## **Classification**

**Salvatore Orlando** 

- Given a collection of records (*training set*)
  - Each record contains a set of *attributes*, one of the attributes is the *class*.
  - The values of the class label represent the supervised knowledge
- Find a model for class attribute as a <u>function</u> of the values of other attributes
  - The function has to map a set of attributes X to a predefined class label y
- Goal: previously unseen records should be assigned a class as accurately as possible.
  - A test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.

### **Illustrating Classification Task**

| Tid | Attrib1 | Attrib2 | Attrib3 | Class |
|-----|---------|---------|---------|-------|
| 1   | Yes     | Large   | 125K    | No    |
| 2   | No      | Medium  | 100K    | No    |
| 3   | No      | Small   | 70K     | No    |
| 4   | Yes     | Medium  | 120K    | No    |
| 5   | No      | Large   | 95K     | Yes   |
| 6   | No      | Medium  | 60K     | No    |
| 7   | Yes     | Large   | 220K    | No    |
| 8   | No      | Small   | 85K     | Yes   |
| 9   | No      | Medium  | 75K     | No    |
| 10  | No      | Small   | 90K     | Yes   |

**Training Set** 

| Tid | Attrib1 | Attrib2 | Attrib3 | Class |
|-----|---------|---------|---------|-------|
| 11  | No      | Small   | 55K     | ?     |
| 12  | Yes     | Medium  | 80K     | ?     |
| 13  | Yes     | Large   | 110K    | ?     |
| 14  | No      | Small   | 95K     | ?     |
| 15  | No      | Large   | 67K     | ?     |

Learning algorithm Induction Learn Model Model Apply Model Deduction

Test Set

### **Examples of Classification Task**

- Predicting tumor cells as benign or malignant
- Classifying credit card transactions as legitimate or fraudulent
- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil
- Categorizing news stories as finance, weather, entertainment, sports, etc





- Decision Tree based Methods
- Rule-based Methods
- Memory based reasoning
- Neural Networks
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines

### **Example of a Decision Tree**

|     |        | rical             | rical             | JOUS     |
|-----|--------|-------------------|-------------------|----------|
|     | cate   | go, cateo         | conti             | int clas |
| Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat    |
| 1   | Yes    | Single            | 125K              | No       |
| 2   | No     | Married           | 100K              | No       |
| 3   | No     | Single            | 70K               | No       |
| 4   | Yes    | Married           | 120K              | No       |
| 5   | No     | Divorced          | 95K               | Yes      |
| 6   | No     | Married           | 60K               | No       |
| 7   | Yes    | Divorced          | 220K              | No       |
| 8   | No     | Single            | 85K               | Yes      |
| 9   | No     | Married           | 75K               | No       |
| 10  | No     | Single            | 90K               | Yes      |



**Model: Decision Tree** 

#### **Training Data**

### **Another Example of Decision Tree**





# There could be more than one tree that fits the same data!

### **Decision Tree Classification Task**



Test Set



#### Test Data

| Refund | Marital<br>Status | Taxable<br>Income | Cheat |
|--------|-------------------|-------------------|-------|
| No     | Married           | 80K               | ?     |











### **Decision Tree Classification Task**

| Tid          | Attrib1 | Attrib2 | Attrib3 | Class |  |  |  |
|--------------|---------|---------|---------|-------|--|--|--|
| 1            | Yes     | Large   | 125K    | No    |  |  |  |
| 2            | No      | Medium  | 100K    | No    |  |  |  |
| 3            | No      | Small   | 70K     | No    |  |  |  |
| 4            | Yes     | Medium  | 120K    | No    |  |  |  |
| 5            | No      | Large   | 95K     | Yes   |  |  |  |
| 6            | No      | Medium  | 60K     | No    |  |  |  |
| 7            | Yes     | Large   | 220K    | No    |  |  |  |
| 8            | No      | Small   | 85K     | Yes   |  |  |  |
| 9            | No      | Medium  | 75K     | No    |  |  |  |
| 10           | No      | Small   | 90K     | Yes   |  |  |  |
| Training Set |         |         |         |       |  |  |  |

| Tid | Attrib1 | Attrib2 | Attrib3 | Class |
|-----|---------|---------|---------|-------|
| 11  | No      | Small   | 55K     | ?     |
| 12  | Yes     | Medium  | 80K     | ?     |
| 13  | Yes     | Large   | 110K    | ?     |
| 14  | No      | Small   | 95K     | ?     |
| 15  | No      | Large   | 67K     | ?     |



- Many Algorithms:
  - Hunt's Algorithm (one of the earliest)
  - CART
  - ID3, C4.5
  - SLIQ, SPRINT

# **General Structure of Hunt's Algorithm**

- Let D<sub>t</sub> be the set of training records that reach a node t
  - At the beginning all the records are at the root
- General Procedure:
  - If D<sub>t</sub> contains records that <u>belong the same class y</u>t, then *t* is a leaf node labeled as yt
  - If D<sub>t</sub> is an <u>empty set</u>, then *t* is a leaf node labeled by the default class, y<sub>d</sub>
  - If D<sub>t</sub> contains records that <u>belong to more than one</u> <u>class</u>, use an attribute test to split the data into smaller subsets. <u>Recursively</u> apply the procedure to each subset.

