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Association Rule Mining

= Given a set of transactions, find rules that will
predict the occurrence of an item (a set of items)
based on the occurrences of other items in the

transaction

Market-Basket transactions

TID  Items
1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example of Association

Rules
{Diaper} — {Beer}
{Milk, Bread} — {Eggs,Coke}
{Beer, Bread} — {Milk}

Implication means co-
occurrence, not causality!
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Definition: Frequent Itemset

= |temset
— A collection of one or more items
« Example: {Milk, Bread, Diaper}

m k.itemset TID Items

— An itemset that contains k items 1 Bread, Milk
= Support count (0) 2 Bread, Diaper, Beer, Eggs
— Number of transaction occurrences 3 Milk, Diaper, Beer, Coke
of an itemset 4 Bread, Milk, Diaper, Beer
— E.g. o({Milk, Bread,Diaper}) = 2 5 Bread, Milk, Diaper, Coke
= Support
— Fraction of transactions that contain
an itemset

— E.g. s({Milk, Bread, Diaper}) = 2/5
* Frequent ltemset

— An itemset whose support is greater
than or equal to (not less than) a
minsup threshold
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Definition: Association Rule

Association Rule

o An implication expression of the TID  Items
form X —= Y, where X and Y are 1 Bread, Milk
itemsets 2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
e XNY = (Z) 4 Bread, Milk, Diaper, Beer
o Example: S Bread, Milk, Diaper, Coke

{Milk, Diaper} — {Beer}

Rule Evaluation Metrics Example:
o Support (s) {Milk, Diaper} = Beer
. Fraction of transactions that U(Milk,Diaper,Beer) 9
contain both X and Y S = T = g =04
o Confidence (c)
o(Milk, Diaper,Beer) 2
. Measures how oftenitemsinY ¢~ o (Milk, Diaper) = 3 =0.67

appear in transactions that
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Association Rule Mining Task

= Given a set of transactions T, the goal of association rule mining is
to find all rules having

— support 2 minsup threshold
— confidence 2 minconf threshold

= Brute-force approach:
— List all possible association rules
— Compute the support and confidence for each rule
— Prune rules that fail the minsup and minconf thresholds
=> Computationally prohibitive!
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Mining Association Rules

TID Items

Bread, Milk

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

N K| WD -

Bread, Milk, Diaper, Coke

Observations:

Example of Rules:

{Milk,Diaper} — {Beer} (s=0.4, c=0.67)
{Milk,Beer} — {Diaper} (s=0.4, c=1.0)
{Diaper,Beer} — {Milk} (s=0.4, c=0.67)
{Beer} — {Milk,Diaper} (s=0.4, c=0.67)
{Diaper} — {Milk,Beer} (s=0.4, c=0.5)
{Milk} — {Diaper,Beer} (s=0.4, c=0.5)

¢ All the above rules are binary partitions of the same itemset:

{Milk, Diaper, Beer}

¢ Rules originating from the same itemset have identical support but

can have different confidence

e 1hus, we may decouple the support and confidence requirements
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Mining Association Rules

= Two-step approach:

1. Frequent Itemset Generation
— Generate all itemsets whose support = minsup

2. Rule Generation

— Generate high confidence rules from each frequent itemset,
where each rule is a binary partitioning of a frequent itemset

*  Frequent itemset generation is still computationally
expensive
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Frequent ltemset Generation

Given d items, there
are 29 possible

candidate itemsets



Frequent ltemset Generation

= Brute-force approach:
— Each itemset in the lattice is a candidate frequent itemset
— Count the support of each candidate by scanning the database

Transactions List of
Candidates
TID |Items
Bread, Milk

Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

- W >

-—Z —>

< Z—>
N |G|

— Match each transaction against every candidate
— Complexity ~ O(NMw) => Expensive since M = 29 111

Data and Web Mining - S. Orlando 9



Computational Complexity

* Given d unique items:
— Total number of itemsets = 24

— Total number of possible association rules:

% 10

Number of rules

k is the number
of items on the
right hand of

Select (in all the
possible ways)
the number j of
elements
occurring in the
left hand of the

the rule rule
R dE d dEk d-k\
= X
k=1 k =1 ]
— 3d _ 2d+1 + 1

If d=6, R =602 rules
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Frequent Itemset Generation Strategies

* Reduce the number of candidates (M)
— Complete search: M=24d
— Use pruning techniques to reduce M

* Reduce the number of transactions (N)
— Reduce size of N as the size of itemset increases
— Used by DHP and vertical-based mining algorithms

* Reduce the number of comparisons (NM)

— Use efficient data structures to store the candidates or
transactions

— No need to match every candidate against every transaction
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Reducing Number of Candidates

= Apriori principle:
— If an itemset is frequent, then all of its subsets must also be
frequent

= Apriori principle holds due to the following property of the support
measure:
VX, Y (XCY)=s(X)=s(Y)

— Support of an itemset never exceeds the support of its subsets
— This is known as the anti-monotone property of support

= Apriori principle application for candidate pruning

— Given a candidate itemset Y, if there exists X, where X is a subset of
Y, and X e infrequent since s(X) < minsup, then also Y is infrequent
due to the Apriori principle

minsup > s(X) = s(Y)
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lllustrating Apriori Principle
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lllustrating Apriori Principle

Items (1-itemsets)

Pairs (2-itemsets)

Count

ltem Count

Bread 4

Milk 4 N ltemset

Beer 2 {Bread,Milk}

Minimum Support = 3

{Bread,Diaper}
{Milk,Diaper} 3
{Beer,Diaper} 3

(No need to generate

3

candidates involving Coke
{Bread,Beer} or Eggs)

If every subset is considered,

() () ()-eromes

With support-based pruning,

6 4
(1)« (5)+1-6+6+1-13

N Triplets (3-itemsets)

