Association mining

Salvatore Orlando

 Given a set of transactions, find rules that will predict the occurrence of an item (a set of items) based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 ${Diaper} \rightarrow {Beer}$ ${Milk, Bread} \rightarrow {Eggs, Coke}$ ${Beer, Bread} \rightarrow {Milk}$

Implication means cooccurrence, not causality!

Definition: Frequent Itemset

- Itemset
 - A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items
- Support count (σ)
 - Number of transaction occurrences of an itemset
 - E.g. σ({Milk, Bread, Diaper}) = 2
- Support
 - Fraction of transactions that contain an itemset
 - E.g. s({Milk, Bread, Diaper}) = 2/5
- Frequent Itemset
 - An itemset whose support is greater than or equal to (not less than) a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form X → Y, where X and Y are itemsets
- $X \cap Y = \emptyset$
- Example: {Milk, Diaper} → {Beer}

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|\mathsf{T}|} = \frac{2}{5} = 0.4$$
$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ *minconf* threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the *minsup* and *minconf* thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\{ Milk, Diaper \} \rightarrow \{ Beer \} (s=0.4, c=0.67) \\ \{ Milk, Beer \} \rightarrow \{ Diaper \} (s=0.4, c=1.0) \\ \{ Diaper, Beer \} \rightarrow \{ Milk \} (s=0.4, c=0.67) \\ \{ Beer \} \rightarrow \{ Milk, Diaper \} (s=0.4, c=0.67) \\ \{ Diaper \} \rightarrow \{ Milk, Beer \} (s=0.4, c=0.5) \\ \{ Milk \} \rightarrow \{ Diaper, Beer \} (s=0.4, c=0.5)$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Two-step approach:

1. Frequent Itemset Generation

Generate all itemsets whose support ≥ minsup

2. Rule Generation

 Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

 Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Computational Complexity

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

Apriori principle:

- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support
- Apriori principle application for candidate pruning
 - Given a candidate itemset *Y*, if there exists *X*, where *X* is a subset of *Y*, and *X* è infrequent since s(X) < minsup, then also *Y* is infrequent due to the Apriori principle

minsup > $s(X) \ge s(Y)$

Illustrating Apriori Principle

Illustrating Apriori Principle

Apriori algorithm

- C_k is the set of candidates (k-itemsets) at iteration k
 - The algorithm compute their supports
- L_k is the set of k-itemsets that result to be *frequent*
 - L_k ⊆ C_k
 - Along with L_k, also the associated supports are returned
 - <u>Note</u>: L stands for <u>large</u>. In the original paper, the frequent itemset were called "large itemset"

Gen Step:

- C_k is generated by self-joining L_{k-1}, by keeping only the itemsets of length k
- Pruning of C_k: A *k-itemset* cannot be frequent, and thus cannot be a candidate of C_k, if it includes at least a subset that is not frequent. So, it is reasonable <u>start from L_{k-1}</u> to generate C_k

Gen Step

- Suppose that
 - Each itemset is an ordered list of items
 - If the itemsets in L_{k-1} are sorted according to a lexicographic order, this simplify the self-join step
- Step 1: self-joining L_{k-1}

insert into C_k all pairs $(p, q) \in L_{k-1}$ where $p.item_1 = q.item_1, \ldots, p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}$ (p and q share a common prefix of length k-2) $(the condition p.item_{k-1} < q.item_{k-1} \text{ guarantees that no duplicates are generated})$

Example of candidate generation

• L₃={abc, abd, acd, ace, bcd}

- Self-joining: $L_3 * L_3$
 - abcd from p=abc and q=abd
 - acde from p=acd and q=ace
- Pruning:
 - *acde* is then pruned because *ade* is not included in L_3
- C₄={abcd}

• <u>Pseudo-code</u>:

