
1 Data and Web Mining - S. Orlando

Association mining

Salvatore Orlando

2 Data and Web Mining - S. Orlando

Association Rule Mining

§  Given a set of transactions, find rules that will
predict the occurrence of an item (a set of items)
based on the occurrences of other items in the
transaction

Market-Basket transactions

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example of Association
Rules

{Diaper} → {Beer}
{Milk, Bread} → {Eggs,Coke}
{Beer, Bread} → {Milk}

Implication means co-
occurrence, not causality!

3 Data and Web Mining - S. Orlando

Definition: Frequent Itemset

§  Itemset
–  A collection of one or more items

•  Example: {Milk, Bread, Diaper}

§  k-itemset
–  An itemset that contains k items

§  Support count (σ)
–  Number of transaction occurrences

of an itemset
–  E.g. σ({Milk, Bread,Diaper}) = 2

§  Support
–  Fraction of transactions that contain

an itemset
–  E.g. s({Milk, Bread, Diaper}) = 2/5

§  Frequent Itemset
–  An itemset whose support is greater

than or equal to (not less than) a
minsup threshold

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

4 Data and Web Mining - S. Orlando

Definition: Association Rule

Example:
Beer}Diaper,Milk{ ⇒

4.0
5
2

|T|
)BeerDiaper,,Milk(

===
σs

67.0
3
2

)Diaper,Milk(
)BeerDiaper,Milk,(

===
σ

σc

§  Association Rule

•  An implication expression of the
form X → Y, where X and Y are
itemsets

• 
•  Example:

 {Milk, Diaper} → {Beer}

§  Rule Evaluation Metrics

•  Support (s)

•  Fraction of transactions that
contain both X and Y

•  Confidence (c)

•  Measures how often items in Y
appear in transactions that
contain X

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

X \ Y = ;

5 Data and Web Mining - S. Orlando

Association Rule Mining Task

§  Given a set of transactions T, the goal of association rule mining is
to find all rules having
–  support ≥ minsup threshold
–  confidence ≥ minconf threshold

§  Brute-force approach:
–  List all possible association rules
–  Compute the support and confidence for each rule
–  Prune rules that fail the minsup and minconf thresholds
⇒ Computationally prohibitive!

6 Data and Web Mining - S. Orlando

Mining Association Rules

Example of Rules:

{Milk,Diaper} → {Beer} (s=0.4, c=0.67)
{Milk,Beer} → {Diaper} (s=0.4, c=1.0)
{Diaper,Beer} → {Milk} (s=0.4, c=0.67)
{Beer} → {Milk,Diaper} (s=0.4, c=0.67)
{Diaper} → {Milk,Beer} (s=0.4, c=0.5)
{Milk} → {Diaper,Beer} (s=0.4, c=0.5)

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Observations:

•  All the above rules are binary partitions of the same itemset:

 {Milk, Diaper, Beer}

•  Rules originating from the same itemset have identical support but
 can have different confidence

•  Thus, we may decouple the support and confidence requirements

7 Data and Web Mining - S. Orlando

Mining Association Rules

§  Two-step approach:

1.  Frequent Itemset Generation

–  Generate all itemsets whose support ≥ minsup

2.  Rule Generation
–  Generate high confidence rules from each frequent itemset,

where each rule is a binary partitioning of a frequent itemset

§  Frequent itemset generation is still computationally
expensive

8 Data and Web Mining - S. Orlando

Frequent Itemset Generation
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there
are 2d possible
candidate itemsets

9 Data and Web Mining - S. Orlando

Frequent Itemset Generation

§  Brute-force approach:
–  Each itemset in the lattice is a candidate frequent itemset
–  Count the support of each candidate by scanning the database

–  Match each transaction against every candidate
–  Complexity ~ O(NMw) => Expensive since M = 2d !!!

TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke

N

Transactions List of
Candidates

M

w

10 Data and Web Mining - S. Orlando

Computational Complexity

§  Given d unique items:
–  Total number of itemsets = 2d

–  Total number of possible association rules:

123 1

1

1 1

+−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −
×⎟
⎠

⎞
⎜
⎝

⎛
=

+

−

=

−

=
∑ ∑

dd

d

k

kd

j j
kd

k
d

R

If d=6, R = 602 rules

k is the number
of items on the
right hand of
the rule

Select (in all the
possible ways)
the number j of
elements
occurring in the
left hand of the
rule

11 Data and Web Mining - S. Orlando

Frequent Itemset Generation Strategies

§  Reduce the number of candidates (M)
–  Complete search: M=2d

–  Use pruning techniques to reduce M

§  Reduce the number of transactions (N)
–  Reduce size of N as the size of itemset increases
–  Used by DHP and vertical-based mining algorithms

§  Reduce the number of comparisons (NM)
–  Use efficient data structures to store the candidates or

transactions
–  No need to match every candidate against every transaction

12 Data and Web Mining - S. Orlando

Reducing Number of Candidates

§  Apriori principle:
–  If an itemset is frequent, then all of its subsets must also be

frequent
§  Apriori principle holds due to the following property of the support

measure:

–  Support of an itemset never exceeds the support of its subsets
–  This is known as the anti-monotone property of support

§  Apriori principle application for candidate pruning
–  Given a candidate itemset Y, if there exists X, where X is a subset of

Y, and X è infrequent since s(X) < minsup, then also Y is infrequent
due to the Apriori principle
 minsup > s(X) ≥ s(Y)