Iltemset Count

 {Bread,Milk,Diaper} 3
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Apriori algorithm

= C, is the set of candidates (k-itemsets) at iteration k
* The algorithm compute their supports

= L, is the set of k-itemsets that result to be frequent
" L, C Cy
= Along with L, also the associated supports are returned

= Note: L stands for /arge. In the original paper, the frequent
itemset were called “large itemset”

= Gen Step:

= C, is generated by self-joining L, ,, by keeping only the
itemsets of length k
= Pruning of C,: A k-itemset cannot be frequent, and thus cannot

be a candidate of C, if it includes at least a subset that is not
frequent. So, it is reasonable start from L, , to generate C,
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Gen Step

= Suppose that
— Each itemset is an ordered list of items

— If the itemsets in L, _; are sorted according to a lexicographic order, this simplify
the self-join step

= Step 1: self-joining L,
insert into C,
all pairs (p, q) €L, _,
where p.item,=q.item,, ...... , p.item,_,=q.item,,, p.item,_, < q.item,_,
(p and q share a common prefix of length k-2)

(the condition p.item,_, < q.item,_, guarantees that no duplicates are generated)

= Step 2: pruning From this check, we can
omit the pair of generators

(p, q), which are surely
included in L,

forall itemsets c in C, do

forall (k-1)-subsets s of c do

T

if (sisnotin L, ,) then delete ¢ from C,
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Example of candidate generation

L .={abc, abd, acd, ace, bcd}

Self-joining: L;*L,

— abed  from

— acde from

Pruning:

p=abc and q=abd

p=acd and Qq=ace

— acde is then pruned because ade is notincludedin L,

C,={abcd}
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Apriori algorithm

= Pseudo-code:
C,: Candidate itemsets of size k
L, : frequent itemsets of size k

L, = {frequent items};
for (k=1; L, 1=0; k++) do begin
C,.; = candidates generated from L;
for each transaction f in database D do
increment the count of all candidates in C,,,
that are contained in ¢
L,., = candidates in C,,, with are frquent

end
return U, L,
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Apriori: another example (minsup = 2)

Database D itemset|sup. itemset|sup.
TID [ltems c| (M [ 2| L[y |2
100|1 3 4 {2} 3 {2} 3
200[235 |SeanD 3y | 3 |7 | {3} | 3
3001235 {4} 1 15} 3
400[2 5 {5} 3
Clitemset] sup C, |[ltemset ?
L, |itemset|{sup 12y | 1 Scan D {12}
{13} | 2 13y | 2 |- {13}
23} | 2 || {15} | 1 {15}
{25} | 3 23} | 2 g gi
251 | 3
Lol Es 5% 2 {3 5}
C, itemset Scan D ;L3 itemset| sup
{2 3 5} 235} 2
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Apriori: Breadth first visit of the lattice
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Generate the candidates of dimension 1

.......
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Compute the supports of the Candidates of dim. 1

sbod  abte able acde  bo

““““

X
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Generate the candidates of dimension 2
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Compute the supports of the Candidates of dim. 2
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Prune the infrequent itemsets
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R
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Generate the candidates of dimension 3
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Compute the supports of the Candidates of dim. 3
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Prune the infrequent itemsets
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Generate the candidates of dimension 3
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Compute the supports of the Candidates of dim. 4
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Reducing Number of Comparisons

= Candidate counting:

— Scan the database of transactions to determine the support
of each candidate itemset

— To reduce the number of comparisons, store the
candidates in a hash structure

Instead of matching each transaction against every candidate,
match it against candidates contained in the hashed buckets

Transactions Hash Structure
TID |Items A
1 Bread, Milk
T 2 Bread, Diaper, Beer, Eggs -
N (3 Milk, Diaper, Beer, Coke K
4 Bread, Milk, Diaper, Beer
* 5 |Bread, Milk, Diaper, Coke vy

Buckets
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Generate Hash Tree

1+ |2356
= Hash-tree to store candidates
in Ck of max depth k: Transaction /’/ N pop
— The selection of the path is 12356 =
done with a hash function ~._ K 7
over the items to select the TS ,
path DN S 3 56
. AN / /
— Each leaf stores a list of N K K
candidates / N /

Candidate Hash Tree /

— Max leaf size: max number of
itemsets stored in a leaf node
(if number of candidate
itemsets exceeds max leaf
size, split the node)

i 145 136 345 356 367
Hash Function
357 368
689
3,6,9
124 125 159
457 458
Data and Web Mining - S. Orlando 32




Generate Hash Tree

Hash Function

1,4,7 3,6,9
25,8
1145
Hash on
1,4 or7
124
457

Note that items 4 and 7

Candidate Hash Tree occur also in these bins
These leaf nodes have not
been split, since they contain
small numbers of candidates

234
567
136+~
345 356 367
“““““““ 357 368
159 6389
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Generate Hash Tree

Hash Function Candidate Hash Tree
1,4,7 3,6,9
2,58 S I :
234
567
1 4 5 1 3 6 :” """""" i
345 1356 367
Hash on | :
1357 | 368
2,50r8 i |
1124 |[125 ] [159 | - [6389
457 | 458 Tt

___________________________________
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Generate Hash Tree

Hash Function

1,4,7

2,5,8

Hash on
3,60r9

3,6,9

145

124

457

Candidate Hash Tree
234
__________ 567
136 _______________________________________
"""""" 345 356 367
___________ | 357 368
125 159 i 689
458 |
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Subset Operation Using Hash Tree

Given a transaction t, what

are the possible subsets of Transaction, t
size 37

12356

135 235
125 156 256 356

196 136 236

Level 3 Subsets of 3 items
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Subset Operation Using Hash Tree