C_k: Candidate itemsets of size k L_k : frequent itemsets of size k

 $L_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} \mid = \emptyset; k + +) \text{ do begin} \\ C_{k+1} = \text{candidates } \underline{\text{generated}} \text{ from } L_{k}; \\ \text{for each transaction } t \text{ in database } D \text{ do} \\ \text{increment the count of all candidates in } C_{k+1} \\ \text{that are contained in } t \\ L_{k+1} = \text{candidates in } C_{k+1} \text{ with are frquent} \end{cases}$

 L_{k+1} = candidates in C_{k+1} with are frquent end

return $\bigcup_k L_k$

Apriori: another example (*minsup* = 2)

Apriori: Breadth first visit of the lattice

Generate the candidates of dimension 1

Compute the supports of the Candidates of dim. 1

Generate the candidates of dimension 2

Compute the supports of the Candidates of dim. 2

Prune the infrequent itemsets

Generate the candidates of dimension 3

Compute the supports of the Candidates of dim. 3

Prune the infrequent itemsets

Generate the candidates of dimension 3

Compute the supports of the Candidates of dim. 4

Reducing Number of Comparisons

Candidate counting:

- Scan the database of transactions to determine the support of each candidate itemset
- To reduce the number of comparisons, store the candidates in a hash structure

Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Hash-tree to store candidates in C_k of max depth k:

- The selection of the path is done with a hash function over the items to select the path
- Each leaf stores a list of candidates
- <u>Max leaf size</u>: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Recursive transaction subsetting

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Data and Web Mining - S. Orlando 39

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase the number of candidates and the max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with the number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - this may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

How to improve the efficiency of Apriori

- Hash-based itemset counting to <u>reduce the size of C_k</u>:
 - At iteration k-1 try to forecast the itemsets that will <u>NOT</u> be part of C_k
 - The k-itemset (where items are mapped to integer IDs) occurring in a transaction are *mapped*, with a hash function, into a relatively small table ⇒ less counters than in C_k
 - All the *k*-itemsets mapped to the same hash bucket whose counter is less than a given minsup
 - <u>cannot be frequent</u> and thus can be pruned from C_k
- Example: at iteration *k*=1, create the hash table H2, for items {I1,I2,I3,I4,I5,I6}
 - hash function: $h(x, y) = (x * 10 + y) \mod 7$
 - min_supp = 3
 - Size hash table = 6 Number of subsets of 2 elements (max sz of C_k) = 15

H_2							
bucket address	0	1	2	3	4	5	6
bucket count	2	2	4	2	2	4	4
bucket contents	{ 11,14 } { 13,15 }	{ N1,1 5} { /1,15 }	$\{I2,I3\} \\ \{I2,I3\} \\ \{I2,I3\} \\ \{I2,I3\} \\ \{I2,I3\} \\ \{I2,I3\} \\ \{I3,I3\} \\ \{I3,I3\} \\ \{I3,I3\} \\ \{I4,I3\} \\ \{I4,$	$\{12,14\}$ $\{12,14\}$	$\{12,15\}\$ $\{12,15\}$	$ \{I1,I2\} \\ \{I1,I2\} \\ \{I1,I2\} \\ \{I1,I2\} \\ \{I1,I2\} $	{I1,I3} {I1,I3} {I1,I3} {I1,I3} {I1 I3}

How to improve the efficiency of Apriori

- Transaction pruning: A transaction that does not contain any frequent k-itemset, cannot contain any larger itemset, and can thus be pruned
- Sampling: mining a reduced number of transactions, but this reduces the accuracy of the result
- Partitioning: Small partitions of database D can be managed in main memory. An itemset that is frequent in D must be frequent in at least one of the partition of D.

Unfortunately a frequent itemset in a partition of D could be infrequent in the whole database D.