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |
|-----|--------|-------------------|-------------------|-------|
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Single            | 90K               | Yes   |



## Hunt's Algorithm



## **Tree Induction**

- Greedy strategy.
  - Split the records based on an attribute test that optimizes certain criterion.

#### Issues

- Determine how to split the records
  - How to specify the attribute test condition?
  - How to determine the best split?
- Determine when to stop splitting

# **How to Specify Test Condition?**

### Depends on attribute types

- Nominal
- Ordinal
- Continuous

### Depends on number of ways to split

- 2-way split
- Multi-way split

## **Splitting Based on Nominal Attributes**

Multi-way split: Use as many partitions as distinct values.



 Binary split: Divides values into two subsets. Need to find optimal partitioning.



## **Splitting Based on Ordinal Attributes**

Multi-way split: Use as many partitions as distinct values.



 Binary split: Divides values into two subsets. Need to find optimal partitioning.



• What about this split?



## **Splitting Based on Continuous Attributes**

### Different ways of handling

- **Discretization** to form an ordinal categorical attribute

- Static discretize once at the beginning
- Dynamic ranges depends on the data, and can be found dynamically by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

### - Binary Decision: (A < v) or $(A \ge v)$

- consider all possible splits and finds the best cut
- can be more compute intensive

## **Splitting Based on Continuous Attributes**



### Greedy strategy.

Split the records based on an attribute test that optimizes certain criterion.

### Issues

- Determine how to split the records
  - How to specify the attribute test condition?
  - How to determine the best split?
- Determine when to stop splitting

## How to determine the Best Split



#### Which test condition is the best?

## How to determine the Best Split

- Greedy approach:
  - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 9 C1: 1

Non-homogeneous High degree of impurity Homogeneous Low degree of impurity

### **Measures of Node Impurity**

- Gini Index
- Entropy
- Misclassification error

## How to Find the Best Split



Gain = M0 - M12

VS.

MO – M34 Data and Web Mining - S. Orlando

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Maximum (1 1/n<sub>c</sub>) when records are equally distributed among all classes
- Minimum (0.0) when all records belong to one class

| Gini=0.000 |   | Gini=0.278 |    | Gini=0.444 |    | Gini=0.500 |    |   |
|------------|---|------------|----|------------|----|------------|----|---|
| C2         | 6 |            | C2 | 5          | C2 | 4          | C2 | 3 |
| C1         | 0 |            | C1 | 1          | C1 | 2          | C1 | 3 |

 This index is a measure of statistical dispersion developed by the Italian statistician and sociologist Corrado Gini (the index was published in 1912)

## **Measure of Impurity: GINI**

- Min value of the index:
  - A class with a relative frequency of 1, all the others 0

$$1 - \sum_{j=1}^{n_c} p_j^2 = 1 - 1^2 = 0$$

- Max value of the index:
  - $n_c$  classes with the same frequency:

$$1 - \sum_{j=1}^{n_c} p_j^2 = 1 - \sum_{j=1}^{n_c} (\frac{1}{n_c})^2 = 1 - n_c (\frac{1}{n_c})^2 = 1 - \frac{1}{n_c}$$

## **Examples for computing GINI**

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

| C1 | 0 |
|----|---|
| C2 | 6 |

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1Gini = 1 -  $P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$ 

| C1 | 1 |
|----|---|
| C2 | 5 |

$$P(C1) = 1/6$$
  $P(C2) = 5/6$   
Gini = 1 - (1/6)<sup>2</sup> - (5/6)<sup>2</sup> = 0.278

| C1 | 2 |
|----|---|
| C2 | 4 |

P(C1) = 2/6 P(C2) = 4/6 Gini =  $1 - (2/6)^2 - (4/6)^2 = 0.444$ 

- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where,  $n_i$  = number of records at child *i* n = number of records at *father* node *p* 

## **Binary Attributes: Computing GINI Index**

- Splits into two partitions
- Effect of Weighing partitions:
  - Larger and Purer Partitions are sought for.



## **Categorical Attributes: Computing Gini Index**

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

|      | Multi- | Multi-way split |        |      |       | (find)              | Two-w<br>best part | ay split<br>ition of | values)  |
|------|--------|-----------------|--------|------|-------|---------------------|--------------------|----------------------|----------|
|      |        | CarType         | )      |      |       | CarT                | уре                |                      | Car      |
|      | Family | Sports          | Luxury |      |       | {Sports,<br>Luxurv} | {Family}           |                      | {Sports} |
| C1   | 1      | 2               | 1      |      | C1    | 3                   | 1                  | C1                   | 2        |
| C2   | 4      | 1               | 1      |      | C2    | 2                   | 4                  | C2                   | 1        |
| Gini | 0.393  |                 |        | Gini | 0.400 |                     | Gini               | 0.4                  |          |

CarType

0.419

Familv

uxury

2

## **Continuous Attributes: Computing Gini Index**

- Use Binary Decisions based on one value
- Several Choices for the splitting value
  - Number of possible splitting values
    Number of distinct values
- Each splitting value has a count matrix associated with it
  - Class counts in each of the partitions, A < v and A ≥ v</li>
- Simple method to choose best v
  - For each v, scan the database to gather count matrix and compute its Gini index
  - Computationally Inefficient! Repetition of work.