Recursive transaction subsetting

Hash Function

1 2 35 6 | transaction
- |
L+]23956 2+/356
|
4/
234
567
145 136
345 356 367
357 368
1241 125]| 159 689
4571458

3,6,9

To avoid duplicates,
the 3-itemsets we can
extract from 123456 are
always sorted
1 can be combined with
2, or 3, or 5, but not
with 6
In the transaction there
not exist any itemset,

Whe rDeatag’r!d’ngxN}rfing -é.%gndc!! !3 7



Subset Operation Using Hash Tree

1 2 35 6 | transaction Hash Function
- |
— 2+[356 14,7 3,6,9
12+[{356 -
3_|_ 56 %9
234
R 567
145 136
345 356 367
357 368
124||125]| 159 689
45711458
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Subset Operation Using Hash Tree

Hash Function

1.4,7 3,6,9

2,5,8

] 2 3 5 6 | transaction
: l
1+[2356 2+|356
12+1356
3456
234
15+1[6 J
N \567m
145 136‘
345 356 367
357 368
I
1240125||L159 689
45701458 For each subset of 123456 we explore a maximum

of 3 candidates (the size of each leaf)
We explore 11 candidates to identify the 3 matching
candidates.
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Factors Affecting Complexity

* Choice of minimum support threshold

— lowering support threshold results in more frequent
itemsets

— this may increase the number of candidates and the max
length of frequent itemsets
= Dimensionality (number of items) of the data set
— more space is needed to store support count of each item
— if number of frequent items also increases, both
computation and I/O costs may also increase
Size of database
— since Apriori makes multiple passes, run time of algorithm
may increase with the number of transactions
= Average transaction width
— transaction width increases with denser data sets

— this may increase max length of frequent itemsets and
traversals of hash tree (hnumber of subsets in a transaction
increases with its width)
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How to improve the efficiency of Apriori

= Hash-based itemset counting to reduce the size of C,:
— At iteration k-1 try to forecast the itemsets that will NOT be part of C,

— The k-itemset (where items are mapped to integer IDs) occurring in a
transaction are mapped, with a hash function, into a relatively small table

= less counters than in C,

— All the k-itemsets mapped to the same hash bucket whose counter is less
than a given minsup

« cannot be frequent and thus can be pruned from C,
= Example: at iteration k=1, create the hash table H2 , for items {I1,12,13,14,15,16}

— hash function: h(x,y) = (x* 10 +y) mod 7
— min_supp =3
— Size hash table =6

Number of subsets of 2 elements (max sz of C,) = 15

Ho
bucket address 0 1 2 3 4 5 6
bucket count 2, 2, 4 2, 2, 4 4
bucket contents 4} 5 {12,13} 4} 5} | {I1,12} | {I1,I3}
{12,13} 2, 11,12} | {11,13}
{12,13} {I1,12} | {I1,13}
{12,13} {I1,12} | {I1,13}
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How to improve the efficiency of Apriori

= Transaction pruning: A transaction that does not contain any
frequent k-itemset, cannot contain any larger itemset, and can thus
be pruned

= Sampling: mining a reduced number of transactions, but this
reduces the accuracy of the result

= Partitioning: Small partitions of database D can be managed in
main memory. An itemset that is frequent in D must be frequent in

at least one of the partition of D.

Unfortunately a frequent itemset in a partition of D could be
infrequent in the whole database D.

Transactions
mD

PHASE ] PHASE II
//—\
Dded Do || Fid the feguen Combing all Find global
o temsets local fo local frequent Irequent ifemstfs Frequent
n parttions | , —
each parton tfemsets to form among candidates tiemsets n D
(s candidate femse (1 scan)




Partitioning

= 3 partitionsof D: DI, D2, D3

= |f itemset X is globally frequent, then:

(1) 60 = 6)(X) + 6p,(X) + 6p5(X) >= minsup% (D1| +D2| +D3)

Vi, 6,(X) <minsup% |Di| = Xis globally infrequent, since
property (1) does not hold

=1 (X is globally infrequent) = = Vi, 6,,(X) <minsup% |Di|)

X is globally frequent = Fi, 6,(X) >= minsup% |Di|

X is globally frequent = X s locally frequent in some dataset 43
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Rule Generation

» Non optimized algorithm ¢ is frequent due
Apriori property

for each frequent itemset / do
for each proper subset ¢ of / do

if (support(/) / support(/-c) = minconf) then

output rule (/-c) = ¢, with
confidence = support(/) / support(/-c)
support = support(/);

= e.g.: If X={A,B,C,D} is frequent, candidate rules:

ABC -D, ABD —C, ACD -B, BCD —A,
A —BCD, B —ACD, C —ABD, D —ABC,
AB —CD, AC — BD, AD — BC, BC —AD,
BD —AC, CD — AB

If X| =m, then there are 2™ — 2 candidate association
rules (ignoring X — J and G — X)
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Efficient Rule Generation

* |n general, confidence does not have an anti-monotone
property
c(ABC —D) can be larger or smaller than c(AB —D)

= But confidence of rules generated from the same itemset has
an anti-monotone property

- e.g., X={A,B,C,D}:
¢(ABC — D) = ¢(AB — CD) = ¢(A — BCD) DCCDCBCD
o(ABCD) o(ABCD) o(ABCD)

--------------- 2 - - 2 - - -

o(ABC) o(AB) o(A)

Confidence is anti-monotone w.r.t. the number of items on the RHS
of the rule

If min_conf>c(ABC — D) then
min_conf > c(ABC — D) = ¢c(AB — CD) = ¢c(A — BCD)
and thus we can prune c¢(AB — CD) and c(A — BCD)
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Efficient Rule Generation

Lattice of rules

Low Confidence ABCD=>{}
o~ =
/

Rule

Pruned
Rules ~ ~ -
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Efficient Rule Generation

