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Continuous and Categorical Attributes 

Session 
Id 

Country Session 
Length 
(sec) 

Number of 
Web Pages 

viewed 
Gender Browser 

Type Buy 

1 USA 982 8 Male IE No 

2 China 811 10 Female Netscape No 

3 USA 2125 45 Female Mozilla Yes 

4 Germany 596 4 Male IE Yes 

5 Australia 123 9 Male Mozilla No 

… … … … … … … 
10 

 

Example of Association Rule: 

       {Number of Pages ∈[5,10) ∧ (Browser=Mozilla)} → {Buy = No} 

How to apply association analysis formulation to non-asymmetric 
binary variables, like “Buy”, or continuous like “Session length”, 
or categorical like “Country” ? 
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Handling Categorical Attributes 

§  Transform categorical attribute into asymmetric binary 
variables 

§  Introduce a new “item” for each distinct attribute-value 
pair 
–  Example: replace Browser Type attribute with 

•   Browser Type = Internet Explorer 
•   Browser Type = Mozilla 
•   Browser Type = Netscape 
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Handling Categorical Attributes 

§  Potential Issues 
–  What if an attribute has many possible values 

•  Example: attribute country has more than 200 possible 
values 

•  Many of the attribute values may have very low support 
–  Potential solution: Aggregate the low-support attribute values 

–  What if distribution of attribute values is highly 
skewed 

•   Example: 95% of the visitors have Buy = No 
•   Most of the items will be associated with (Buy=No) item 

–  Potential solution: drop the highly frequent items, since 
these items, like “Buy=No”, should be associated with every 
itemset returned 
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Handling Continuous Attributes 

§  Different kinds of rules: 
–  Age∈[21,35) ∧ Salary∈[70k,120k) →   Buy 
–  Salary∈[70k,120k) ∧ Buy →    Age (µ=28, σ=4) 

§  Different methods: 
–  Discretization-based 
–  Statistics-based 
–  Non-discretization based 

•   minApriori 
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Handling Continuous Attributes 

§  Use discretization 
§  Unsupervised: 

–  Equal-width binning 
–  Equal-depth binning 
–  Clustering 

§  Supervised:  

Class v1 v2 v3 v4 v5 v6 v7 v8 v9 

Anomalous 0 0 20 10 20 0 0 0 0 
Normal 150 100 0 0 0 100 100 150 100 

bin1 bin3 bin2 

Attribute values, v 
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Discretization Issues 

§  Size of the discretized intervals affect support & 
confidence 

 
–  If intervals too small 

•   may not have enough support 
–  If intervals too large 

•   may not have enough confidence 

§  Potential solution: use all possible intervals with small 
supports 
–  Expensive and too many rules 

{Refund = No, (Income = $51,250)} → {Cheat = No} 

{Refund = No, (60K ≤ Income ≤ 80K)} → {Cheat = No} 

{Refund = No, (0K ≤ Income ≤ 1B)} → {Cheat = No} 

{Refund = No, (Income = $51,250)} → {Cheat = No} 

{Refund = No, (51K ≤ Income ≤ 52K)} → {Cheat = No} 

{Refund = No, (50K ≤ Income ≤ 60K)} → {Cheat = No} 



8 Data and Web Mining - S. Orlando 

Min-Apriori 

§  Data contains only continuous attributes of the same 
“type” 
–  e.g., frequency of words  

in a document 

 
§  Potential solution: 

–  Convert into 0/1 matrix and then apply existing algorithms 
•   lose word frequency information 

§  Discretization does not apply properly, as users want association 
among words not ranges of words (like the following rule)

 {(2 ≤ W2 ≤ 3)} → {W1 = 2} 

TID W1 W2 W3 W4 W5
D1 2 2 0 0 1
D2 0 0 1 2 2
D3 2 3 0 0 0
D4 0 0 1 0 1
D5 1 1 1 0 2
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Non-discretization methods: 
Min-Apriori (Han et al.) 