)()()(:, YsXsYXYX ≥⇒⊆∀

13 Data and Web Mining - S. Orlando

Found to be
Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating Apriori Principle

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned
supersets

14 Data and Web Mining - S. Orlando

Illustrating Apriori Principle

Item Count
Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count
{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count
{Bread,Milk,Diaper} 3

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)
Minimum Support = 3

If every subset is considered,

With support-based pruning,

✓
6
1

◆
+

✓
6
2

◆
+

✓
6
3

◆
= 6 + 15 + 20 = 41

✓
6
1

◆
+

✓
4
2

◆
+ 1 = 6 + 6 + 1 = 13

15 Data and Web Mining - S. Orlando

Apriori algorithm

§  Ck is the set of candidates (k-itemsets) at iteration k
§  The algorithm compute their supports

§  Lk is the set of k-itemsets that result to be frequent

§  Lk Ck
§  Along with Lk, also the associated supports are returned
§  Note: L stands for large. In the original paper, the frequent

itemset were called “large itemset”

§  Gen Step:
§  Ck is generated by self-joining Lk-1, by keeping only the

itemsets of length k
§  Pruning of Ck: A k-itemset cannot be frequent, and thus cannot

be a candidate of Ck, if it includes at least a subset that is not
frequent. So, it is reasonable start from Lk-1 to generate Ck

✓

16 Data and Web Mining - S. Orlando

Gen Step
§  Suppose that

–  Each itemset is an ordered list of items
–  If the itemsets in Lk-1 are sorted according to a lexicographic order, this simplify

the self-join step

§  Step 1: self-joining Lk-1
insert into Ck

all pairs (p, q) ∈Lk-1

where p.item1=q.item1, ……, p.itemk-2=q.itemk-2, p.itemk-1 < q.itemk-1

(p and q share a common prefix of length k-2)

(the condition p.itemk-1 < q.itemk-1 guarantees that no duplicates are generated)

§  Step 2: pruning
forall itemsets c in Ck do

forall (k-1)-subsets s of c do
if (s is not in Lk-1) then delete c from Ck

From this check, we can
omit the pair of generators
(p, q), which are surely
included in Lk-1

17 Data and Web Mining - S. Orlando

Example of candidate generation

§  L3={abc, abd, acd, ace, bcd}

§  Self-joining: L3*L3
–  abcd from p=abc and q=abd

–  acde from p=acd and q=ace

§  Pruning:
–  acde is then pruned because ade is not included in L3

§  C4={abcd}

18 Data and Web Mining - S. Orlando

Apriori algorithm

§  Pseudo-code:
Ck: Candidate itemsets of size k
Lk : frequent itemsets of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin
 Ck+1 = candidates generated from Lk;
 for each transaction t in database D do

 increment the count of all candidates in Ck+1
 that are contained in t

 Lk+1 = candidates in Ck+1 with are frquent
 end
return ∪k Lk

19 Data and Web Mining - S. Orlando

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2

C2 C2
Scan D

C3 L3 itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

Apriori: another example (minsup = 2)

20 Data and Web Mining - S. Orlando

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

Apriori: Breadth first visit of the lattice

21 Data and Web Mining - S. Orlando

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

Generate the candidates of dimension 1

22 Data and Web Mining - S. Orlando

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

Compute the supports of the Candidates of dim. 1

23 Data and Web Mining - S. Orlando

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

Generate the candidates of dimension 2

24 Data and Web Mining - S. Orlando

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

Compute the supports of the Candidates of dim. 2

25 Data and Web Mining - S. Orlando

a b c d e

ac ad ae bc bd be cd ce de

acd ace ade bcd bce bde cde

acde bcde

Prune the infrequent itemsets

26 Data and Web Mining - S. Orlando

a b c d e

ac ad ae bc bd be cd ce de

acd ace ade bcd bce bde cde

acde bcde

Generate the candidates of dimension 3

27 Data and Web Mining - S. Orlando

a b c d e

ac ad ae bc bd be cd ce de

acd ace ade bcd bce bde cde

acde bcde

Compute the supports of the Candidates of dim. 3

28 Data and Web Mining - S. Orlando

a b c d e

ac ad ae bc bd be cd ce de

acd ace ade bce bde cde

acde

Prune the infrequent itemsets

29 Data and Web Mining - S. Orlando

a b c d e

ac ad ae bc bd be cd ce de

acd ace ade bce bde cde

acde

Generate the candidates of dimension 3

30 Data and Web Mining - S. Orlando

a b c d e

ac ad ae bc bd be cd ce de

acd ace ade bce bde cde

acde

Compute the supports of the Candidates of dim. 4

31 Data and Web Mining - S. Orlando

Reducing Number of Comparisons

§  Candidate counting:
–  Scan the database of transactions to determine the support

of each candidate itemset
–  To reduce the number of comparisons, store the

candidates in a hash structure
Instead of matching each transaction against every candidate,
match it against candidates contained in the hashed buckets

TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke

N

Transactions Hash Structure

k

Buckets

32 Data and Web Mining - S. Orlando

Generate Hash Tree

§  Hash-tree to store candidates
in Ck of max depth k:
–  The selection of the path is

done with a hash function
over the items to select the
path

–  Each leaf stores a list of
candidates

–  Max leaf size: max number of
itemsets stored in a leaf node
(if number of candidate
itemsets exceeds max leaf
size, split the node)

33 Data and Web Mining - S. Orlando

Generate Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on
1, 4 or 7

Note that items 4 and 7
occur also in these bins

These leaf nodes have not
been split, since they contain
small numbers of candidates

34 Data and Web Mining - S. Orlando

Generate Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on
2, 5 or 8

35 Data and Web Mining - S. Orlando

Generate Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on
3, 6 or 9

36 Data and Web Mining - S. Orlando

Subset Operation Using Hash Tree

1 2 3 5 6

Transaction, t

2 3 5 61 3 5 62

5 61 33 5 61 2 61 5 5 62 3 62 5

5 63

1 2 3
1 2 5
1 2 6

1 3 5
1 3 6 1 5 6 2 3 5

2 3 6 2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Given a transaction t, what
are the possible subsets of
size 3?