Partitioning

- **3** partitions of *D* : *D1*, *D2*, *D3*
- If itemset *X* is globally frequent, then:

(1) $\sigma(X) = \sigma_{D1}(X) + \sigma_{D2}(X) + \sigma_{D3}(X) >= minsup\% (|D1| + |D2| + |D3|)$

 $\forall i, \sigma_{Di}(X) < minsup\% |Di| \Rightarrow X is globally infrequent, since property (1) does not hold$

¬ (X is globally infrequent) \Rightarrow ¬(∀*i*, $\sigma_{Di}(X) < minsup\% |Di|$)

X is globally frequent $\Rightarrow \exists i, \sigma_{Di}(X) \ge minsup\% |Di|$

X is globally frequent \Rightarrow X is locally frequent in some dataset Data and Web Mining - S. Orlando 43

Rule Generation

Non optimized algorithm

c is frequent due Apriori property

for each frequent itemset / do / for each proper subset c of / do

if $(support(I) / support(I-c) \ge \underline{minconf})$ then

output rule $(I-c) \Rightarrow c$, with

confidence = support(/) / support(/-c)
support = support(/);

• e.g.: If X = {A,B,C,D} is frequent, candidate rules:

ABC →D,	ABD →C,	ACD →B,	BCD →A,
A →BCD,	B →ACD,	C →ABD,	D →ABC,
AB →CD,	$AC \rightarrow BD$,	$AD \rightarrow BC$,	BC →AD,
BD →AC,	$CD \rightarrow AB$		

• If |X| = m, then there are $2^m - 2$ candidate association rules (ignoring $X \rightarrow \emptyset$ and $\emptyset \rightarrow X$) Data and Web Mining - S. Orlando

Efficient Rule Generation

- In general, confidence does not have an anti-monotone property c(ABC →D) can be larger or smaller than c(AB →D)
- But confidence of rules generated from the same itemset has an anti-monotone property
 - $e.g., X = {A,B,C,D}:$

 $c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD) D \subset CD \subset BCD$

σ(ABCD)		σ(ABCD)		σ(ABCD)
	≥		≥	
σ(ABC)		σ(AB)		σ(Α)

Confidence is anti-monotone w.r.t. the number of items on the RHS of the rule

If
$$min_conf > c(ABC \rightarrow D)$$
 then
 $min_conf > c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$
and thus we can prune $c(AB \rightarrow CD)$ and $c(A \rightarrow BCD)$
Data and Web Mining - S. Orlando

Efficient Rule Generation

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join(CD=>AB,BD=>AC) would produce the candidate rule D => ABC
- Prune rule D=>ABC if AD=>BC does not have high confidence
- (AD=>BC is not a a generator, but BC⊂ABC)
- Note that the other two "subsets" CD=>AB and BD=>AC are surely highly confident, since they are the generators of D => ABC

Presentation of Association Rules (Table Form)