TID W1 W2 W3 W4 W5
D1 2 2 0 0 1
D2 0 0 1 2 2
D3 2 3 0 0 0
D4 0 0 1 0 1
D5 1 1 1 0 2

Example: 

W1 and W2 tend to appear together in the same 
document 

Document-term matrix, where each entry is the 
(normalized) frequency count of a word in a 
document: 
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Min-Apriori 

§  How to determine the support of a word? 
–  If we simply sum up its frequency, support count will be greater 

than total number of documents! 
–  Solution 

•   Normalize the word vectors (by column) 
•   Each word has an overall support equals to 1.0 

TID W1 W2 W3 W4 W5
D1 2 2 0 0 1
D2 0 0 1 2 2
D3 2 3 0 0 0
D4 0 0 1 0 1
D5 1 1 1 0 2

TID W1 W2 W3 W4 W5
D1 0.40 0.33 0.00 0.00 0.17
D2 0.00 0.00 0.33 1.00 0.33
D3 0.40 0.50 0.00 0.00 0.00
D4 0.00 0.00 0.33 0.00 0.17
D5 0.20 0.17 0.33 0.00 0.33

Normalize 
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Min-Apriori 

§  New definition of support: 

 

∑
∈ ∈

=
Ti Cj

jiDC ),()sup( min

Example: 

Sup(W1,W2,W3) 

= 0 + 0 + 0 + 0 + 0.17 

= 0.17 

 

TID W1 W2 W3 W4 W5
D1 0.40 0.33 0.00 0.00 0.17
D2 0.00 0.00 0.33 1.00 0.33
D3 0.40 0.50 0.00 0.00 0.00
D4 0.00 0.00 0.33 0.00 0.17
D5 0.20 0.17 0.33 0.00 0.33
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Anti-monotone property of Support 

Example (anti-monotone support): 

Sup(W1) = 0.4 + 0 + 0.4 + 0 + 0.2 = 1 

Sup(W1, W2) = 0.33 + 0 + 0.4 + 0 + 0.17 = 0.9 

Sup(W1, W2, W3) = 0 + 0 + 0 + 0 + 0.17 = 0.17 

TID W1 W2 W3 W4 W5
D1 0.40 0.33 0.00 0.00 0.17
D2 0.00 0.00 0.33 1.00 0.33
D3 0.40 0.50 0.00 0.00 0.00
D4 0.00 0.00 0.33 0.00 0.17
D5 0.20 0.17 0.33 0.00 0.33
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Multi-level Association Rules 
Food

Bread

Milk

Skim 2%

Electronics

Computers Home

Desktop LaptopWheat White

Foremost Kemps

DVDTV

Printer Scanner

Accessory

§  In market basket analysis, the concept hierarchy becomes an item 
taxonomy 
–  Edges are “is-a” relationships 

§  Directed Acyclic Graph 
–  Parent-Child      Ancestor-Descendant 
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Multi-level Association Rules 

§  Why should we incorporate concept hierarchy? 
–  Rules at lower levels may not have enough support to 

appear in any frequent itemsets 

–  Rules at lower levels of the hierarchy are overly 
specific  

•   e.g.,  skim milk → white bread,  
 2% milk → wheat bread, 
 skim milk → wheat bread, etc. 

are indicative of association between milk and bread 
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Multi-level Association Rules 

§  Approach 1: 
–  Extend current association rule formulation by augmenting 

each transaction with higher level items, and then apply 
standard Apriori algorithm 

 Original Transaction, with items at the lowest level of the hierarchy: 
 {skim milk, wheat bread}  

 Augmented Transaction, adding the ancestors: 
 {skim milk, wheat bread, milk, bread, food} 

§  Issues: 
–  Items that reside at higher levels have much higher support 

counts  
•  if support threshold is low, too many frequent patterns involving 

items from the higher levels 
–  Increased dimensionality of the data 
–  Redundant rules 

•  Easily remove redundant itemsets like: {skim milk, milk, food} 
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Multi-level Association Rules 

§  Approach 2: 
–  Generate frequent patterns at highest level first  

 
–  Then, generate frequent patterns at the next highest level, and 

so on, by reducing the support threshold 

§  Issues: 
–  I/O requirements will increase dramatically because we need to 

perform more passes over the data 
–  May miss some potentially interesting cross-level association 

patterns 



17 Data and Web Mining - S. Orlando 

Sequence Data 

10 15 20 25 30 35

2
3
5

6
1

1

Timeline

Object A:

Object B:

Object C:

4
5
6

2 7
8
1
2

1
6

1
7
8

Object Timestamp Events 
A 10 2, 3, 5 
A 20 6, 1 
A 23 1 
B 11 4, 5, 6 
B 17 2 
B 21 7, 8, 1, 2 
B 28 1, 6 
C 14 1, 8, 7 