37 Data and Web Mining - S. Orlando

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1 2 3 5 6

1 + 2 3 5 6 3 5 6 2 +

5 6 3 +

1,4,7

2,5,8

3,6,9

Hash Function transaction

To avoid duplicates,
the 3-itemsets we can
extract from 123456 are
always sorted
 1 can be combined with
 2, or 3, or 5, but not
 with 6
In the transaction there
not exist any itemset,
where {1,6,x}, x>6 !!!

•  Recursive transaction subsetting

38 Data and Web Mining - S. Orlando

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function 1 2 3 5 6

3 5 6 1 2 +

5 6 1 3 +

6 1 5 +

3 5 6 2 +

5 6 3 +

1 + 2 3 5 6

transaction

39 Data and Web Mining - S. Orlando

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function 1 2 3 5 6

3 5 6 1 2 +

5 6 1 3 +

6 1 5 +

3 5 6 2 +

5 6 3 +

1 + 2 3 5 6

transaction

For each subset of 123456 we explore a maximum
of 3 candidates (the size of each leaf)
We explore 11 candidates to identify the 3 matching
candidates.

40 Data and Web Mining - S. Orlando

Factors Affecting Complexity

§  Choice of minimum support threshold
–  lowering support threshold results in more frequent

itemsets
–  this may increase the number of candidates and the max

length of frequent itemsets
§  Dimensionality (number of items) of the data set

–  more space is needed to store support count of each item
–  if number of frequent items also increases, both

computation and I/O costs may also increase
§  Size of database

–  since Apriori makes multiple passes, run time of algorithm
may increase with the number of transactions

§  Average transaction width
–  transaction width increases with denser data sets
–  this may increase max length of frequent itemsets and

traversals of hash tree (number of subsets in a transaction
increases with its width)

41 Data and Web Mining - S. Orlando

How to improve the efficiency of Apriori

§  Hash-based itemset counting to reduce the size of Ck:
–  At iteration k-1 try to forecast the itemsets that will NOT be part of Ck
–  The k-itemset (where items are mapped to integer IDs) occurring in a

transaction are mapped, with a hash function, into a relatively small table
 ⇒ less counters than in Ck

–  All the k-itemsets mapped to the same hash bucket whose counter is less
than a given minsup

•  cannot be frequent and thus can be pruned from Ck

§  Example: at iteration k=1, create the hash table H2 , for items {I1,I2,I3,I4,I5,I6}
–  hash function: h(x, y) = (x * 10 + y) mod 7
–  min_supp = 3
–  Size hash table = 6 Number of subsets of 2 elements (max sz of Ck) = 15

42 Data and Web Mining - S. Orlando

How to improve the efficiency of Apriori
§  Transaction pruning: A transaction that does not contain any

frequent k-itemset, cannot contain any larger itemset, and can thus
be pruned

§  Sampling: mining a reduced number of transactions, but this
reduces the accuracy of the result

§  Partitioning: Small partitions of database D can be managed in
main memory. An itemset that is frequent in D must be frequent in
at least one of the partition of D.
Unfortunately a frequent itemset in a partition of D could be
infrequent in the whole database D.

43 Data and Web Mining - S. Orlando

Partitioning

§  3 partitions of D : D1, D2, D3

§  If itemset X is globally frequent, then:

 (1) σ(X) = σD1(X) + σD2(X) + σD3(X) >= minsup% (|D1| +|D2| +|D3|)

 ∀ i, σDi(X) < minsup% |Di| ⇒ X is globally infrequent, since

 property (1) does not hold

¬ (X is globally infrequent) ⇒ ¬(∀ i, σDi(X) < minsup% |Di|)

 X is globally frequent ⇒ ∃ i, σDi(X) >= minsup% |Di|

X is globally frequent ⇒ X is locally frequent in some dataset

44 Data and Web Mining - S. Orlando

Rule Generation

§  Non optimized algorithm

 for each frequent itemset l do
 for each proper subset c of l do
 if (support(l) / support(l-c) ≥ minconf) then

 output rule (l-c) ⇒ c, with
 confidence = support(l) / support(l-c)
 support = support(l);

§  e.g.: If X = {A,B,C,D} is frequent, candidate rules:
 ABC →D, ABD →C, ACD →B, BCD →A,
A →BCD, B →ACD, C →ABD, D →ABC,
AB →CD, AC → BD, AD → BC, BC →AD,
BD →AC, CD → AB

§  If |X| = m, then there are 2m – 2 candidate association
rules (ignoring X → ∅ and ∅ → X)

c is frequent due
Apriori property

45 Data and Web Mining - S. Orlando

Efficient Rule Generation

§  In general, confidence does not have an anti-monotone
property

 c(ABC →D) can be larger or smaller than c(AB →D)