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |
|-----|--------|-------------------|-------------------|-------|
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Single            | 90K               | Yes   |


# **Continuous Attributes: Computing Gini Index...**

- For efficient computation: for each attribute,
  - Sort the attribute on values
  - Linearly scan these values, each time updating the count matrix and computing gini index
  - Choose the split position that has the least gini index

|                                 | Cheat |                | No |     | No  | )   | N   | 0   | Ye  | S   | Ye | S   | Ye  | es         | N   | 0   | N   | 0   | N   | 0   |    | No  |    |
|---------------------------------|-------|----------------|----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|------------|-----|-----|-----|-----|-----|-----|----|-----|----|
|                                 |       | Taxable Income |    |     |     |     |     |     |     |     |    |     |     |            |     |     |     |     |     |     |    |     |    |
| Sorted Values $\longrightarrow$ |       |                | 60 |     | 70  | )   | 7   | 5   | 85  | 5   | 9( | 0   | 9   | 5          | 1(  | 00  | 12  | 20  | 1:  | 25  |    | 220 |    |
|                                 |       | 5              | 5  | 6   | 5   | 7   | 2   | 8   | 0   | 8   | 7  | 9   | 2   | 9          | 7   | 11  | 10  | 12  | 22  | 17  | 72 | 23  | 0  |
| •                               |       | <=             | >  | <=  | >   | <=  | >   | <=  | >   | <=  | >  | <=  | >   | <=         | >   | <=  | >   | <=  | >   | <=  | >  | <=  | >  |
|                                 | Yes   | 0              | 3  | 0   | 3   | 0   | 3   | 0   | 3   | 1   | 2  | 2   | 1   | 3          | 0   | 3   | 0   | 3   | 0   | 3   | 0  | 3   | 0  |
|                                 | No    | 0              | 7  | 1   | 6   | 2   | 5   | 3   | 4   | 3   | 4  | 3   | 4   | 3          | 4   | 4   | 3   | 5   | 2   | 6   | 1  | 7   | 0  |
|                                 | Gini  | 0.4            | 20 | 0.4 | 100 | 0.3 | 875 | 0.3 | 343 | 0.4 | 17 | 0.4 | 100 | <u>0.:</u> | 300 | 0.3 | 343 | 0.3 | 575 | 0.4 | 00 | 0.4 | 20 |

# **Alternative Splitting Criteria based on Entropy**

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$$

(NOTE: p(j | t) is the relative frequency of class j at node t)

- Measures homogeneity of a node.
  - Maximum (log n<sub>c</sub>) when records are equally distributed among all classes implying least information
  - Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are similar to the GINI index computations

# **Measure of Impurity: Entropy**

- Min value of the index:
  - A class with a relative frequency of 1, all the others 0

$$-\sum_{j=1}^{n_c} (p_j \log p_j) = -1 \log 1 = 0$$

• Max value of the index:

– n<sub>c</sub> classes with the same frequency:

$$-\sum_{j=1}^{n_c} (p_j \log p_j) = -\sum_{j=1}^{n_c} (\frac{1}{n_c} \log \frac{1}{n_c}) =$$
$$-n_c \frac{1}{n_c} \log \frac{1}{n_c} = -(\log 1 - \log n_c) = \log n_c$$

# **Examples for computing Entropy**

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_2 p(j \mid t)$$

| C1 | 0 |
|----|---|
| C2 | 6 |

$$P(C1) = 0/6 = 0$$
  $P(C2) = 6/6 = 1$   
Entropy =  $-0 \log 0 - 1 \log 1 = -0 - 0 = 0$ 

| C1 | 1 |
|----|---|
| C2 | 5 |

P(C1) = 1/6 P(C2) = 5/6  
Entropy = 
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

| C1 | 2 |
|----|---|
| C2 | 4 |

P(C1) = 2/6 P(C2) = 4/6Entropy =  $-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$ 

4()

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n<sub>i</sub> is number of records in partition i

- Measures Reduction in Entropy achieved because of the split. Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5
- Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

# **Splitting Based on Information Gain**

• Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Parent Node, p is split into k partitions  $n_i$  is the number of records in partition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO). Higher entropy of the partitioning (large number of small partitions) is penalized!
- Used in CART, and designed to overcome the disadvantage of Information Gain

# **Splitting Criteria based on Classification Error**

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Measures misclassification error made by a node.
  - Maximum (1 1/n<sub>c</sub>) when records are equally distributed among all classes, implying least interesting information
  - Minimum (0.0) when all records belong to one class, implying most interesting information