Sequence Database: 

Element composed of multiple events/items, 
i.e., each record is a transaction associated with 

a timestamp and an object 

Sequence 
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Examples of Sequence Data 

Sequence 
Database 

Sequence Element 
(Transaction) 

Event 
(Item) 

Customer Purchase history of a given 
customer 

A set of items bought by 
a customer at time t 

Books, diary products, 
CDs, etc 

Web Data Browsing activity of a 
particular Web visitor 

A collection of files 
viewed by a Web visitor 
after a single mouse click 

Home page, index 
page, contact info, etc 

Event data History of events generated 
by a given sensor 

Events triggered by a 
sensor at time t 

Types of alarms 
generated by sensors  

Genome 
sequences 

DNA sequence of a 
particular species 

An element of the DNA 
sequence  

Bases A,T,G,C 

Sequence 

E1 
E2 

E1 
E3 E2 E3 

E4 E2 

Element (Transaction) 
Event  
(Item) 
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Examples of Mined Sequences 

§  Web sequence: 
 
  < {Homepage}  {Electronics}  {Digital Cameras}  {Canon Digital Camera} 

{Shopping Cart}  {Order Confirmation}  {Return to Shopping} > 

§  Sequence of initiating events causing the nuclear accident at 3-
mile Island: 
(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm) 

<   {clogged resin} {outlet valve closure} {loss of feedwater}  
{condenser polisher outlet valve shut} {booster pumps trip}  
{main waterpump trips} {main turbine trips} {reactor pressure increases}> 
 

§  Sequence of books checked out at a library: 
<{Fellowship of the Ring} {The Two Towers}  {Return of the King}> 
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Formal Definition of a Sequence 

§  A sequence is an ordered list of elements 
(transactions) 

   s = < e1 e2 e3 … > 

–  Each element contains a collection of events (items) 

   ei = {i1, i2, …, ik} 
–  Each element is attributed to a specific time (even 

location) 

§  Length of a sequence, |s|, is given by the number of 
elements/transactions in the sequence 

§  A k-sequence is a sequence that globally contains 
k events (items) 
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Formal Definition of a Subsequence 

§  A sequence <a1 a2 … an> is contained in another 
sequence <b1 b2 … bm> (m ≥ n) if there exist integers  
i1 < i2 < … < in   
such that   a1 ⊆ bi1 , a2 ⊆ bi2, …, an ⊆ bin  

 

§  The support of a subsequence w is defined as the 
fraction of input data sequences that contain w 
–  Note that a sequence can be contained in a given “data 

sequence” in different ways (see the last example) 
–  A sequential pattern is frequent if it is a subsequence of σ input 

sequences (σ = support of the pattern), and σ ≥ minsup 

subsequence DATA sequence Contained 

< (3) (4 5) (8) > < (7) (3 8) (9) (4 5 6) (8) > Y 

< (3) (5) >  < (3 5) > N 

< (3) (5) > < (3 5) (3 5) (3 4 5) > Y 

The timestamps 
associated with the 
transactions are not 

shown  



22 Data and Web Mining - S. Orlando 

Sequential Pattern Mining: Definition 

§  Given:  
–  a database of sequences  
–  a user-specified minimum support threshold, minsup 

§  Task: 
–  Find all subsequences with support ≥ minsup 
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Sequential Pattern Mining: Challenge 

§  Given a sequence:   <{a b} {c d e} {f} {g h i}> 
–  Examples of subsequences: 

<{a} {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc. 

§  How many k-subsequences can be extracted from a 
given n-sequence? 