	Body	Implies	Head	Supp (%)	Conf (%)	F	G	Н	I	
1	cost(x) = '0.00~1000.00'	==>	revenue(x) = '0.00~500.00'	28.45	40.4					
2	cost(x) = '0.00~1000.00'	==>	revenue(x) = '500.00~1000.00'	20.46	29.05					
3	cost(x) = '0.00~1000.00'	==>	order_qty(x) = '0.00~100.00'	59.17	84.04					
4	cost(x) = '0.00~1000.00'	==>	revenue(x) = '1000.00~1500.00'	10.45	14.84					
5	cost(x) = '0.00~1000.00'	==>	region(x) = 'United States'	22.56	32.04					
6	cost(x) = '1000.00~2000.00'	==>	order_qty(x) = '0.00~100.00'	12.91	69.34					
7	order_ <u>gty(x) = '0.00~100.00'</u>	==>	revenue(x) = '0.00~500.00'	28.45	34.54					
8	order_ <u>gty(x)</u> = '0.00~100.00'	==>	cost(x) = '1000.00~2000.00'	12.91	15.67					
9	order_qty(x) = '0.00~100.00'	==>	region(x) = 'United States'	25.9	31.45					
10	order_qty(x) = '0.00~100.00'	==>	cost(x) = '0.00~1000.00'	59.17	71.86					
11	order_qty(x) = '0.00~100.00'	==>	product_line(x) = 'Tents'	13.52	16.42					
12	order_qty(x) = '0.00~100.00'	==>	revenue(x) = '500.00~1000.00'	19.67	23.88					
13	product_line(x) = 'Tents'	==>	order_qty(x) = '0.00~100.00'	13.52	98.72					
14	region(x) = 'United States'	==>	order_qty(x) = '0.00~100.00'	25.9	81.94					
15	region(x) = 'United States'	==>	cost(x) = '0.00~1000.00'	22.56	71.39					
16	revenue(x) = '0.00~500.00'	==>	cost(x) = '0.00~1000.00'	28.45	100					
17	revenue(x) = '0.00~500.00'	==>	order_qty(x) = '0.00~100.00'	28.45	100					
18	revenue(x) = '1000.00~1500.00'	==>	cost(x) = '0.00~1000.00'	10.45	96.75					
19	revenue(x) = '500.00~1000.00'	==>	cost(x) = '0.00~1000.00'	20.46	100					
20	revenue(x) = '500.00~1000.00'	==>	order_qty(x) = '0.00~100.00'	19.67	96.14					
21										
22										
23	cost(x) = '0.00~1000.00'	==>	revenue(x) = '0.00~500.00' AND order_qty(x) = '0.00~100.00'	28.45	40.4					
24	cost(x) = '0.00~1000.00'	==>	revenue(x) = '0.00~500.00' AND order_qty(x) = '0.00~100.00'	28.45	40.4					
25	cost(x) = '0.00~1000.00'	==>	revenue(x) = '500.00~1000.00' AND order_qty(x) = '0.00~100.00'	19.67	27.93					
26	cost(x) = '0.00~1000.00'	==>	revenue(x) = '500.00~1000.00' AND order_qty(x) = '0.00~100.00'	19.67	27.93					
27	cost(x) = '0.00~1000.00' AND order_qt <u>y(x) = '0.00~100.00'</u>	==>	revenue(x) = '500.00~1000.00'	19.67	33.23					
	Sheet1 /									

Visualization of Association Rule Using Plane Graph

Visualization of Association Rule Using Rule Graph

Compact Representation of Frequent Itemsets

 Some itemsets are redundant because they have identical support as their supersets

١D	A1	A2	A 3	A4	A5	A6	A7	A 8	A9	A10	B1	B2	B 3	B4	B5	B6	B7	B 8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C 8	C9	Ch
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

- Min support count: σ = 5
- Number of frequent itemsets =

$$3 \times \sum_{k=1}^{10} \binom{10}{k}$$

Need a compact representation

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is frequent

 An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items
1	{A,B}
2	{B,C,D}
3	{A,B,C,D}
4	{A,B,D}
5	{A,B,C,D}

ltemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
{A,B,C}	2
{A,B,D}	3
{A,C,D}	2
{B,C,D}	3
{A,B,C,D}	2

Maximal vs Closed Itemsets

Maximal vs Closed Frequent Itemsets

Maximal vs Closed Itemsets

Maximal vs Closed Itemsets

Alternative Methods for Frequent Itemset Generation

- Traversal of Itemset Lattice
 - General-to-specific (Apriori method) vs. Specific-to-general

Alternative Methods for Frequent Itemset Generation

- Traversal of Itemset Lattice
 - Equivalence Classes (either same prefix or suffix)

Alternative Methods for Frequent Itemset Generation

- Traversal of Itemset Lattice
 - Breadth-first vs Depth-first

(a) Breadth first

(b) Depth first

Apriori Performance Bottlenecks

- The core of the Apriori algorithm:
 - Use frequent (k 1)-itemsets to generate <u>candidate</u> frequent k-itemsets
 - Use database scan and pattern matching to collect counts for the candidate itemsets
- The bottleneck of Apriori: <u>candidate generation</u>
 - Huge candidate sets:
 - 10⁴ frequent 1-itemset will generate 10⁷ candidate 2itemsets
 - To discover a frequent pattern of size 100, e.g., $\{a_1, a_2, ..., a_{100}\}$, one needs to generate $2^{100} \approx 10^{30}$ candidates.
 - Multiple scans of database:
 - Needs (n +1) scans, n is the length of the longest pattern

Mining Patterns Without Candidate Generation

- Compress a large database into a compact, <u>Frequent-Pattern tree</u> (FP-tree) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only!