# **Measure of Impurity: Classification Error**

- Min value of the index:
  - A class with a relative frequency of 1, all the others 0

$$1 - \max_{j=1...n_c} p_j = 1 - 1 = 0$$

- Max value of the index:
  - $n_c$  classes with the same frequency:

$$1 - \max_{j=1...n_c} p_j = 1 - \frac{1}{n_c}$$

# **Examples for Computing Error**

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

| C1 | 0 |
|----|---|
| C2 | 6 |

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1Error = 1 - max (0, 1) = 1 - 1 = 0

| C1 | 1 |
|----|---|
| C2 | 5 |

$$P(C1) = 1/6$$
  $P(C2) = 5/6$   
Error = 1 - max (1/6, 5/6) = 1 - 5/6 = 1/6

| C1 | 2 |
|----|---|
| C2 | 4 |

P(C1) = 2/6 P(C2) = 4/6Error = 1 - max (2/6, 4/6) = 1 - 4/6 = 1/3

# **Comparison among Splitting Criteria**

#### For a 2-class problem:



## **Misclassification Error vs Gini**



|      | Parent |
|------|--------|
| C1   | 7      |
| C2   | 3      |
| Gini | = 0.42 |

Gini(Parent) =  $1 - (7/10)^2 - (3/10)^2$ = 0.42

ME(Parent) = 
$$1 - 7/10 = 0.3$$

Gini(N1) =  $1 - (3/3)^2 - (0/3)^2$ = 0

Gini(N2)  
= 
$$1 - (4/7)^2 - (3/7)^2$$
  
= 0.489

|            | N1 | N2 |  |  |  |  |
|------------|----|----|--|--|--|--|
| C1         | 3  | 4  |  |  |  |  |
| C2         | 0  | 3  |  |  |  |  |
| Gini=0.342 |    |    |  |  |  |  |

Gini(Children) = 3/10 \* 0 + 7/10 \* 0.489 = 0.342

ME(Children) = 3/10 \* 0 + 7/10 \* 0.428 = 0.2996

ME(N1) = 1 - 3/3 = 0

ME(N2) = 1 - (4/7) = = 0.428

- Greedy strategy.
  - Split the records based on an attribute test that optimizes certain criterion.
- Issues
  - Determine how to split the records
    - How to specify the attribute test condition?
    - How to determine the best split?
  - Determine when to stop splitting

# **Stopping Criteria for Tree Induction**

- Stop expanding a node when all the records belong to the same class
- Stop expanding a node when all the records have similar attribute values
- Early termination (to be discussed later)

- Advantages:
  - Inexpensive to construct
  - Extremely fast at classifying unknown records
  - Easy to interpret for small-sized trees
  - Accuracy is comparable to other classification techniques for many simple data sets

- Simple depth-first construction.
- Uses Information Gain
- Sorts Continuous Attributes at each node.
- Needs entire data to fit in memory.
- Unsuitable for Large Datasets.
  - Needs out-of-core sorting.

# **Skeleton of a Decision Tree induction algorithm**

Algorithm 7.3.1 (Generate\_decision\_tree) Generate a decision tree from the given training data.

Input: The training samples, *samples*, represented by discrete-valued attributes; the set of candidate attributes, *attribute-list*.

Output: A decision tree.

Method:

- 1) create a node N;
- 2) if samples are all of the same class, C then
- 3) return N as a leaf node labeled with the class C;
- 4) **if** *attribute-list* is empty **then**
- 5) return N as a leaf node labeled with the most common class in *samples*; // majority voting
- 6) select *test-attribute*, the attribute among *attribute-list* with the highest information gain;
- 7) label node N with *test-attribute*;
- 8) for each known value  $a_i$  of *test-attribute* // partition the samples
- 9) grow a branch from node N for the condition  $test-attribute=a_i$ ;
- 10) let  $s_i$  be the set of samples in samples for which test-attribute= $a_i$ ; // a partition
- 11) **if**  $s_i$  is empty then
- 12) attach a leaf labeled with the most common class in *samples*;
- 13) else attach the node returned by Generate\_decision\_tree( $s_i$ , attribute-list test-attribute);

#### This algorithm assumes that attributes are categorical

- Multi-way split at each test node
- When an attribute is selected, it is removed from the *attribute-list*