§  But confidence of rules generated from the same itemset has
an anti-monotone property
–  e.g., X = {A,B,C,D}:

 c(ABC → D) ≥ c(AB → CD) ≥ c(A → BCD) D CD BCD

 σ(ABCD) σ(ABCD) σ(ABCD)
--------------- ≥ ----------------- ≥ ---------------
 σ(ABC) σ(AB) σ(A)

Confidence is anti-monotone w.r.t. the number of items on the RHS
of the rule
 If min_conf > c(ABC → D) then

 min_conf > c(ABC → D) ≥ c(AB → CD) ≥ c(A → BCD)
 and thus we can prune c(AB → CD) and c(A → BCD)

✓✓

46 Data and Web Mining - S. Orlando

Efficient Rule Generation

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD
Pruned
Rules

Low Confidence
Rule

47 Data and Web Mining - S. Orlando

Efficient Rule Generation

§  Candidate rule is generated by merging two rules that share the
same prefix in the rule consequent

§  join(CD=>AB,BD=>AC)
would produce the candidate
rule D => ABC

§  Prune rule D=>ABC if AD=>BC
does not have high confidence

§  (AD=>BC is not a a generator, but BC ABC)

§  Note that the other two “subsets”
CD=>AB and BD=>AC are surely
highly confident, since they are
the generators of D => ABC

BD=>ACCD=>AB

D=>ABC

✓

48 Data and Web Mining - S. Orlando

Presentation of Association Rules (Table Form)

49 Data and Web Mining - S. Orlando

Visualization of Association Rule Using Plane Graph

50 Data and Web Mining - S. Orlando

Visualization of Association Rule Using Rule Graph

51 Data and Web Mining - S. Orlando

Compact Representation of Frequent Itemsets

§  Some itemsets are redundant because they have
identical support as their supersets

§  Min support count: σ = 5
§  Number of frequent itemsets

§  Need a compact representation

TID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
1 1 1 1 1 1 1 1 1 1 1 0
2 1 1 1 1 1 1 1 1 1 1 0
3 1 1 1 1 1 1 1 1 1 1 0
4 1 1 1 1 1 1 1 1 1 1 0
5 1 1 1 1 1 1 1 1 1 1 0
6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
11 0 1 1 1 1 1 1 1 1 1 1
12 0 1 1 1 1 1 1 1 1 1 1
13 0 1 1 1 1 1 1 1 1 1 1
14 0 1 1 1 1 1 1 1 1 1 1
15 0 1 1 1 1 1 1 1 1 1 1

∑
=

⎟
⎠

⎞
⎜
⎝

⎛
×=

10

1

10
3

k k

52 Data and Web Mining - S. Orlando

Maximal Frequent Itemset

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCD
E

Border

Infrequent
Itemsets

Maximal
Itemsets

An itemset is maximal frequent if none of its immediate supersets is
frequent

53 Data and Web Mining - S. Orlando

Closed Itemset

§  An itemset is closed if none of its immediate supersets
has the same support as the itemset

TID Items
1 {A,B}
2 {B,C,D}
3 {A,B,C,D}
4 {A,B,D}
5 {A,B,C,D}

Itemset Support
{A} 4
{B} 5
{C} 3
{D} 4
{A,B} 4
{A,C} 2
{A,D} 3
{B,C} 3
{B,D} 4
{C,D} 3

Itemset Support
{A,B,C} 2
{A,B,D} 3
{A,C,D} 2
{B,C,D} 3
{A,B,C,D} 2

54 Data and Web Mining - S. Orlando

Maximal vs Closed Itemsets

TID Items
1 ABC
2 ABCD
3 BCE
4 ACDE
5 DE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Transaction Ids

Not supported by any
transactions

55 Data and Web Mining - S. Orlando

Maximal vs Closed Frequent Itemsets

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2

Closed = 9
Maximal = 4

B is frequent,
but is NOT
closed. Why?

Closed and
maximal

Closed but not
maximal

56 Data and Web Mining - S. Orlando

Maximal vs Closed Itemsets

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2

Closed = 10

Maximal = 5

Closed and
maximal

Closed but
not maximal

A ⇒ D (s=2, c = 2/3 = 66%)

AC ⇒ D (s=2, c = 2/3 = 66%) This rule is not generated if we start from the closed,

since AD is not returned at all

Yellow
groups:
equivalence
classes,
same
support

57 Data and Web Mining - S. Orlando

Maximal vs Closed Itemsets

Frequent
Itemsets

Closed
Frequent
Itemsets

Maximal
Frequent
Itemsets

58 Data and Web Mining - S. Orlando

Alternative Methods for Frequent Itemset Generation

§  Traversal of Itemset Lattice
–  General-to-specific (Apriori method) vs. Specific-to-general

Frequent
itemset
border null

{a1,a2,...,an}

(a) General-to-specific

null

{a1,a2,...,an}

Frequent
itemset
border

(b) Specific-to-general

..

..
..
..

Frequent
itemset
border

null

{a1,a2,...,an}

(c) Bidirectional

..

..