= Candidate rule is generated by merging two rules that share the
same prefix in the rule consequent

= join(CD=>AB,BD=>AC)
would produce the candidate
rule D => ABC

* Prune rule D=>ABC if AD=>BC
does not have high confidence

= (AD=>BC is not a a generator, but BCC ABC)

= Note that the other two “subsets”
CD=>AB and BD=>AC are surely
highly confident, since they are
the generators of D => ABC
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Presentation of Association Rules (Table Form )

Body | Implies | Head | Supp (%) | Conf (%) |
1 [cost{x) = 0.00~1000.00' ==» revenue(x) = 0.00~500.00" 28.45 40.4
2 |cost(x) = 0.00~1000.00° ==>  revenue(x) = '500.00~1000.00° 20.46 29.05
3 |cost(x) = 0.00~1000.00° ==>  order_gty(x) = 0.00~100.00' 59.17 54.04
4 |cost(x) = 0.00~1000.00° ==»  revenue(x) = '1000.00~1500.00' 10.45 14.84
5 [cost(x) = 0.00~1000.00' ==>  region(x) = United States’ 22.56 32.04
6 |cost(x) = "1000.00~2000.00° ==>  order_gty(x) = 0.00~100.00' 12.91 69.34
7 |order gty(:) = 0.00~100.00' ==>  revenue(x) = 1.00~500.00' 28.45 3454
8 |order gty(x) = 1.00~100.00' ==»>  cost(x) = 1000.00~2000.00" 12.91 15.67
9 |order_gty(x) = 0.00~100.00° ==>  region(x) = United States' 259 31.45
10 |order_gty(x) = 0.00~100.00' ==»  cost(x) = 0.00~1000.00' £9.17 71.86
11 [order_gty(x) = 0.00~100.00' ==>  product_line(x) = Tents' 13.52 16.42
12 |order_gty(x) = 0.00~100.00° ==>  revenue(x) = 500.00~1000.00' 19.67 23.88
13 |product_line(x) = Tents' ==>  order_gty(x) = 0.00~100.00' 13.62 98.72
14 [region(x) = United States' ==>  order_gty(x) = 0.00~100.00' 259 g1.94
15 [region(x) = United States' ==>  cost(x) = 0.00~1000.00' 2256 71.39
16 |revenue(x) = 0.00~500.00' ==»  cost(x) = 0.00~1000.00' 28.45 100
17 __[revenue(x) = 0.00~500.00' ==>  order_gty(x) = 0.00~100.00° 25.45 100
18 |revenue(x) = 1000.00~1500.00' ==»  cost(x) = 0.00~1000.00' 10.45 96.75
19 |revenue(x) = 500.00~1000.00° ==»  cost(x) = 0.00~1000.00' 20.46 100
20 |revenue(x) = 500.00~1000.00° ==>  order_gty(x) = 0.00~100.00' 19.67 96.14
21
22
23 |cost(x) = 0.00~1000.00° ==> rs‘r’degru_eq(t’?(;) E‘%?ESE?GUUQU’S\ND 28.45 404
24 |cost(x) = 1.00~1000.00' = ’E‘r’gg‘:‘_eq(t’?(;) A 845 404
25 |cost(x) = 0.00~1000.00° == 'E‘r’gg:‘_eq(t’?(;) Lo AND 1967  27.93
26 |cost(x) = 0.00~1000 00 => oo a0 00010080 1967 2793
27 Coor?éf_)q_ty?k?%.oﬂoﬂclﬁgﬂ%p ==>  revenue(x) = 500.00~1000.00" 19.67 33.23 -

1™\ Sheett / g I ™
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Visualization of Association Rule Using Rule Graph
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Compact Representation of Frequent ltemsets

identical support as their supersets

(IDJAT]A2] A3] A4[ A5] A6 [ A7| A8 A9]A10] B1] B2 B3| B4 B5] B6 | B7|[ B8] B9[B10] C1] C2] C3]| C4] C5[ C6] C7]C8] C9]Cx

= Some itemsets are redundant because they have
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= Number of frequent itemsets

o

= Min support count

10

IxY

k=1

* Need a compact representation
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An itemset is maximal frequent if none of its immediate supersets is

frequent

Maximal Frequent Itemset
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Closed ltemset

= An itemset is closed if none of its immediate supersets
has the same support as the itemset

ltemset | Support
A 4
TID ltems Egi 5 ltemset |Support

1 {A,B} {C} 3 {A,B,C} 2
2 {B,C.D} {D} 4 {A,B,D} 3
3 {A,B,C,D} {A,B} 4 {A,C,D} 2
4 {A,B,D} { A’C} 5 {B,C,D} 3
5 | {AB,C,D} {A:D} 3 {A,B,C,D} 2

{B,C} 3

{B,D} 4

{C,D} 3
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Maximal vs Closed Itemsets

ltems

TID

Not supported by any

ctions

transa

54



Maximal vs Closed Frequent ltemsets

B is frequent,
but is NOT

closed. Why?