| Session | IP Address   | Timestamp               | Request<br>Method | Requested Web Page                                          | Protocol | Status | Number<br>of Bytes | Referrer                               | User Agent                                                                   |
|---------|--------------|-------------------------|-------------------|-------------------------------------------------------------|----------|--------|--------------------|----------------------------------------|------------------------------------------------------------------------------|
| 1       | 160.11.11.11 | 08/Aug/2004<br>10:15:21 | GET               | http://www.cs.umn.edu/<br>~kumar                            | HTTP/1.1 | 200    | 6424               |                                        | Mozilla/4.0<br>(compatible; MSIE 6.0;<br>Windows NT 5.0)                     |
| 1       | 160.11.11.11 | 08/Aug/2004<br>10:15:34 | GET               | http://www.cs.umn.edu/<br>~kumar/MINDS                      | HTTP/1.1 | 200    | 41378              | http://www.cs.umn.edu/<br>~kumar       | Mozilla/4.0<br>(compatible; MSIE 6.0;<br>Windows NT 5.0)                     |
| 1       | 160.11.11.11 | 08/Aug/2004<br>10:15:41 | GET               | http://www.cs.umn.edu/<br>~kumar/MINDS/MINDS<br>_papers.htm | HTTP/1.1 | 200    | 1018516            | http://www.cs.umn.edu/<br>~kumar/MINDS | Mozilla/4.0<br>(compatible; MSIE 6.0;<br>Windows NT 5.0)                     |
| 1       | 160.11.11.11 | 08/Aug/2004<br>10:16:11 | GET               | http://www.cs.umn.edu/<br>~kumar/papers/papers.<br>html     | HTTP/1.1 | 200    | 7463               | http://www.cs.umn.edu/<br>~kumar       | Mozilla/4.0<br>(compatible; MSIE 6.0;<br>Windows NT 5.0)                     |
| 2       | 35.9.2.2     | 08/Aug/2004<br>10:16:15 | GET               | http://www.cs.umn.edu/<br>~steinbac                         | HTTP/1.0 | 200    | 3149               |                                        | Mozilla/5.0 (Windows; U;<br>Windows NT 5.1; en-US;<br>rv:1.7) Gecko/20040616 |

(a) Example of a Web server log.

#### • Web Usage Mining: exploit a Decision Tree to clean a log

- Classify the accesses as performed by either humans or robots
- Each log record is an access, already segmented on the basis of the IP address
  - note Requested and Referrer/From page

| s | ession | IP Address   | Timestamp               | Request<br>Method | Requested Web Page                                          | Protocol | Status | Number<br>of Bytes | Referrer                               | User Agent                                                                   |
|---|--------|--------------|-------------------------|-------------------|-------------------------------------------------------------|----------|--------|--------------------|----------------------------------------|------------------------------------------------------------------------------|
| 7 | 1      | 160.11.11.11 | 08/Aug/2004<br>10:15:21 | GET               | http://www.cs.umn.edu/<br>~kumar                            | HTTP/1.1 | 200    | 6424               |                                        | Mozilla/4.0<br>(compatible; MSIE 6.0;<br>Windows NT 5.0)                     |
|   | 1      | 160.11.11.11 | 08/Aug/2004<br>10:15:34 | GET               | http://www.cs.umn.edu/<br>~kumar/MINDS                      | HTTP/1.1 | 200    | 41378              | http://www.cs.umn.edu/<br>~kumar       | Mozilla/4.0<br>(compatible; MSIE 6.0;<br>Windows NT 5.0)                     |
|   | 1      | 160.11.11.11 | 08/Aug/2004<br>10:15:41 | GET               | http://www.cs.umn.edu/<br>~kumar/MINDS/MINDS<br>_papers.htm | HTTP/1.1 | 200    | 1018516            | http://www.cs.umn.edu/<br>~kumar/MINDS | Mozilla/4.0<br>(compatible; MSIE 6.0;<br>Windows NT 5.0)                     |
|   |        | 160.11.11.11 | 08/Aug/2004<br>10:16:11 | GET               | http://www.cs.umn.edu/<br>~kumar/papers/papers.<br>html     | HTTP/1.1 | 200    | 7463               | http://www.cs.umn.edu/<br>~kumar       | Mozilla/4.0<br>(compatible; MSIE 6.0;<br>Windows NT 5.0)                     |
|   | 2      | 35.9.2.2     | 08/Aug/2004<br>10:16:15 | GET               | http://www.cs.umn.edu/<br>~steinbac                         | HTTP/1.0 | 200    | 3149               |                                        | Mozilla/5.0 (Windows; U;<br>Windows NT 5.1; en-US;<br>rv:1.7) Gecko/20040616 |

(a) Example of a Web server log.

- Each session is a directed graph
  - node: pages
  - edges: hyperlinks

54



#### Graph of session 1

| Attribute Name | Description                                             |
|----------------|---------------------------------------------------------|
| totalPages     | Total number of pages retrieved in a Web session        |
| ImagePages     | Total number of image pages retrieved in a Web session  |
| TotalTime      | Total amount of time spent by Web site visitor          |
| RepeatedAccess | The same page requested more than once in a Web session |
| ErrorRequest   | Errors in requesting for Web pages                      |
| GET            | Percentage of requests made using GET method            |
| POST           | Percentage of requests made using POST method           |
| HEAD           | Percentage of requests made using HEAD method           |
| Breadth        | Breadth of Web traversal                                |
| Depth          | Depth of Web traversal                                  |
| MultilP        | Session with multiple IP addresses                      |
| MultiAgent     | Session with multiple user agents                       |

(c) Derived attributes for Web robot detection.