       <{a  b} {c d  e} {f} {g h  i}>  n = 9 
   

 k=4:        Y _    _ Y Y   _  _  _ Y 
 

       <{a}         {d e}             {i}>    126
4
9
:Answer

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
k
n
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Customer 
Id 

Transaction Time Items Bought 

1 
1 

June 25,93 
June 30,93 

30 
90 

2 
2 
2 

June 10,93 
June 15,93 
June 20,93 

10,20 
30 

40,60,70 

3 June 25,93 30,50,70 

4 
4 
4 

June 25,93 
June 30,93 
July 25,93 

30 
40,70 

90 

5 June 12,93 90 

Sequential Pattern Mining:  Example 

 10 
 20  30 

CID=2 
     t 

 30 40 
70 

CID=4 
     t 

 30  90 

CID=1 
     t 

 30 
 50 
 70 

CID=3 
     t 

 90 

 90 

CID=5 
     t 

 40 
 60 
 70 

MinSupp=40%, i.e. 2 customers of 5: 

<30><90>            (supported by 1,4) 
<30><40,70>       (supported by 2,4) 
<10 20 ><30>      Infrequent 
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Sequential Pattern Mining:  Example 

Minsup = 50% 
 
Examples of Frequent Subsequences: 
 
< {1,2} >        s=60% 
< {2,3} >   s=60% 
< {2,4}>   s=80% 
< {3} {5}>  s=80% 
< {1} {2} >  s=80% 
< {2} {2} >  s=60% 
< {1} {2,3} >  s=60% 
< {2} {2,3} >  s=60% 
< {1,2} {2,3} >  s=60% 

Object Timestamp Events
A 1 1,2,4
A 2 2,3
A 3 5
B 1 1,2
B 2 2,3,4
C 1 1, 2
C 2 2,3,4
C 3 2,4,5
D 1 2
D 2 3, 4
D 3 4, 5
E 1 1, 3
E 2 2, 4, 5
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Extracting Sequential Patterns 

§  Given n events:   i1, i2, i3, …, in 

§  Candidate 1-subsequences:  
<{i1}>, <{i2}>, <{i3}>, …, <{in}> 

§  Candidate 2-subsequences: 
<{i1, i2}>, <{i1, i3}>, …, <{i1} {i1}>, <{i1} {i2}>, …, <{in-1} {in}> 

§  Candidate 3-subsequences: 
<{i1, i2 , i3}>, <{i1, i2 , i4}>, …, <{i1, i2} {i1}>, <{i1, i2} {i2}>, …, 
<{i1} {i1 , i2}>, <{i1} {i1 , i3}>, …, <{i1} {i1} {i1}>, <{i1} {i1} {i2}>, … 
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Generalized Sequential Pattern (GSP) 

§  Step 1:  
–  Make the first pass over the sequence database D to yield all the 

1-element frequent sequences 

§  Step 2:  
 Repeat until no new frequent sequences are found 

–  Candidate Generation:  
•  Merge pairs of frequent subsequences found in the (k-1)th pass to 

generate candidate sequences that contain k items  

–  Candidate Pruning: 
•  Prune candidate k-sequences that contain infrequent (k-1)-

subsequences 

–  Support Counting: 
•  Make a new pass over the sequence database D to find the support 

for these candidate sequences 

–  Candidate Elimination: 
•  Eliminate candidate k-sequences whose actual support is less than 

minsup 
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Candidate Generation 

§  Base case (k=2):  
–  Merging two frequent 1-sequences <{i1}>  and <{i2}> will 

produce two candidate 2-sequences:  <{i1} {i2}>  and   <{i1 i2}> 

§  General case (k>2): 
–  A frequent (k-1)-sequence w1 is merged with another frequent  

(k-1)-sequence w2 to produce a candidate k-sequence if the 
subsequence obtained by removing the first event in w1 is the 
same as the subsequence obtained by removing the last event 
in w2 (suffix of w1 = prefix of w2)  

•  The resulting candidate after merging is given by the sequence 
w1 extended with the last event of w2.  

–  If the last two events in w2 belong to the same element, then the 
last event in w2 becomes part of the last element in w1 

–  Otherwise, the last event in w2 becomes a separate element 
appended to the end of w1 
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Candidate Generation Examples 

§  Merging the sequences (in red the common portion) 
w1=<{1} {2 3} {4}> and w2 =<{2 3} {4 5}>  
will produce the candidate sequence < {1} {2 3} {4 5}> because the 
last two events in w2 (4 and 5) belong to the same element 

§  Merging the sequences (in red the common portion) 
w1=<{1} {2 3} {4}> and w2 =<{2 3} {4} {5}>  
will produce the candidate sequence < {1} {2 3} {4} {5}> because the 
last two events in w2 (4 and 5) do not belong to the same element 
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GSP Example 

< {1} {2} {3} >
< {1} {2 5} >
< {1} {5} {3} >
< {2} {3} {4} >
< {2 5} {3} >
< {3} {4} {5} >
< {5} {3 4} >

< {1} {2} {3} {4} >
< {1} {2 5} {3} >
< {1} {5} {3 4} >
< {2} {3} {4} {5} >
< {2 5} {3 4} > < {1} {2 5} {3} >

Frequent
3-sequences

Candidate
Generation

Candidate
Pruning
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Timing Constraints (I) 

Data sequence Subsequence Contain? 