Construct FP-tree from a Transaction DB

TID	Items bought	(ordered) frequent items
100	{f, a, c, d, g, i, m, p	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
300	$\{b, f, h, j, o\}$	$\{f, b\}$
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$
500	{a, f, c, e, l, p, m, n	$\{f, c, a, m, p\}$

min_support = 3

Steps:

- **1.** Scan DB once, find frequent 1itemset (single item pattern)
- **2.** Order frequent items in frequency descending order
- **3.** Scan DB again, construct FP-tree

FP-tree construction

FP-Tree Construction

Benefits of the FP-tree Structure

- Completeness:
 - never breaks a long pattern of any transaction
 - preserves complete information for frequent pattern mining
- Compactness
 - reduce irrelevant information—infrequent items are gone
 - frequency descending ordering: more frequent items are more likely to be shared
 - never be larger than the original database (if not count node-links and counts)
 - Example: For Connect-4 DB, compression ratio could be over 100

Mining Frequent Patterns Using FP-tree

- General idea (divide-and-conquer)
 - Recursively grow frequent pattern path using the FP-tree
- Method
 - For each item, construct its conditional patternbase, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path
 - single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Mining Frequent Patterns Using FP-tree

- The lattice is explored depth-first
 - 1. First mine the patterns with suffix p
 - 2. Then mine the patterns with suffix *m*
 - that not contain p
 - 3. Then mine the pattern with suffix *b*
 - that not contain p and m
 - 4. Then mine the pattern with suffix *a*
 - that not contain *p*, *m* and *b*
 - 5. Then mine the pattern with suffix c
 - that not contain *p*, *m*, *b* and *a*
 - 6. Then mine the pattern with suffix f
 - that not contain *p*, *m*, *b*, *a* and *c*
- For each mining task, we can generate a projected DB by removing transactions and items
 - The FP-tree make it easy to generate the projected DB

- 1) Construct <u>conditional pattern base</u> for each node in the FP-tree
 - Projected DB
- 2) Construct <u>conditional FP-tree</u> from each conditional pattern-base
- 3) <u>Recursively mine conditional FP-trees</u> and grow frequent patterns obtained so far
 - If the conditional FP-tree contains a single path, simply enumerate all the patterns

Step 1: From FP-tree to Conditional Pattern Base

- Starting at the frequent header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Conditional pattern bases					
<u>item</u>	cond. pattern base				
С	<i>f:3</i>				
a	fc:3				
b	fca:1, f:1, c:1				
т	fca:2, fcab:1				
р	fcam:2, cb:1				

Properties of FP-tree for Conditional Pattern Base Construction

- Node-link property
 - For any frequent item a_i , all the possible frequent patterns that contain a_i can be obtained by following a_i 's node-links, starting from a_i 's head in the FP-tree header
- Prefix path property
 - To calculate the frequent patterns for a node a_i in a path *P*, only the prefix sub-path of a_i in *P* need to be accumulated, and its frequency count should carry the same count as node a_i .

Step 2: Construct Conditional FP-tree

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the <u>frequent items</u> of the pattern base

Mining Frequent Patterns by Creating Conditional Pattern-Bases

Item	Conditional pattern-base	Conditional FP-tree
р	{(fcam:2), (cb:1)}	{(c:3)} p
m	{(fca:2), (fcab:1)}	{(f:3, c:3, a:3)} m
b	{(fca:1), (f:1), (c:1)}	Empty
а	{(fc:3)}	{(f:3, c:3)} a
С	{(f:3)}	{(f:3)} c
f	Empty	Empty

Remove infrequent items (whose support count < 3) from the projected DB (Cond. Pattern-base) before generating the Cond. FP-tree_{ata and Web Mining - S. Orlando}

Step 3: Recursively mine the conditional FP-tree

Re-apply recursively FP-growth to the FP-tree generated

Why Is Frequent Pattern Growth Fast?