Extraction of features characterizing the variuos sessions

- Build a trainig/test dataset (a portion of the Web log file), by annotating each record (supervised knowledge)
  - 2916 records
  - 50% clas 1 (Web Robots)
  - 50% class 0 (Human Users)
- 10% training dataset
- 90% test dataset

- Decision treee induction.
- The decision tree is used to classify and remove the robot sessions

#### **Decision Tree:**

depth = 1: | breadth>7: class 1 | breadth<= 7: | | breadth <= 3: | | | ImagePages> 0.375: class 0 | | | ImagePages<= 0.375: | | | | totalPages<= 6: class 1 | | | totalPages> 6: | | | | | breadth <= 1: class 1 | | | | | breadth > 1: class 0 | | breadth > 3: | | | MultilP = 0;| | | | ImagePages<= 0.1333: class 1 | | | | ImagePages> 0.1333: | | | | breadth <= 6; class 0 | | | | breadth > 6: class 1 | MultilP = 1: | | | | TotalTime <= 361: class 0 | | | | TotalTime > 361: class 1 depth> 1: | MultiAgent = 0: | | depth > 2: class 0 | | depth < 2: | | | MultilP = 1: class 0 | | | MultilP = 0;| | breadth  $\leq 6$ : class 0 | | breadth > 6: | | | RepeatedAccess <= 0.322: class 0 | | | | | RepeatedAccess > 0.322: class 1 | MultiAgent = 1: | | totalPages <= 81: class 0 | | totalPages > 81: class 1

- The robots (*class* 1) have sessions with large "breadth/width" and short "depth"
- The humans (*class* 0) generate sessions with small "breadth", but a larger "depth"
  - They surf the Web with exploration that are more focused
- The robots (some of them) do not download images
- The robot sessions are longer that the human ones
- The robots repeat the page request when they follow the back hyperlinks, whereas the humans do not repeat it due to the browser cache

58

#### **Metrics for Performance Evaluation**

- Focus on the predictive capability of a model
  - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

|                 | PREDICTED CLASS |           |          |  |
|-----------------|-----------------|-----------|----------|--|
| ACTUAL<br>CLASS |                 | Class=Yes | Class=No |  |
|                 | Class=Yes       | а         | b        |  |
|                 | Class=No        | С         | d        |  |

a: TP (true positive)b: FN (false negative)c: FP (false positive)d: TN (true negative)

59

#### **Metrics for Performance Evaluation**

|                 | PREDICTED CLASS |           |           |  |
|-----------------|-----------------|-----------|-----------|--|
| ACTUAL<br>CLASS |                 | Class=Yes | Class=No  |  |
|                 | Class=Yes       | a<br>(TP) | b<br>(FN) |  |
|                 | Class=No        | c<br>(FP) | d<br>(TN) |  |

Most widely-used metric:

Accuracy 
$$= \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

$$Error\_rate = 1 - Accuracy = \frac{b+c}{a+b+c+d} = \frac{FN+FP}{TP+TN+FP+FN}$$

# **Practical Issues of Classification**

- Underfitting and Overfitting
- Missing Values
- Costs of Classification

# **Underfitting and Overfitting**



Underfitting: when model is too simple, both training and test errors are large

# **Overfitting due to Noise**



Decision boundary is distorted by noise point

63

# **Overfitting due to Insufficient Examples**



Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region

Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

- Overfitting results in decision trees that are more complex than necessary
- Training error no longer provides a good estimate of how well the tree will perform on previously unseen records
- Need new ways for estimating errors

- Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
- For complex models, there is a greater chance that it was fitted accidentally by errors in data
- Therefore, one should include model complexity when evaluating a model

# **Minimum Description Length (MDL)**



- Cost(Model,Data) = Cost(Data|Model) + Cost(Model)
  - Cost is the number of bits needed for encoding.
  - Search for the least costly model.
- Tradeoff
  - Cost(Data|Model) encodes the misclassification errors, and decreases for over-fitted models.
  - Cost(Model) uses node encoding (number of children) plus splitting condition encoding. This costs <u>increases</u> for over-fitted models.

- Pre-Pruning (Early Stopping Rule)
  - Stop the algorithm before it becomes a fully-grown tree
  - Typical stopping conditions for a node:
    - Stop if all instances belong to the same class
    - Stop if all the attribute values are the same
  - More restrictive conditions:
    - Stop if number of instances is less than some userspecified threshold
    - Stop if class distribution of instances are independent of the available features (e.g., using  $\chi^2$  test)
    - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

## Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree
- Can use MDL for post-pruning

# **Overfitting: Post-Pruning**



- Missing values affect decision tree construction/ use in three different ways:
  - Affects how impurity measures are computed
  - Affects how to distribute instance with missing value to child nodes
  - Affects how a test instance with missing value is classified