< {2,4} {3,5,6} {4,7} {4,5} {8} > < {6} {5} > Yes 

< {1} {2} {3} {4} {5}> < {1} {4} > No 

< {1} {2,3} {3,4} {4,5}> < {2} {3} {5} >  Yes 

< {1,2} {3} {2,3} {3,4} {2,4} {4,5}> < {1,2} {5} > No 

{A   B}     {C}    {D   E} 

<= ms 

<= xg  >ng <= ws 
xg: max-gap 

ng: min-gap 

ws: window size 

ms: maximum span 

xg = 2, ng = 0, ws = 1, ms= 5 
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Mining Sequential Patterns with Timing Constraints 

§  Approach 1: 
–  Mine sequential patterns without timing constraints 
–  Postprocess the discovered patterns 

§  Approach 2: 
–  Modify GSP to directly prune candidates that violate timing 

constraints 
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Frequent Subgraph Mining 

§  Extend association rule mining for finding frequent 
subgraphs 

§  Useful for Web Mining, computational chemistry, 
bioinformatics, spatial data sets, etc 

 

Databases

Homepage

Research

Artificial
Intelligence

Data Mining
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Graph representation of entities  

Application Graphs Vertices Edges 
Web mining Web browsing 

patterns 
Web pages Hyperlinks between 

pages 
Computational 
chemistry 

Structure of 
chemical 
compounds 

Atoms or ions Bond between 
atoms or ions 

Sematic Web Collection of XML 
documents 

XML elements Parent-child 
relationships 
between elements 

Bioinformatics Protein structures Amino acids Contact residue  
Network computing Computer networks Computer and 

servers 
Interconnections 
between machines 
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Graph Definitions 

a

b a

c c

b

(a) Labeled Graph

pq

p

p

r
s

t
r

t

qp

a

a

c

b

(b) Subgraph

p

s

t

p
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Frequent Subgraph Mining 
Computing the Subgraph Support 
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Representing Transactions as (unlabeled) Graphs 

§  Each transaction is a clique of items 

Transaction 
Id

Items

1 {A,B,C,D}
2 {A,B,E}
3 {B,C}
4 {A,B,D,E}
5 {B,C,D}

A

B
C

D
E

TID = 1:
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Representing Graphs as Transactions 

a

b

e

c

p

q

r p

a

b

d

p

r

G1 G2

q

e

c

a

p q

r

b

p

G3

d

r
d

r

(a,b,p) (a,b,q) (a,b,r) (b,c,p) (b,c,q) (b,c,r) … (d,e,r)
G1 1 0 0 0 0 1 … 0
G2 1 0 0 0 0 0 … 0
G3 0 0 1 1 0 0 … 0
G3 … … … … … … … …
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Challenges 

§  Nodes may contain duplicate labels 
§  Support and confidence 

–  How to define them? 
§  Additional constraints imposed by pattern structure 

–  Support and confidence are not the only constraints 
–  Assumption: frequent subgraphs must be connected 

§  Apriori-like approach:  
–  Use frequent k-subgraphs to generate frequent (k+1) subgraphs 

•  What is k? 
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Challenges… 

§  Support:  
–  number of graphs that contain a particular subgraph 
 

§  Apriori principle still holds 

§  Level-wise (Apriori-like) approach: 
–  Vertex growing: 

•   k is the number of vertices 
–  Edge growing: 

•   k is the number of edges 
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Vertex Growing 
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Edge Growing 
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Apriori-like Algorithm 