- The performance study shows
 - FP-growth is an order of magnitude faster than Apriori for dense dataset
 - In this case we have the greatest sharing in the transaction, and the compression rate of FP-tree is very high

Reasons

- No candidate generation, no candidate test
- Use compact data structure
- Eliminate repeated database scan
- Basic operation is counting and FP-tree building

FP-growth vs. Apriori: Scalability With the Support Threshold

Alternative Methods for Frequent Itemset Generation

Representation of Database

Horizontal

- horizontal vs vertical data layout

Data Layout			
TID	Items		
1	A,B,E		
2	B,C,D		
3	C,E		
4	A,C,D		
5	A,B,C,D		
6	A,E		
7	A,B		
8	A,B,C		
9	A,C,D		
10	В		

Vertical Data Layout

Α	В	С	D	Ε
1	1	2	2	1
4	2	3	4	3
5	5	4	5	6
6	7	8	9	
7	8	9		
8	10			
9				

For each item, store a list of transaction ids (tids)

Vertical Data Layout

Count-based method

- is used by Apriori
- exploits a horizontal database
- subsetting of transactions and increment of counters, in turn associated with candidates
- Intersection-based method
 - is used by ECLAT
 - exploits a <u>vertical</u> database
 - for each candidate, <u>intersect</u> (set-intersection) the TID-lists associated with the itemsets/items occurring in the candidate
 - the cardinality of the resulting TID-list is the candidate support

 Determine the support of any k-itemset by intersecting tid-lists of two of its (k-1) subsets.

- 3 traversal approaches:
 - top-down, bottom-up and hybrid
- Advantage: very fast support counting
- Disadvantage: intermediate tid-lists may become too large for memory

Intersection-based

k-way intersection

- set intersect the atomic k TID-lists
- PROS: small memory size to store TID-lists
- CONS: expensive

2-way intersection

- set intersect only two TID-lists associated with two (k-1)-subsets
- PROS: speed
- CONS: : intermediate tid-lists may become too large to store in memory

Various algoritms per FSC

Level-wise, strictly iterative

Divide & conquer, recursive

- Level-wise (BFS) algorithm
- Hybrid method for determining the supports of frequent itemsets
 - Counting-based during early iterations
 - Innovative method for storing and accessing candidates to count their support
 - Effective pruning of horizontal dataset
 - Intersection-based when database fits into the main memory ⇒ resource-aware
 - Horizontal-to-Vertical transformation
 - Fully optimized k-way intersections

DCI: intersection-based phase

- When the pruned database fits into the main memory, DCI builds on-the-fly an in-core bit-vector vertical dataset
- Due to the effectiveness of dataset pruning, this usually occurs at early iterations (2nd or 3rd iter)

Cache: bitwise TID-list Intersection

k-way intersections

- intersect tidlists associated with single items
- low memory requirements, but too many intersections!
- 2-way intersections
 - start from tidlists associated with frequent (k-1)itemsets
 - huge memory requirements, but less intersections!
- DCI ⇒ tradeoff between 2-way and k-way
 - is based upon k-way intersections of bitvectors,
 - <u>BUT</u> caches all the partial intersections corresponding to the various prefixes of the current candidate itemset

Cache size:

k-2 bitvector di
$$n_k$$
 bit

Buffer of (k-2) vectors of nk bits used for caching intermediate intersection results

DCI: number of intersections

Data and Web Mining - S. Orlando 87

Orlando

- Sparse:
 - The bit-vectors are sparse
 - A few 1 bits, and long sequences of 0
 - It is possible identify large sections of words equal to zero
 - We can skip these sections during the intersections
- Dense
 - Strong correlation among the most frequent items, whose associated bit-vectors are dense and very similar
 - Contain a few 0 bits, and long sequences of 1 bits
 - It is possible identify large sections of words equal to one
 - We can also skip these sections during the intersections