# **Computing Impurity Measure**

| Tid              | Refund | Marital<br>Status | Taxable<br>Income | Class |
|------------------|--------|-------------------|-------------------|-------|
| 1                | Yes    | Single            | 125K              | No    |
| 2                | No     | Married           | 100K              | No    |
| 3                | No     | Single            | 70K               | No    |
| 4                | Yes    | Married           | 120K              | No    |
| 5                | No     | Divorced          | 95K               | Yes   |
| 6                | No     | Married           | 60K               | No    |
| 7                | Yes    | Divorced          | 220K              | No    |
| 8                | No     | Single            | 85K               | Yes   |
| 9                | No     | Married           | 75K               | No    |
| 10               | ?      | Single            | 90K               | Yes   |
| Missing<br>value |        |                   |                   |       |

#### **Before Splitting:**

Entropy(Parent) = -0.3 log(0.3)-(0.7)log(0.7) = 0.8813

|            | Class<br>= Yes | Class<br>= No |
|------------|----------------|---------------|
| Refund=Yes | 0              | 3             |
| Refund=No  | 2              | 4             |
| Refund=?   | 1              | 0             |

#### **Split on Refund:**

Entropy(Refund=Yes) = 0

Entropy(Refund=No) = -(2/6)log(2/6) - (4/6)log(4/6) = 0.9183

Entropy(Children) = 0.3 (0) + 0.6 (0.9183) = 0.551

 $Gain = 0.9 \times (0.8813 - 0.551) = 0.3303$
| Tid | Refund | Marital<br>Status | Taxable<br>Income | Class |  |
|-----|--------|-------------------|-------------------|-------|--|
| 1   | Yes    | Single            | 125K              | No    |  |
| 2   | No     | Married           | 100K              | No    |  |
| 3   | No     | Single            | 70K               | No    |  |
| 4   | Yes    | Married           | 120K              | No    |  |
| 5   | No     | Divorced          | 95K               | Yes   |  |
| 6   | No     | Married           | 60K               | No    |  |
| 7   | Yes    | Divorced          | 220K              | No    |  |
| 8   | No     | Single            | 85K               | Yes   |  |
| 9   | No     | Married           | 75K               | No    |  |
|     | Yes No |                   |                   |       |  |

| *         |   | •         |   |
|-----------|---|-----------|---|
| Class=Yes | 0 | Cheat=Yes | 2 |
| Class=No  | 3 | Cheat=No  | 4 |



**Probability that Refund=Yes is 3/9** 

**Probability that Refund=No is 6/9** 

Assign record to the left child with weight = 3/9 and to the right child with weight = 6/9

# **Classify Instances**



### **Other Issues**

- Data Fragmentation
- Search Strategy
- Expressiveness
- Tree Replication

- Number of instances gets smaller as you traverse down the tree
- Number of instances at the leaf nodes could be too small to make any statistically significant decision

- Finding an optimal decision tree is NP-hard
- The algorithm presented so far uses a greedy, top-down, recursive partitioning strategy to induce a reasonable solution
- Other strategies?
  - Bottom-up
  - Bi-directional

# Expressiveness

- Decision tree provides expressive representation for learning discrete-valued function
  - But they do not generalize well to certain types of Boolean functions
    - Example: parity function:
      - Class = 1 if there is an even number of Boolean attributes with truth value = True
      - Class = 0 if there is an odd number of Boolean attributes with truth value = True
    - For accurate modeling, must have a complete tree
- Not expressive enough for modeling continuous variables
  - Particularly when test condition involves only a single attribute at-a-time

# **Decision Boundary**



- Border line between two neighboring regions of different classes is known as decision boundary
- Decision boundary is parallel to axes because test condition involves a single attribute at-a-time

### **Oblique Decision Trees**



- Test condition may involve multiple attributes
- More expressive representation
- Finding optimal test condition is computationally expensive

### **Presentation: decisiontree**

```
Decision Tree:
depth = 1:
breadth>7: class 1
| breadth<= 7:
| | breadth <= 3:
| | | ImagePages> 0.375: class 0
| | | ImagePages<= 0.375:
| | | | totalPages<= 6: class 1
| | | totalPages> 6:
| | | | | breadth <= 1: class 1
| | | | | breadth > 1: class 0
| | breadth > 3:
| | | MultilP = 0:
| | | | ImagePages<= 0.1333: class 1
| | | | ImagePages> 0.1333:
| | | | breadth <= 6: class 0
| | | | breadth > 6; class 1
| | | MultiP = 1:
| | | | TotalTime <= 361: class 0
| | | | TotalTime > 361: class 1
depth> 1:
| MultiAgent = 0:
| | depth > 2: class 0
| | depth < 2:
| | | MultilP = 1: class 0
| | | MultilP = 0:
| | | | breadth <= 6: class 0
| | | | breadth > 6:
| | | | | RepeatedAccess <= 0.322: class 0
| | | | RepeatedAccess > 0.322: class 1
| MultiAgent = 1:
| | totalPages <= 81: class 0
| | totalPages > 81: class 1
```

