or control flow analyses to verify security properties.

Among the type systems approaches, it is worth to mention [11], where the au-
thors introduce a new type system for tracking the behaviour of mobile compu-
tations. Using groups, the type system can impose to an ambient behavioural
constraints on the set of ambients it may cross and the set of ambients it
may open. It has the effect of statically preventing certain communications
through a mandatory access control policy, and can block accidental or ma-
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licious leakage of secrets. Dezani and Salvo [15] extend the work of Cardelli
et al. just mentioned, with a type system that also expresses security levels
associated with ambients and provide further control over ambient movement
and opening.

Among the control flow analysis approaches, a lot of effort has been done to
enrich the abstract domains in order to obtain more detailed analyses that
could be used to verify different security properties. In [16], the author pro-
poses an analysis on a non-standard semantics of mobile ambients with first
order communications in order to distinguish different recursive instances of
threads, and to identify which threads can be launched in which ambients and
which ambient names can be communicated to which threads. In [30,28], an
exponential analysis for computing occurrences of threads inside ambients is
described. In [25], the authors propose an abstract interpretation framework
for MA based on a normal semantics. Unfortunately, the more detailed are
the abstract domains of the analysis, the more complex is the analysis. In
addition, the fact that a different semantics is used, make it more difficult to
compare the approach with the type system ones. In any case, our approach
to address indirect information leakage can be easily integrated within all of
these analyses.

In the context of language extensions, some valuable proposals are described
in [8-10,14,26]. Safe Ambients is a modification of Mobile Ambients, where
a movement or an ambient dissolution can take place only when the affected
ambient agrees, offering the corresponding coaction. Bozed Ambients [10] is
another variant of the Ambient calculus with a completely different model
of communication, which results from dropping the open capability. In their
paper, Bugliesi et al. define also a type system that provides an effective
mechanism for resource protection and access control. In [24], Degano et al.
present a control flow analysis that mainly focuses on access control. The
analysis relies on the use of coactions as a filter to control access to resources.

As already said in the introduction, as far as we know the only work to-
wards the study of non-interference in the context of Mobile Ambients is [13],
where a type system that guarantees that well-typed programs do not inter-
fere when in parallel with any high-level source is studied for Boxed Ambients.
One of the priorities as future work will be to carefully compare these two
approaches. This may also give interesting insights on the trade-off between
accuracy and efficiency and usability between type system and control-flow
analysis techniques. Their results indeed rely critically on the choice of con-
textual equivalence as the underlying equivalence relation, thus do not extend
to finer equivalence relationships, such as barbed congruence.
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P,Q == (vn)P restriction

out n.P  capability to exit n

| 0 inactivity

| P|Q composition

| P replication

|  n[P] ambient or boundary
| inn.P capability to enter n
|

|

openn.P capability to open n

Fig. 1. Syntax of Boundary Ambients.

(INRED) nlinm.P [ Q] [ m[R] — m[n[P | Q] | R]
(OurRED)  m[n[out m.P | Q] | R] — n[P[Q] | m[R]
m € Bound = n € Bound
(OPENRED) n[open m.P | m[Q] | R] — n[P | Q | R]
m € Bound = n € Bound
open m.P | m[Q] — P | Q m € Amb
(RESRED) P— Q= (vn)P — (vn)Q
(AMBRED) P — Q= n[P] — n[Q]
(CoMmPRED) P—-Q=P|R—Q|R
(= RED) P=PP—-QQ=Q =P —Q

’

Fig. 2. Reduction Rules: P — Q).
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P=P PlQ=Q|P

P=Q=Q=r (P1Q)|R=P|(@Q]|R)
P=Q,Q=R=P=R lP=P|!P

P=Q= ()P = (vn)Q (vn) (vm)P = () (vn) P
P=Q=P|R=Q|R (wn)(P | Q)= P | (1m)Q
P=Q=11P=1Q (vn)m[P] = m[(vn)P]
P=Q= n[P] =n[Q] Plo=P
P=Q=inn.P=inn.Q (vn)0

P=Q = outn.P =outn.qQ '0=0

P =(Q = openn.P = openn.()

ifn ¢ fn(P)
ifn#m

Fig. 3. Structural Congruence: P = Q.

Wnte
S : \\\ Read

Level n+k

Covert Read-down
Channel

Write-up

&@ Write
_ =
Read

Level n

Fig. 4. Information flows in the BLP model [17].

(res)  Nesty((vn)P) = Nesty(P)

(zer0)  Nesty(0) —

(par)  Nestp(P | Q) = Nesty(P) U Nest,(Q)
(repl)  Nest,(IP) — Nesty(P)

(amb)  Nesty(n“[P]) = Nestw(P)U{((,£")}
(in)  Nest,(in”n.P) = Nest,(P)U {((, (")}
(out)  Nest;(out’ n.P) = Nest,(P)U{(¢, )}
(open) Nest;(open’ n.P) = Nesty(P) U {(¢, (')}

Fig. 5. Definition of Function Nest.
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alice bob

open encrypt

out alice.