55

ata and Web Mining - S. Orlando



Maximal vs Closed Itemsets

Minimum support = 2

Yellow Closed but
groups: not maximal
equivalence
classes,
same Closed and
support maximal
# Closed =10
# Maximal =5
A =D (s=2, c =2/3 =66%)
AC = D (s=2, ¢ = 2/3 = 66%) This rule is not generated if we start from the closeg,
’ since AD is not returned at all  Dataandweb™ ining - S. Ortando 6



Maximal vs Closed ltemsets

Frequent
[temsets

Closed
Frequent
ltemsets

Data and Web Mining - S. Orlando 5 7



Alternative Methods for Frequent Itemset Generation

Traversal of ltemset Lattice

— General-to-specific (Apriori method) vs. Specific-to-general

Frequent

itemset

border  Null

/7 g =S
\

I, ~ \
| \
' !
*ooo 000
' \
‘\ n |

\ /

{a,.a,,..,a}

(a) General-to-specific

Frequent
null 1temset null

border M ?%

/ \
lI \‘ | | / ‘
] ] [}
I I | I l / )
¢ooo 0000 éoob @000
\ \
! ‘l: ) N |
\ \ )
g Frequent Q
..... itemset {a,.a,,..,a}

border

(b) Specific-to-general (c) Bidirectional
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Alternative Methods for Frequent Itemset Generation

= Traversal of Itemset Lattice
— Equivalence Classes (either same prefix or suffix)

(a) Prefix tree (b) Suffix tree

Data and Web Mining - S. Orlando 5 9



Alternative Methods for Frequent Itemset Generation

= Traversal of Itemset Lattice
— Breadth-first vs Depth-first

000000

(a) Breadth first

/QQQQ
'QQQQQQ

QOOOOQ

OC)OO

(b) Depth first
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Apriori Performance Bottlenecks

= The core of the Apriori algorithm:

— Use frequent (k — 1)-itemsets to generate candidate
frequent k-itemsets

— Use database scan and pattern matching to collect counts
for the candidate itemsets
* The bottleneck of Apriori: candidate generation

— Huge candidate sets:

« 104 frequent 1-itemset will generate 107 candidate 2-
itemsets

* To discover a frequent pattern of size 100, e.g., {a,, a,,
..., @400}, ONE Needs to generate 2'%° = 103% candidates.
— Multiple scans of database:

* Needs (n +1) scans, n is the length of the longest
pattern

Data and Web Mining - S. Orlando 6 1



Mining Patterns Without Candidate Generation

= Compress a large database into a compact,
Frequent-Pattern tree (FP-tree) structure

— highly condensed, but complete for frequent
pattern mining

— avoid costly database scans

= Develop an efficient, FP-tree-based frequent
pattern mining method

— A divide-and-conquer methodology: decompose
mining tasks into smaller ones

— Avoid candidate generation: sub-database test
only!

Data and Web Mining - S. Orlando 62



Construct FP-tree from a Transaction DB

TID Items bought (ordered) frequent items

100 if, a, ¢, d, g, i, m, p}
200 {a, b, ¢, f, I, m, 0}
300 b, f; h, j, 0}

400 {b, ¢, k, s, p}

500 {a, f, ¢, e, I, p, m, n}

Steps:

. Scan DB once, find frequent 1-
itemset (single item pattern)

Order frequent items in

frequency descending order

Scan DB again, construct FP-

tree

{f, ¢, a, m, p}
{f, ¢, a, b, m}

i b} min_support =3

{6 b, p}
{f, ¢, a, m, p}

Header Table

|

tem frequency head

T I TR0

w w ww RN KN
/
/
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FP-tree construction

null
After reading TID=1:
A:l

TID ltems ()

1 {A,B} y >/

2 {B,C,D} |

3 {A,C,D,E}

4 {A,D,E} After reading TID=2: .

5 | {AB.C) R

6 {A,B,C,D} Al B:1

7 {B,C) O .

8 {AaB’C} B:1 //// \ C:1

9 | {AB,D} - ( ; Q-
10 | {B,C,E} N\

O D:1
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FP-Tree Construction

TID ltems Transaction
1 {A B} Database
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
) {A,B,C}
6 {A,B,C,D}
7 {B,C} .
8 | {AB\C)
9 {A,B,D}
10 {B,C,E} JUr
Header table | C:3
ltem | Pointer
A T P
B _______________ /6:1
C| S
D | s
E | -

null

Pointers are used to assist frequent

itemset generation
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Benefits of the FP-tree Structure

= Completeness:
— never breaks a long pattern of any transaction

— preserves complete information for frequent
pattern mining

= Compactness

— reduce irrelevant information—infrequent items
are gone

— frequency descending ordering: more frequent
items are more likely to be shared

— never be larger than the original database (if not
count node-links and counts)

— Example: For Connect-4 DB, compression ratio
could be over 100
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Mining Frequent Patterns Using FP-tree

* General idea (divide-and-conquer)

— Recursively grow frequent pattern path using the
FP-tree

= Method

— For each item, construct its conditional pattern-
base, and then its conditional FP-tree

— Repeat the process on each newly created
conditional FP-tree

— Until the resulting FP-tree is empty, or it
contains only one path

 single path will generate all the combinations of
its sub-paths, each of which is a frequent pattern
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Mining Frequent Patterns Using FP-tree

= The lattice is explored depth-first

1. First mine the patterns with suffix p

2. Then mine the patterns with suffix m
- that not contain p

3. Then mine the pattern with suffix b
— that not contain p and m

4. Then mine the pattern with suffix a
— that not contain p, m and b

5. Then mine the pattern with suffix ¢
— that not contain p, m, b and a

6. Then mine the pattern with suffix f

— that not contain p, m, b, a and ¢

 For each mining task, we can generate a projected
DB by removing transactions and items

— The FP-tree make it easy to generate the projected DB 63
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Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node
in the FP-tree

—  Projected DB

2) Construct conditional FP-tree from each
conditional pattern-base

3) Recursively mine conditional FP-trees and grow
frequent patterns obtained so far

= |If the conditional FP-tree contains a single
path, simply enumerate all the patterns

Data and Web Mining - S. Orlando 69



Step 1: From FP-tree to Conditional Pattern Base

= Starting at the frequent header table in the FP-tree

= Traverse the FP-tree by following the link of each frequent
item

= Accumulate all of transformed prefix paths of that item to
form a conditional pattern base

Header Table 0
Item_frequency head | -~ 1| e Conditional pattern bases
S 4 -1 ~~ item ___cond. pattern base
2 j :———> c: 371 b1 b1 c £:3
=~ I N [
—__ > ' .
b 3 ~ TR a3 : p.‘] a fC.3
m ; o= /;" b fea:l, 131, c:1
\ : g,
z 2 ’le2 Tb .1] e m fea:2, fcab:1
\ | =—I"
e p:2 Nm:1 D feam:2, cb:1
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Properties of FP-tree for Conditional Pattern
Base Construction

* Node-link property
— For any frequent item a,, all the possible
frequent patterns that contain a; can be

obtained by following a;'s node-links, starting
from a;'s head in the FP-tree header

* Prefix path property
— To calculate the frequent patterns for a node a;
in a path P, only the prefix sub-path of a; in P
need to be accumulated, and its frequency
count should carry the same count as node a;,.