59 Data and Web Mining - S. Orlando

Alternative Methods for Frequent Itemset Generation

§  Traversal of Itemset Lattice
–  Equivalence Classes (either same prefix or suffix)

null

AB AC AD BC BD CD

A B C D

ABC ABD ACD BCD

ABCD

null

AB AC ADBC BD CD

A B C D

ABC ABD ACD BCD

ABCD

(a) Prefix tree (b) Suffix tree

60 Data and Web Mining - S. Orlando

Alternative Methods for Frequent Itemset Generation

§  Traversal of Itemset Lattice
–  Breadth-first vs Depth-first

(a) Breadth first (b) Depth first

61 Data and Web Mining - S. Orlando

Apriori Performance Bottlenecks

§  The core of the Apriori algorithm:
–  Use frequent (k – 1)-itemsets to generate candidate

frequent k-itemsets
–  Use database scan and pattern matching to collect counts

for the candidate itemsets
§  The bottleneck of Apriori: candidate generation

–  Huge candidate sets:
•  104 frequent 1-itemset will generate 107 candidate 2-

itemsets
•  To discover a frequent pattern of size 100, e.g., {a1, a2,
…, a100}, one needs to generate 2100 ≈ 1030 candidates.

–  Multiple scans of database:
•  Needs (n +1) scans, n is the length of the longest

pattern

62 Data and Web Mining - S. Orlando

Mining Patterns Without Candidate Generation

§  Compress a large database into a compact,
Frequent-Pattern tree (FP-tree) structure
–  highly condensed, but complete for frequent

pattern mining
–  avoid costly database scans

§  Develop an efficient, FP-tree-based frequent
pattern mining method
–  A divide-and-conquer methodology: decompose

mining tasks into smaller ones
–  Avoid candidate generation: sub-database test

only!

63 Data and Web Mining - S. Orlando

Construct FP-tree from a Transaction DB

min_support = 3

Steps:

1.  Scan DB once, find frequent 1-
itemset (single item pattern)

2.  Order frequent items in
frequency descending order

3.  Scan DB again, construct FP-
tree

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

{}

f:4 c:1

b:1

p:1

b:1 c:3

a:3

b:1 m:2

p:2 m:1

Header Table

Item frequency head
 f 4
c 4
a 3
b 3
m 3
p 3

64 Data and Web Mining - S. Orlando

FP-tree construction

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:1

B:1

null

A:1

B:1

B:1

C:1

D:1

After reading TID=1:

After reading TID=2:

65 Data and Web Mining - S. Orlando

FP-Tree Construction

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1
E:1

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

Pointers are used to assist frequent
itemset generation

D:1

E:1

Transaction
Database

Item Pointer
A
B
C
D
E

Header table

66 Data and Web Mining - S. Orlando

Benefits of the FP-tree Structure

§  Completeness:
–  never breaks a long pattern of any transaction
–  preserves complete information for frequent

pattern mining
§  Compactness

–  reduce irrelevant information—infrequent items
are gone

–  frequency descending ordering: more frequent
items are more likely to be shared

–  never be larger than the original database (if not
count node-links and counts)

–  Example: For Connect-4 DB, compression ratio
could be over 100

67 Data and Web Mining - S. Orlando

Mining Frequent Patterns Using FP-tree

§  General idea (divide-and-conquer)
–  Recursively grow frequent pattern path using the

FP-tree
§  Method

–  For each item, construct its conditional pattern-
base, and then its conditional FP-tree

–  Repeat the process on each newly created
conditional FP-tree

–  Until the resulting FP-tree is empty, or it
contains only one path

•  single path will generate all the combinations of
its sub-paths, each of which is a frequent pattern

68 Data and Web Mining - S. Orlando

Mining Frequent Patterns Using FP-tree
§  The lattice is explored depth-first

1.  First mine the patterns with suffix p
2.  Then mine the patterns with suffix m

-  that not contain p

3.  Then mine the pattern with suffix b
–  that not contain p and m

4.  Then mine the pattern with suffix a
–  that not contain p, m and b

5.  Then mine the pattern with suffix c
–  that not contain p, m, b and a

6.  Then mine the pattern with suffix f
–  that not contain p, m, b, a and c

•  For each mining task, we can generate a projected
DB by removing transactions and items
–  The FP-tree make it easy to generate the projected DB

null

AB AC AD BC BD CD

A B C D

ABC ABD ACD BCD

ABCD

null

AB AC ADBC BD CD

A B C D

ABC ABD ACD BCD

ABCD

(a) Prefix tree (b) Suffix tree

69 Data and Web Mining - S. Orlando

Major Steps to Mine FP-tree

1)  Construct conditional pattern base for each node
in the FP-tree

–  Projected DB

2)  Construct conditional FP-tree from each
conditional pattern-base

3)  Recursively mine conditional FP-trees and grow
frequent patterns obtained so far
§  If the conditional FP-tree contains a single

path, simply enumerate all the patterns

70 Data and Web Mining - S. Orlando

Step 1: From FP-tree to Conditional Pattern Base

§  Starting at the frequent header table in the FP-tree
§  Traverse the FP-tree by following the link of each frequent

item
§  Accumulate all of transformed prefix paths of that item to

form a conditional pattern base

Conditional pattern bases
item cond. pattern base
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1 c:3

a:3

b:1 m:2

p:2 m:1

Header Table

Item frequency head
 f 4
c 4
a 3
b 3
m 3
p 3

71 Data and Web Mining - S. Orlando

Properties of FP-tree for Conditional Pattern
Base Construction

§  Node-link property
–  For any frequent item ai, all the possible

frequent patterns that contain ai can be
obtained by following ai's node-links, starting
from ai's head in the FP-tree header

§  Prefix path property
–  To calculate the frequent patterns for a node ai

in a path P, only the prefix sub-path of ai in P
need to be accumulated, and its frequency
count should carry the same count as node ai.