§  Find frequent 1-subgraphs 
§  Repeat 

–  Candidate generation 
•   Use frequent (k-1)-subgraphs to generate candidate k-

subgraph 
–  Candidate pruning 

•   Prune candidate subgraphs that contain infrequent  
(k-1)-subgraphs  

–  Support counting 
•   Count the support of each remaining candidate 

–  Eliminate candidate k-subgraphs that are infrequent 

In practice, it is not as easy. There are many other issues 
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Example: Dataset 
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c
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d
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G1 G2
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c

a

p q
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b
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G3

d
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d
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(a,b,p) (a,b,q) (a,b,r) (b,c,p) (b,c,q) (b,c,r) … (d,e,r)
G1 1 0 0 0 0 1 … 0
G2 1 0 0 0 0 0 … 0
G3 0 0 1 1 0 0 … 0
G4 0 0 0 0 0 0 … 0

a e
q

c

d

p p

p

G4

r
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Example 

p

a b c d ek=1
Frequent
Subgraphs

a b

p
c d

p
c e

q
a e

r
b d

p
a b

d

r

p
d c

e

p

(Pruned candidate)

Minimum support count = 2

k=2
Frequent
Subgraphs

k=3
Candidate
Subgraphs

b 
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Candidate Generation 

§  In Apriori: 
–  Merging two frequent k-itemsets will produce a candidate (k+1)-itemset 

§  In frequent subgraph mining (vertex/edge growing) 
–  Merging two frequent k-subgraphs may produce more than one 

candidate (k+1)-subgraph 
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Multiplicity of Candidates (Vertex Growing) 
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Multiplicity of Candidates (Edge growing) 

§  Case 1: identical vertex labels 

a

b
e

c

a

b
e

c
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a

b
e

c

ea

b
e

c
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Multiplicity of Candidates (Edge growing) 

§  Case 2: Core contains identical labels 

+

a

a
a

a

c
b

a

a
a

a

c

a

a
a

a

c

b

b

a

a
a

a

b a

a
a

a

c

Core: The (k-1) subgraph that is common 
           between the joint graphs 
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Multiplicity of Candidates (Edge growing) 

§  Case 3: Core multiplicity 
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a ab
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a ab

a a
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Graph Isomorphism 

§  A graph G is isomorphic to a graph H, if it is topologically 
equivalent to H

§  There exists a bijection between the vertex sets of the two graph 
 
such that any two vertices u and v of G are adjacent in G if and only 
if ƒ(u) and ƒ(v) are adjacent in H.  

A

A

A A

B A

B

A

B

B

A

A

B B

B

B
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Graph Isomorphism 

§  Test for graph isomorphism is needed: 
–  During candidate generation step, to determine whether a 

candidate has been already generated 

–  During candidate pruning step, to check whether its  
(k-1)-subgraphs are frequent 

–  During candidate counting, to check whether a candidate is 
contained within another graph 
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Graph Isomorphism 

§  Use canonical labeling to handle isomorphism 
–  Map each graph into an ordered string representation (known as 

its code) such that two isomorphic graphs will be mapped to the 
same canonical encoding 

–  Example:  
•  Lexicographically largest adjacency matrix 
•  Find the permutations of the vertices so that the adjacency matrix is 

lexicographically maximized when read off from left to right, one 
row at a time 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0110
1011
1100
0100

String: 0010001111010110 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0001
0011
0101
1110

Canonical: 0111101011001000 

1 2 

4 
3 1 

2 

3 

4 
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Adjacency Matrix Representation 

A(1) A(2)

B (6)

A(4)

B (5)

A(3)

B (7) B (8)

A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A(1) 1 1 1 0 1 0 0 0
A(2) 1 1 0 1 0 1 0 0
A(3) 1 0 1 1 0 0 1 0
A(4) 0 1 1 1 0 0 0 1
B(5) 1 0 0 0 1 1 1 0
B(6) 0 1 0 0 1 1 0 1
B(7) 0 0 1 0 1 0 1 1
B(8) 0 0 0 1 0 1 1 1

A(2) A(1)

B (6)

A(4)

B (7)

A(3)

B (5) B (8)

A(1) A(2) A(3) A(4) B(5) B(6) B(7) B(8)
A(1) 1 1 0 1 0 1 0 0
A(2) 1 1 1 0 0 0 1 0
A(3) 0 1 1 1 1 0 0 0
A(4) 1 0 1 1 0 0 0 1
B(5) 0 0 1 0 1 0 1 1
B(6) 1 0 0 0 0 1 1 1
B(7) 0 1 0 0 1 1 1 0
B(8) 0 0 0 1 1 1 0 1

It is sufficient to consider the string representation (canonical 
encoding) of the upper triangular matrix 