Data and Web Mining - S. Orlando 7 1



Step 2: Construct Conditional FP-tree

= For each pattern-base
— Accumulate the count for each item in the base

— Construct the FP-tree for the frequent items of
the pattern base

Header Table {} m-conditional
pattern base:
Item_frequency head % fid | el feaz2, feab:1
f 4 ——4 ; 0 Allt tthe frequent
1> , atterns
2 j — bd b'll 9 | gvith suffix m:
b g :"*\:ﬁ a:3 B! fI 3 ;z
m \ S / m, cm, am,
N I S K .
p 3 \ m;Z I b;l] -7 CI- 3 fem, fam, cam,
RS Y <Y
p2 T m:1 a3

m-conditional FP>tree
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Mining Frequent Patterns by Creating Conditional
Pattern-Bases

Item Conditional pattern-base Conditional FP-tree
P {(fcam:2), (cb:1)} {(c:3)}p
m {(fca:2), (fcab:1)} {(f:3, c:3, a:3)}|m
b {(fca:1), (f:1), (c:1)} Empty
a {(fc:3)} {(f:3, c:3)}|a
C 1(f:3)} {(f:3)}c
f Empty Empty

e

Remove infrequent items (whose support count < 3) from the
projected DB (Cond. Pattern-base)
before generating the Cond. FP-treg... u wes vinng-s. orenge 73



Step 3: Recursively mine the conditional
FP-tree

= Re-apply recursively FP-growth to the FP-tree generated

{l}
Cond. pattern base di “am™: (fc:3) f:3
U |
| c:3
f:3 am-conditional FP-tree
|
c:3
|
a'.3 A\ n {}
m-conditional FP-tree Cond. pattern base of “cm”: (f:3) |
13
cm-conditional FP-tree
{l}
Cond. pattern base of “cam”: (f:3) 13

cam-conditional FP-tree
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Why Is Frequent Pattern Growth Fast?

* The performance study shows

— FP-growth is an order of magnitude faster than Apriori for
dense dataset

— In this case we have the greatest sharing in the transaction,

and the compression rate of FP-tree is very high

= Reasons
— No candidate generation, no candidate test
— Use compact data structure
— Eliminate repeated database scan

— Basic operation is counting and FP-tree building

Data and Web Mining - S. Orlando 7 5



FP-growth vs. Apriori: Scalability With the
Support Threshold

Data set T25120D10K
100 -

90 - ——e&—— D1 FP-grow th runtime

— —=%— — D1 Apriori runtime

80 A

70
60 -
50 A \
40 - \

Run time(sec.)

30 -
20 - N
10 - S

0 0.5 1 1.5 2 2.5 3
Support threshold(%)
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Alternative Methods for Frequent Itemset
Generation

Representation of Database

— horizontal vs vertical data layout

Horizontal

Data Layout

ltems

Vertical Data Layout

—
—
o@OO\IOO'I-b(JOI\)—\G

A,B.E
B,C.D
C,E
A,CD
A,B,C,D
AE

A,B
A,B,C
A,CD

B

A B C D E
1 1 2 2 1
4 2 3 4 3
5 5 4 5 6
6 7 8 9

7 8 9

8 | 10

9
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Different databsse layout

= For each item, store a list of transaction ids (tids)

Horizontal
Data Layout Vertical Data Layout

ltems B DI| E
A,B.E

B,C,D
C,E
A.CD
A.B,C,D
AE

AB
AB,C
ACD

B

2 1
4 3
S) 6
9

oO~NOITN =
© 0o~ WNO

RN
o

© oo ~NO O >
4—

- —]
OLOOO\ICDU'I-BOOI\)AG

TID-list

Data and Web Mining - S. Orlando 7 8



FIM algorithms: methods to compute the supports

= Count-based method
— is used by Apriori
— exploits a horizontal database

— subsetting of transactions and increment of counters, in turn
associated with candidates

= |ntersection-based method

— is used by ECLAT

— exploits a vertical database

— for each candidate, intersect (set-intersection) the TID-lists
associated with the itemsets/items occurring in the candidate

— the cardinality of the resulting TID-list is the candidate support

Data and Web Mining - S. Orlando 7 9



ECLAT

= Determine the support of any k-itemset by
intersecting tid-lists of two of its (k-1) subsets.