72 Data and Web Mining - S. Orlando

Step 2: Construct Conditional FP-tree

§  For each pattern-base
–  Accumulate the count for each item in the base
–  Construct the FP-tree for the frequent items of

the pattern base

m-conditional
pattern base:

fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All the frequent
patterns
with suffix m:
m,
fm, cm, am,
fcm, fam, cam,
fcam

Ú Ú

{}

f:4 c:1

b:1

p:1

b:1 c:3

a:3

b:1 m:2

p:2 m:1

Header Table
Item frequency head
 f 4
c 4
a 3
b 3
m 3
p 3

Step 3

73 Data and Web Mining - S. Orlando

Mining Frequent Patterns by Creating Conditional
Pattern-Bases

Empty Empty f

{(f:3)}|c {(f:3)} c

{(f:3, c:3)}|a {(fc:3)} a

Empty {(fca:1), (f:1), (c:1)} b

{(f:3, c:3, a:3)}|m {(fca:2), (fcab:1)} m

{(c:3)}|p {(fcam:2), (cb:1)} p

Conditional FP-tree Conditional pattern-base Item

Remove infrequent items (whose support count < 3) from the
projected DB (Cond. Pattern-base)

before generating the Cond. FP-tree

74 Data and Web Mining - S. Orlando

Step 3: Recursively mine the conditional
FP-tree

§  Re-apply recursively FP-growth to the FP-tree generated

{}

f:3

c:3

a:3
m-conditional FP-tree

Cond. pattern base di “am”: (fc:3)

{}

f:3

c:3
am-conditional FP-tree

Cond. pattern base of “cm”: (f:3)
{}

f:3
cm-conditional FP-tree

Cond. pattern base of “cam”: (f:3)

{}

f:3
cam-conditional FP-tree

75 Data and Web Mining - S. Orlando

Why Is Frequent Pattern Growth Fast?

§  The performance study shows
–  FP-growth is an order of magnitude faster than Apriori for

dense dataset

–  In this case we have the greatest sharing in the transaction,

and the compression rate of FP-tree is very high

§  Reasons
–  No candidate generation, no candidate test

–  Use compact data structure

–  Eliminate repeated database scan

–  Basic operation is counting and FP-tree building

76 Data and Web Mining - S. Orlando

FP-growth vs. Apriori: Scalability With the
Support Threshold

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3
Support threshold(%)

Ru
n

tim
e(

se
c.

)

D1 FP-grow th runtime

D1 Apriori runtime

Data set T25I20D10K

77 Data and Web Mining - S. Orlando

Alternative Methods for Frequent Itemset
Generation

§  Representation of Database
–  horizontal vs vertical data layout

TID Items
1 A,B,E
2 B,C,D
3 C,E
4 A,C,D
5 A,B,C,D
6 A,E
7 A,B
8 A,B,C
9 A,C,D
10 B

Horizontal
Data Layout

A B C D E
1 1 2 2 1
4 2 3 4 3
5 5 4 5 6
6 7 8 9
7 8 9
8 10
9

Vertical Data Layout

78 Data and Web Mining - S. Orlando

Different databsse layout

§  For each item, store a list of transaction ids (tids)

TID Items
1 A,B,E
2 B,C,D
3 C,E
4 A,C,D
5 A,B,C,D
6 A,E
7 A,B
8 A,B,C
9 A,C,D

10 B

Horizontal
Data Layout

A B C D E
1 1 2 2 1
4 2 3 4 3
5 5 4 5 6
6 7 8 9
7 8 9
8 10
9

Vertical Data Layout

TID-list

79 Data and Web Mining - S. Orlando

FIM algorithms: methods to compute the supports

§  Count-based method
–  is used by Apriori
–  exploits a horizontal database
–  subsetting of transactions and increment of counters, in turn

associated with candidates

§  Intersection-based method
–  is used by ECLAT
–  exploits a vertical database
–  for each candidate, intersect (set-intersection) the TID-lists

associated with the itemsets/items occurring in the candidate
–  the cardinality of the resulting TID-list is the candidate support

80 Data and Web Mining - S. Orlando

ECLAT

§  Determine the support of any k-itemset by
intersecting tid-lists of two of its (k-1) subsets.

§  3 traversal approaches:

–  top-down, bottom-up and hybrid
§  Advantage: very fast support counting
§  Disadvantage: intermediate tid-lists may become

too large for memory

A
1
4
5
6
7
8
9

B
1
2
5
7
8
10

∧ →
AB
1
5
7
8

81 Data and Web Mining - S. Orlando

Intersection-based

A
1
4
5
6
7
8
9

B
1
2
5
7
8
10

∧ →
ABC
1
5
7

C
1
2
5
7

∧

AB
1
5
7
8

BC
1
2
5
7

∧ →
ABC
1
5
7

§  k-way intersection
–  set intersect the atomic k TID-lists
–  PROS: small memory size to store

TID-lists
–  CONS: expensive

§  2-way intersection
–  set intersect only two TID-lists associated

with two (k-1)-subsets
–  PROS: speed
–  CONS: : intermediate tid-lists may become too

large to store in memory

82 Data and Web Mining - S. Orlando

Various algoritms per FSC

Support:
computing method

Apriori Partition FP-growth Eclat

Search space:
visiting method

Level-wise, strictly iterative Divide & conquer, recursive

Horizontal DB Horizontal DB Vertical DB Vertical DB

Support:
computing method

83 Data and Web Mining - S. Orlando

DCI: Direct Counting & Intersecting

§  Level-wise (BFS) algorithm
§  Hybrid method for determining the supports

of frequent itemsets
–  Counting-based during early iterations

•  Innovative method for storing and accessing candidates
to count their support

•  Effective pruning of horizontal dataset
–  Intersection-based when database fits into the

main memory ⇒ resource-aware
•  Horizontal-to-Vertical transformation
•  Fully optimized k-way intersections

Orlando, P. Palmerini, R. Perego, and F. Silvestri, “Adaptive and Resource-Aware Mining of Frequent Sets”
Proc. IEEE Int’l Conf. Data Mining, Dec. 2002.