(a) alice needs to send confidential data data to bobd.

alice bob

[ encrypt open encrypt

out alice. W

(= o )

(b) the confidential data is encrypted with a shared key.

alice bob

‘ encrypt ‘ open encrypt

=

(c) data is sent encrypted over the communication channel.

alice bob

-

(d) hdata is safely received by bob.

[

[ ’W open encrypt

(e) bob accesses confidential data hdata by decrypting it.

Fig. 6. alice and bob exchanging confidential information.
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BE(P)

(res) /BEPmct(( n)P)

(zero) B proct (0)

(par) Biproa(P | Q)

(repl) Beproct('P)

(amb) B proct(n” [ P])
(capability) ﬁgpmct(in/out/openn P)

= ﬂ(]ignv,False(P)

= BEPTOCt(P)
= (0,0,0,0)
= ﬁEProct(P) N ﬁEProct(Q)
= ﬁ?Proct(P)
= if (¢, € Lab¥;) then
case Proct of
True : /BEI,PToct(P) L

False : BE’,PTOC?&(‘P) .
else

({n}, {(6,£%)}
({n}, 0, {(¢, ¢

0,4(
)3 A,

case Proct of

True : ﬂ%Proct(P) L (0, {(, e4)},0,{(
False: if (¢, € Lab%) then

t*,n)})

%, n)})

let (Proct’ = True) else (Proct’ = False) in

Bie procy(P) U (0,0, {(€, £}, {(£*,n)})

= case Proct of
True : ﬁEProct(P) L
False : ﬂEPmCt(P) L

(0,{(£,6},0,0)
(0,0, {(,€1)},0)

Fig. 7. Representation Function for the Control Flow Analysis.
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(out)

(8,1, I, H) =B (vn)P iff (S,1p,Ig, H) =B P

(S’ f f[) ):B 0 always

(S, 15, Ip, H) =B P | Q iff (9,1, Ig, H) =B P A (S, Ip,Ip, H) =B Q
(8,1p,Ig,H) =B P iff (S,Ig,Ip,H)EP P

(S, 1p,Ip, H) =B n®[P]  iff (8,1p,Ip, H)EB P

(S,Ip,Ip, H) =B in" n.P  iff (S,Ip,Ip, H) =B P A

Ve, 0¥ 04" € Lab® s.t. (69 ,n) € H -
1:case (1%, 0y e Ig A (09" 0%y e Ig N (07 4¥) e Ip
— (¥ ") elp
case (£, 0y e Ig N (0" 4%y e Ip N (L7 0%) e Ip A (° € Lab%
— if (£% € Lab%) then (£7,¢%) € Ip
else (£, 4%) € I
case (00, 0y e Iy N (09 0%y e Ip N (09 0%) e Ip A (° ¢ Lab%
— if (¢ € Lab%) then (67, ¢%) € I A {(e,e’) e lp | pathE(Ea,E)} CIp
else (09, 0%) € I
2:Vm € |[Names| s.t. (£*,m) € H :
(o, elgUlp A neS) = meb,
(8,1p,Ip, H) =B out! n.P iff (S,1p,Ip, H) =B P A
Ve, 0”07 e Lab® s.it. (69, n) € H A (1% ¢ Lab% V (* € Lab%) :
1:case (0%, 0" e Ig A (1% 4%y e IpUlp N (£ 0%) e Ip A (° € Lab%
— (17" %) e I
case ({9, 0y e Ig N (0¥ 0%y e Ig A (02, 07) € Ip
— (" 1) elp
case (£, 0y e Iy N (0¥ 0% e Ip A (£ 0%) e I A (* ¢ Lab%
— (17" 19) e I
2:Vm € |[Names| s.t. ((*,m) € H :
(o0t elgUlp A neS) = meb,

(open) (Sa fB,fE,ﬁ) )ZB Opengt n.P iff (g,fB,fE,fI) }:B P A

Ve, 0Y € Lab® s.t. (17 n) € H A ({9 € Lab% V (% € Lab%) :
1: case (0%, 0") € Iy A (17,0“) € Iy A 1* & Lab%
— {0 1@ pelp)Clp
case (¢, 0Y) € Ig N (02,0 e Ip
— {0 | @0 elp) Clp
2:VYm € |[Names| s.t. ((*,m) € H :
(e, 0ty eIgUIp A neS) = meb,

—

Fig. 8. Specification of the Control Flow Analysis.
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