#### **Presentation: decisiontree**



### **Presentation: decisiontree**



#### **Metrics for Performance Evaluation**

|        | PREDICTED CLASS |           |           |
|--------|-----------------|-----------|-----------|
|        |                 | Class=Yes | Class=No  |
| ACTUAL | Class=Yes       | a<br>(TP) | b<br>(FN) |
| CLASS  | Class=No        | с<br>(FP) | d<br>(TN) |

Most widely-used metric:

Accuracy 
$$= \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

$$Error\_rate = 1 - Accuracy = \frac{b+c}{a+b+c+d} = \frac{FN+FP}{TP+TN+FP+FN}$$

# **Limitation of Accuracy**

- Consider a 2-class problem
  - Number of Class No examples = 9990
  - Number of Class Yes examples = 10 <= Rare Class</p>

|            |     | Yes    | No        |
|------------|-----|--------|-----------|
| <b>D</b> A | Yes | 0 (TP) | 10 (FN)   |
| ACT        | No  | 0 (FP) | 9990 (TN) |

PREDICTED

- If model predicts everything to be class No, accuracy is 9990/10000 = 99.9 %
  - Accuracy is misleading because model does not detect any examples associated with class "No"

### **Other measures**

- Sensitivity and Specificity: measures for binary classification test
- In many contexts: Rare class = Positive
  - In medical diagnostics: Positive = Disease
- True positive rate (TPR) or Sensitivity
  - TPR = TP / (TP + FN) = TP / actual\_pos (previous example TPR=0)
  - Fraction of positives returned over all the positives. Sensitivity relates to the test's ability to identify positive results
- True negative rate (TNR) or Specificity
  - TNR = TN / (TN + FP) = TN / actual\_neg (previous example)

(previous example TNR=9990/9990=1)

- Fraction of negatives returned over all the negatives. Specificity relates to the ability of the test to identify negative results.
- Sensitivity vs. Recall
  - Typical measure in Information Retrieval

Recall:r = TP / (TP + FN) $\leftarrow$  SensitivityPrecision:p = TP / (TP + FP)

in IR the quantity *TP* + *FP* corresponds to all the documents that are considered relevant, and are thus returned by the search engine

### **Cost Matrix**

|        | PREDICTED CLASS |            |           |
|--------|-----------------|------------|-----------|
|        | C(i j)          | Class=Yes  | Class=No  |
| ACTUAL | Class=Yes       | C(Yes Yes) | C(No Yes) |
| CLASS  | Class=No        | C(Yes No)  | C(No No)  |

C(i|j): Cost of misclassifying class j example as class I

For instance, diagnosing disease for a healthy person (FP, since Disease=Positive) does not produce the same consequences as to predict health for an ill person (FN) => The cost of predicting health for an ill person should be higher!

Quantifying the consequences of a good or bad classification is a task of the domain expert

# **Computing Cost of Classification**

| Cost<br>Matrix  | PREDICTED CLASS |    |     |
|-----------------|-----------------|----|-----|
| ACTUAL<br>CLASS | C(i j)          | +  | -   |
|                 | +               | -1 | 100 |
|                 | -               | 1  | 0   |

| Model M <sub>1</sub> | PREDICTED CLASS |     |     |
|----------------------|-----------------|-----|-----|
| ACTUAL<br>CLASS      |                 | +   | -   |
|                      | +               | 150 | 40  |
|                      |                 | 60  | 250 |

Accuracy = 80% Cost = 60+4000-150=3910  
 Model M2
 PREDICTED CLASS

 ACTUAL CLASS
 +

 250
 45

 5
 200

Accuracy = 90%Cost = 4255

## **Cost vs Accuracy**

| Count  | PREDICTED CLASS |           |          |
|--------|-----------------|-----------|----------|
|        |                 | Class=Yes | Class=No |
| ACTUAL | Class=Yes       | а         | b        |
| CLASS  | Class=No        | С         | d        |

| Cost   | PREDICTED CLASS |           |          |
|--------|-----------------|-----------|----------|
|        |                 | Class=Yes | Class=No |
| ACTUAL | Class=Yes       | р         | q        |
| CLASS  | Class=No        | q         | р        |

Accuracy is proportional to cost if 1. C(Yes|No)=C(No|Yes) = q 2. C(Yes|Yes)=C(No|No) = p

$$N = a + b + c + d$$

Accuracy = 
$$(a + d)/N$$

### **Cost-Sensitive Measures**

Precision (p) = 
$$\frac{a}{a+c}$$
  
Recall (r) =  $\frac{a}{a+b}$   
F - measure (F) =  $\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$ 

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall/Sensitivity is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy = 
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

### **Methods for Performance Evaluation**

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
  - Class distribution
  - Cost of misclassification
  - Size of training and test sets

- Holdout
  - Reserve 2/3 for training and 1/3 for testing
  - Issue: the two datasets are not independent
- Random subsampling for k times
  - Repeated holdout:  $acc_{sub} = \sum_{i=1,k} acc_i/k$
- Cross validation
  - Partition data into k disjoint subsets
  - k-fold: train on k-1 partitions, test on the remaining one
  - Leave-one-out: k=n
- Bootstrap
  - Sampling with replacement