A B AB
1 1 1

4 A 2 —> 5

5 S 7

6 / 8

7 8

8 10

9

= 3 traversal approaches:
— top-down, bottom-up and hybrid

= Advantage: very fast support counting

= Disadvantage: intermediate tid-lists may become
too large for memory

Data and Web Mining - S. Orlando 8 O



Intersection-based

>
SO ~NON T
>
NN =0
~N O =

O ooO~NO TN >

= 2-way intersection

set intersect only two TID-lists associated
with two (k-1)-subsets
PROS: speed

CONS: : intermediate tid-lists may become too
large to store in memory

TID-lists

ABC| = k-way intersection
— set intersect the atomic k TID-lists
— PROS: small memory size to store

— CONS: expensive

AB

BC

o N Ol -

N O -

—>

ABC

~N O —
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Various algoritms per FSC

Search space:

visiting method
¢©

Support:
computing method

Level-wise, strictly iterative Divide & conquer, recursive

Data and Web Mining - S. Orlando 82

Op

Support:
computing method




DCI: Direct Counting & Intersecting

= Level-wise (BFS) algorithm

= Hybrid method for determining the supports
of frequent itemsets

— Counting-based during early iterations

* Innovative method for storing and accessing candidates
to count their support

« Effective pruning of horizontal dataset

— Intersection-based when database fits into the
main memory = resource-aware
« Horizontal-to-Vertical transformation
* Fully optimized k-way intersections

Orlando, P. Palmerini, R. Perego, and F. Silvestri, “Adaptive and Resource-Aware Mining of Frequent Sets”
Proc. IEEE Int'| Conf. Data Mining, Dec. 2002.
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DCI: intersection-based phase

= When the pruned database fits into the main
memory, DCI builds on-the-fly an in-core
bit-vector vertical dataset

* Due to the effectiveness of dataset pruning, this
usually occurs at early iterations (2"d or 3" iter)

< n, trans g

m, items

Data and Web Mining - S. Orlando 84



Cache: bitwise TID-list Intersection

= k-way intersections
— Iintersect tidlists associated with single items
— low memory requirements, but too many
intersections!
= 2-way intersections

— start from tidlists associated with frequent (k-1)-
itemsets

— huge memory requirements, but less intersections!

= DCI = tradeoff between 2-way and k-way
— is based upon k-way intersections of bitvectors,

— BUT caches all the partial intersections
corresponding to the various prefixes of the current
candidate itemset

Cache size: | k-2 bitvector di n, bit

Data and Web Mining - S. Orlando 8 5




Cache: bitwise TID-list Intersection

5

11 17 24 31
11 17 24 47
11 17 31 47

Buffer of (k-2) vectors of nk bits
used for caching intermediate
intersection results

3&5

3&5&11

3&5&11& 17

3&5&11&17 & 24

Reuse of this
cached intersection

Data and Web Mining - S. Orlando 8 6



DCI: number of intersections

Number of intersections

1.8e+06
1.6e+06
1.4e+06
1.2e+06
1e+06
800000
600000
400000
200000

Dataset=BMS, supp=0.06%

LN g -
/ N\ way_ -
NI
X
// L
) \
I S R
P e T
et T *\E‘““ﬁm_ _
8 10 12 14
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DCI: sparse vs. dense datasets

= Sparse:
— The bit-vectors are sparse
» A few 1 bits, and long sequences of 0
— It is possible identify large sections of words equal to zero
— We can skip these sections during the intersections

= Dense

— Strong correlation among the most frequent items, whose
associated bit-vectors are dense and very similar
« Contain a few 0 bits, and long sequences of 1 bits

— It is possible identify large sections of words equal to one
— We can also skip these sections during the intersections

Data and Web Mining - S. Orlando 8 8



DCI: better than FP-growth for dense datasets

Dataset = connect-4
10000

fp-growth - :

m Dense database p-growth —&— 3
« Very long S
patterns ) 1000 o
)
E
= 100 E
-
-
. . 1'd
m Apriori is =
inefficient on e 10
these datasets

1
60 65 70 75 80 85 90

Support (%)
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DCI: better than FP-growth for dense datasets

Dataset = BMS

m Sparse 1000 |
Click-stream :
collected g 100 pd
from an 0 '
e-commerce - 10
website é
g !
m Patterns of - '
average Iength o i ; | | | | Y
for small '0.05 0.1 015 0.2 025 0.3 0.35 0.4 045 05
supports Support (%)
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Constraints

= Function C defined on a set of items I-
— C: 2= {true, false}
= Main motivation:

— Focus on further requirements/constraint of the
analyst, besides the minimum support
constraint, to avoiding flooding him with a lot of
uninteresting patterns

= Example:

— freq(X) =min_supp
— sum(X.price) = m

Data and Web Mining - S. Orlando 9 1



Exploiting the contraints

* Understand the constraint properties:
— to avoid an approach generateé&test
— to reduce the search space
— to prune the dataset

= Example with the minimum support constraint:
— if freq(a) = min_supp
remove from the dataset every occurrence of item a, thus
reducing the size of the dataset
= Motivation:

— Performance

— Improved performance -> more constraints
-> more expressivity

Data and Web Mining - S. Orlando 92



The search space

TID items
1 b| d
the Dataset
2 alb|c
3 al c
4 c
abcd '’
abc abd acd “? bcd
a ! ac ? ad 2 bc bd 2 cd
a 2 b 2 c °? d 3
\/ - Support
the Lattice o e
Itemset

Data and Web Mining - S. Orlando 9 3




Reducing the search space

Data and Web Mining - S. Orlando 94



ANTI-MONOTONE constraint

= Definition:
— A constraint C is anti-monotone if VX CVY: C(Y) = C(X)

= Example:
— freq(X) = o, sum(X.prices) <m, ...