84 Data and Web Mining - S. Orlando

DCI: intersection-based phase

§  When the pruned database fits into the main
memory, DCI builds on-the-fly an in-core
bit-vector vertical dataset

§  Due to the effectiveness of dataset pruning, this
usually occurs at early iterations (2nd or 3rd iter)

nk trans

mk items
1 0

85 Data and Web Mining - S. Orlando

Cache: bitwise TID-list Intersection

§  k-way intersections
–  intersect tidlists associated with single items
–  low memory requirements, but too many

intersections!
§  2-way intersections

–  start from tidlists associated with frequent (k-1)-
itemsets

–  huge memory requirements, but less intersections!
§  DCI ⇒ tradeoff between 2-way and k-way

–  is based upon k-way intersections of bitvectors,
–  BUT caches all the partial intersections

corresponding to the various prefixes of the current
candidate itemset

Cache size: k-2 bitvector di nk bit

86 Data and Web Mining - S. Orlando

Cache: bitwise TID-list Intersection

Buffer of (k-2) vectors of nk bits
used for caching intermediate
intersection results

3 5 11 17 24 31
5 11 17 24 47
5 11 17 31 47

i0 i1 i2 i3 i4 i5 C6

3 & 5

3 & 5 & 11

3 & 5 & 11& 17

3 & 5 & 11& 17 & 24

Current
candidate

3 & 5 & 11& 17 & 24

Reuse of this
cached intersection

3
3 Current

candidate

87 Data and Web Mining - S. Orlando

DCI: number of intersections

88 Data and Web Mining - S. Orlando

DCI: sparse vs. dense datasets

§  Sparse:
–  The bit-vectors are sparse

•  A few 1 bits, and long sequences of 0
–  It is possible identify large sections of words equal to zero
–  We can skip these sections during the intersections

§  Dense
–  Strong correlation among the most frequent items, whose

associated bit-vectors are dense and very similar
•  Contain a few 0 bits, and long sequences of 1 bits

–  It is possible identify large sections of words equal to one
–  We can also skip these sections during the intersections

89 Data and Web Mining - S. Orlando

DCI: better than FP-growth for dense datasets

■  Dense database
•  Very long

patterns

■  Apriori is
inefficient on
these datasets

90 Data and Web Mining - S. Orlando

DCI: better than FP-growth for dense datasets

■  Sparse
Database

•  Click-stream
collected
from an
e-commerce
website

■  Patterns of
average length
for small
supports

91 Data and Web Mining - S. Orlando

Constraints

§  Function C defined on a set of items I:
–  C : 2I ⇒ {true, false}

§  Main motivation:
–  Focus on further requirements/constraint of the

analyst, besides the minimum support
constraint, to avoiding flooding him with a lot of
uninteresting patterns

§ Example:
–  freq(X) ≥ min_supp
–  sum(X.price) ≥ m

92 Data and Web Mining - S. Orlando

Exploiting the contraints

§  Understand the constraint properties:
–  to avoid an approach generate&test
–  to reduce the search space
–  to prune the dataset

§  Example with the minimum support constraint:
–  if freq(a) ≤ min_supp

remove from the dataset every occurrence of item a, thus
reducing the size of the dataset

§  Motivation:
–  Performance
–  Improved performance -> more constraints

 -> more expressivity

93 Data and Web Mining - S. Orlando

The search space

abcd 1

acd 2abc 1 abd 1 bcd 1

ac 2 ad 2 ab 1 bd 2 bc 1 cd 2

a 2 b 2 c 3 d 3

∅ 4
abd 1

Itemset

Support

TID items

1 b d

2 a b c d
3 a c d
4 c

the Dataset

the Lattice

94 Data and Web Mining - S. Orlando

Reducing the search space

abcd 1

acd 2 abc 1 abd 1 bcd 1

ac 2 ad 2 ab 1 bd 2 bc 1 cd 2

a 2 b 2 c 3 d 3

∅ 4

freq(X) ≥ 2

95 Data and Web Mining - S. Orlando

ANTI-MONOTONE constraint

§  Definition:
–  A constraint C is anti-monotone if ∀ X ⊂ Y : C(Y) ⇒ C(X)

§  Example:
–  freq(X) ≥ σ, sum(X.prices) < m, ...

§  Corollary:
–  ∀ X ⊂ Y : ¬C(X) ⇒ ¬C(Y)

§  Strategy:
–  If ¬C(X) ignore X and its supersets
–  Bottom-up visit of the search space

 (search space)

–  If an item i occurring in transaction t is not contained in almost k
frequent itemsets of length k, then i will not occur in any frequent
itemset of length k+1 è thus ignore i when generating the
candidates of length k+1 (i can be removed from the dataset)

 (dataset)

We use this corollary to prune the
search space when we visit it
level-wise and bottom-up

96 Data and Web Mining - S. Orlando

MONOTONE constraints

§  Definition:
–  A constraint C is monotone if ∀ X ⊂ Y : C(X) ⇒ C(Y)

§  Corollary
–  ∀ X ⊂ Y : ¬C(Y) ⇒ ¬C(X)

§  Example:
–  sum(X.prices) ≥ m, max(X.prices) ≥ m, ...