" COI'O"aI'y: We use this corollary to prune the
- VXCY: ~C(X) =—CY) < search space when we visit it
level-wise and bottom-up

Strategy:
— If =~C(X) ignore X and its supersets

— Bottom-up visit of the search space
(search space)

— If an item i occurring in transaction t is not contained in almost k
frequent itemsets of length k, then i will not occur in any frequent
itemset of length k+71 =» thus ignore i when generating the
candidates of length k+17 (i can be removed from the dataset)

(dataset)
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MONOTONE constraints

= Definition:
— A constraint Cis monotone if V. X C Y : C(X) = C(Y)

= Corollary
- YXCY: ~C(Y) =~C(X)

= Example:
— sum(X.prices) = m, max(X.prices) =m,

= Strategy: Monotone + Anti-monotone.
— bottom-up vs top-down exploration of the search space
(search space reduction)

Data and Web Mining - S. Orlando 9 6



Exante: how to exploit a monotone constraint

* |dea: exploit the constraints before starting mining
* Property:

= Apply the constraint to each transaction

= |f transaction Y do not satisfy the monotone constraint ~C(Y), then no of
its subsets will satisfy the constraint (VX CY: —C(Y) = ~(C(X)), and
thus Y can be removed

» Side effects: when you remove transactions, some items
can become infrequent, and thus not useful

= Result : virtuous cycle in pruning the dataset

— iterated step to prune fransactions, and subsequent
pruning of items

* The step can be repeated for each iteration k of Apriori

Francesco Bonchi, Fosca Giannotti, Alessio Mazzanti, Dino Pedreschi: Exante: A Preprocessing Method for
Frequent-Pattern Mining. IEEE Intelligent Systems. 20(3): 25-31 (2005)
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Exante: example

ftem | price tID | Itemset | Total price
o = %1_ b,c,d,g ‘SQ 52
S 3 | bedgh \zéxis 52
C 14 . T o1
d 30 5 S ¥ W4
(E ?(5) 6 agl’),(’:,d,é R 52
o 6 —7——a$,-b;d7ﬁ,-g—,h—46\—44
h 19 8 b,c,d 52
Q b fg X{ 14
Item Support
X %3 T T
b 7 X 4 4
c 5 5 5 4
d 7 % _5 4
X 4 3 1t ¢
X 3 3 t ¢
X 6 5 3 1t
X 2 2 t t

Q Min_sup = 4

@<y

sum(X.price) = 45
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Pattern Evaluation

= Association rule algorithms tend to produce too many rules

— many of them are uninteresting or redundant
— Redundant if {A,B,C} — {D} and {A,B} — {D}
have same support & confidence

* Interestingness measures can be used to prune/rank the derived
patterns

* In the original formulation of association rules, support &
confidence are the only measures used

Data and Web Mining - S. Orlando 9 9



Application of Interestingness Measure

Interestingness Knowledge

AN
Measures 3

X
Patterns ..

M@ Postprocessing

Mining

Preprocesse
Data

£
Ean.
|[Esaby
L

FFFEERFEE
TEEEAEREERE

Selected
Data

o o

o e e e

Data Preprocessing

Selection
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Computing Interestingness Measure

= Given arule X — Y, information needed to compute rule
interestingness can be obtained from a contingency
table

Contingency table for X = Y

. support of Xand Y
- support of X and Y
: support of Xand Y
. supportof Xand Y

\ Can apply various Measures

+ support, confidence, lift, Gini,
J-measure, etc.

X f11 f10 f1+

—h —h —h —h

X
o—h
—
O—h
o
o—h
e

fad
—
fa
o
—
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Drawback of Confidence

Coffee | Coffee
Tea 15 3 20
Tea | 75 5 80
90 10 100

Association Rule: Tea — Coffee

Confidence= P(Coffee|Tea) = 15/20 = 0.75
but P(Coffee) = 0.9

—s, Although confidence is high, rule is misleading
_., P(Coffee|Tea) = 75/80 = 0.9375
Data and Web Mining - S. Orlando 1 02



Statistical Independence

= Population of 1000 students
— 600 students know how to swim (S)
— 700 students know how to bike (B)
— 420 students know how to swim and bike (S,B)

— P(SAB) =420/1000 = 0.42
— P(S) xP(B)=0.6 x 0.7 =0.42

— P(SAB) = P(S) x P(B) => Statistical independence

— P(SAB) > P(S) x P(B) => Positively correlated
— P(SAB) < P(S) x P(B) => Negatively correlated

Data and Web Mining - S. Orlando 1 03



Statistical-based Measures

= Measures that take into account statistical dependence

P(Y | X)

P(Y)

P(X.Y)
P(X)P(Y)
PS = P(X,Y)- P(X)P(Y)

) s P(X,Y)- P(X)P(Y)
¢ — coefficient JPCO[1= P(X)IP(Y)[1 = P(Y)]

Lift =

Interest =

Data and Web Mining - S. Orlando



Example: Lift/Interest

Coffee | Coffee
Tea 15 3 20
Tea | 75 5 80
90 10 100

Association Rule: Tea — Coffee

Confidence= P(Coffee|Tea) = 0.75
but P(Coffee) = 0.9

—, Lift = 0.75/0.9= 0.8333

(< 1, therefore it is
negatively correlated)

Data and Web Mining - S. Orlando 1 05



Drawback of Lift & Interest

Y Y Y Y
X 10 0 10 X 90 0 90
X 0 9 | 90 X 0 10 | 10
10 90 | 100 90 10 | 100
. 0.1 09
Lift = =10 Lift = ' =1.11
(0.1)(0.1) 1 (0.9)(0.9)

Statistical independence:
If P(X,Y)=P(X)P(Y) => Lift=1

Rare itemsets with low counts (low probability) which per chance occur a few times
(or only once) together can produce enormous lift values.
Data and Web Mining - S. Orlando 1 06



Drawback of ¢-Coefficient

= ¢-coefficient is analogous to correlation coefficient for
continuous variables

Y Y Y Y
X 60 | 10 | 70 20 | 10 | 30
X 10 | 20 | 30 10 | 60 | 70
70 | 30 | 100 30 | 70 | 100
0.6-0.7x0.7 02-03x0.3

P 07x03x07x03 7= J07x03%0.7x023
— 0.5238 — 0.5238

¢ Coefficient is the same for both tables

Data and Web Mining - S. Orlando 1 07