§  Strategy: Monotone + Anti-monotone.
–  bottom-up vs top-down exploration of the search space
 (search space reduction)

97 Data and Web Mining - S. Orlando

Exante: how to exploit a monotone constraint

§  Idea: exploit the constraints before starting mining
§  Property:

§  Apply the constraint to each transaction
§  If transaction Y do not satisfy the monotone constraint ¬C(Y), then no of

its subsets will satisfy the constraint (∀ X ⊂ Y : ¬C(Y) ⇒ ¬C(X)), and
thus Y can be removed

§  Side effects: when you remove transactions, some items
can become infrequent, and thus not useful

§  Result : virtuous cycle in pruning the dataset
–  iterated step to prune transactions, and subsequent

pruning of items
§  The step can be repeated for each iteration k of Apriori

Francesco Bonchi, Fosca Giannotti, Alessio Mazzanti, Dino Pedreschi: Exante: A Preprocessing Method for
Frequent-Pattern Mining. IEEE Intelligent Systems. 20(3): 25-31 (2005)

98 Data and Web Mining - S. Orlando

Exante: example

Item Support

a

b

c

d

e

f

g

h

4
7
5
7
4
3
6
2

†
4
4
4
†
†
†
†

X

X

X

38
58

52

X

3
7
5
7
3
3
5
2

X X

X

X X

X X

X

X

X

X

50

44

14

†
4
5
5
†
†
3
†

X

X

X

X

52

44

52

 Min_sup = 4

 C
M

≡ sum(X.price) ≥ 45

99 Data and Web Mining - S. Orlando

Pattern Evaluation

§  Association rule algorithms tend to produce too many rules
–  many of them are uninteresting or redundant
–  Redundant if {A,B,C} → {D} and {A,B} → {D}

have same support & confidence

§  Interestingness measures can be used to prune/rank the derived
patterns

§  In the original formulation of association rules, support &
confidence are the only measures used

100 Data and Web Mining - S. Orlando

Application of Interestingness Measure

Interestingness
Measures

101 Data and Web Mining - S. Orlando

Computing Interestingness Measure

§  Given a rule X → Y, information needed to compute rule
interestingness can be obtained from a contingency
table

Y Y

X f11 f10 f1+

X f01 f00 f0+

f+1 f+0 |T|

Contingency table for X → Y
f11: support of X and Y
f10: support of X and Y
f01: support of X and Y
f00: support of X and Y

Can apply various Measures

◆  support, confidence, lift, Gini,
 J-measure, etc.

102 Data and Web Mining - S. Orlando

Drawback of Confidence

Coffee

Coffee

Tea 15 5 20
Tea 75 5 80

90 10 100

 Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 15/20 = 0.75

but P(Coffee) = 0.9

⇒  Although confidence is high, rule is misleading

⇒  P(Coffee|Tea) = 75/80 = 0.9375

103 Data and Web Mining - S. Orlando

Statistical Independence

§  Population of 1000 students
–  600 students know how to swim (S)
–  700 students know how to bike (B)
–  420 students know how to swim and bike (S,B)

–  P(S∧B) = 420/1000 = 0.42
–  P(S) × P(B) = 0.6 × 0.7 = 0.42

–  P(S∧B) = P(S) × P(B) => Statistical independence
–  P(S∧B) > P(S) × P(B) => Positively correlated
–  P(S∧B) < P(S) × P(B) => Negatively correlated

104 Data and Web Mining - S. Orlando

Statistical-based Measures

§  Measures that take into account statistical dependence

)](1)[()](1)[(
)()(),(

)()(),(
)()(
),(

)(
)|(

YPYPXPXP
YPXPYXPtcoefficien

YPXPYXPPS
YPXP
YXPInterest

YP
XYPLift

−−

−
=−

−=

=

=

φ

105 Data and Web Mining - S. Orlando

Example: Lift/Interest

Coffee

Coffee

Tea 15 5 20
Tea 75 5 80

90 10 100

 Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

⇒  Lift = 0.75/0.9= 0.8333 (< 1, therefore it is

 negatively correlated)

106 Data and Web Mining - S. Orlando

Drawback of Lift & Interest

Y Y
X 10 0 10
X 0 90 90

10 90 100

Y Y
X 90 0 90
X 0 10 10

90 10 100

10
)1.0)(1.0(

1.0
==Lift 11.1

)9.0)(9.0(
9.0

==Lift

Statistical independence:

If P(X,Y)=P(X)P(Y) => Lift = 1

Rare itemsets with low counts (low probability) which per chance occur a few times
(or only once) together can produce enormous lift values.

107 Data and Web Mining - S. Orlando

Drawback of φ-Coefficient

§  φ-coefficient is analogous to correlation coefficient for
continuous variables

Y Y
X 60 10 70
X 10 20 30

70 30 100

Y Y
X 20 10 30
X 10 60 70

30 70 100

5238.0
3.07.03.07.0

7.07.06.0

=
×××

×−
=φ

φ Coefficient is the same for both tables

5238.0
3.07.03.07.0

3.03.02.0

=
×××

×−
=φ