DCI: better than FP-growth for dense datasets

Dataset = connect-4

DCI: better than FP-growth for dense datasets

Dataset = BMS

- Function *C* defined on a set of items *I*:
 - $-C: 2^{I} \Rightarrow \{true, false\}$
- Main motivation:
 - Focus on further requirements/constraint of the analyst, besides the minimum support constraint, to avoiding flooding him with a lot of uninteresting patterns

Example:

- $freq(X) \ge min_supp$
- $sum(X.price) \ge m$

- Understand the constraint properties:
 - to avoid an approach generate&test
 - to reduce the search space
 - to prune the dataset
- Example with the minimum support constraint:
 - if freq(a) ≤ min_supp remove from the dataset every occurrence of item a, thus reducing the size of the dataset
- Motivation:
 - Performance
 - Improved performance

-> more constraints

-> more expressivity

The search space

Reducing the search space

- Definition:
 - A constraint C is anti-monotone if $\forall X \subset Y : C(Y) \Rightarrow C(X)$
- Example:
 - $freq(X) \ge \sigma$, sum(X.prices) < m, ...
- Corollary:
 - $\forall X \subset Y : \neg C(X) \Rightarrow \neg C(Y)$

We use this corollary to prune the search space when we visit it level-wise and bottom-up

- Strategy:
 - If $\neg C(X)$ ignore X and its supersets
 - Bottom-up visit of the search space

(search space)

If an item *i* occurring in transaction *t* is not contained in almost *k* frequent itemsets of length *k*, then *i* will not occur in any frequent itemset of length *k*+1 → thus ignore *i* when generating the candidates of length *k*+1 (*i* can be removed from the dataset)

- Definition:
 - A constraint C is monotone if $\forall X \subset Y : C(X) \Rightarrow C(Y)$
- Corollary

 $- \quad \forall X \subset Y : \neg C(Y) \Rightarrow \neg C(X)$

- Example:
 - sum(X.prices) \geq m, max(X.prices) \geq m, ...
- Strategy: Monotone + Anti-monotone.
 - bottom-up vs top-down exploration of the search space

(search space reduction)

Exante: how to exploit a monotone constraint

- Idea: exploit the constraints before starting mining
- Property:
 - Apply the constraint to each transaction
 - If transaction Y do not satisfy the monotone constraint ¬C(Y), then no of its subsets will satisfy the constraint (∀ X ⊂ Y: ¬C(Y) ⇒ ¬C(X)), and thus Y can be removed
- Side effects: when you remove transactions, some items can become infrequent, and thus not useful
- Result : virtuous cycle in pruning the dataset
 - iterated step to prune transactions, and subsequent pruning of items
- The step can be repeated for each iteration *k* of Apriori

Francesco Bonchi, Fosca Giannotti, Alessio Mazzanti, Dino Pedreschi: **Exante: A Preprocessing Method for** *Frequent-Pattern Mining.* IEEE Intelligent Systems. 20(3): 25-31 (2005)

Exante: example

item	price
a	5
b	8
с	14
d	30
е	20
f	15
g	6
h	12

	tID	Itemset	Total price	
;	1	b,c,d, g	58 52	
	-2	a,b,d,a	<u> 82` 38</u>	
	3	b,c,d, g , k	×Q 58	52
		<u>a.e.c</u>	31	
	_5		<u>x5</u> 50	44
	6	≈ ,b,c,d, ĕ	XZ 52	
	-7	a,b,d,f,g,h	76 44	
	8	b,c,d	52	
	9	h 😹 🕺 g	xg 14	
			-	

$$C = sum(X.price) \ge 45$$

ltem	Support			
X	4	3	+	†
b	7	X	4	4
С	5	5	5	4
d	7	X	5	4
×	4	3	+	+
×	3	3	+	+
×	ŏ	5	3	+
X	2	2	+	+

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if {A,B,C} → {D} and {A,B} → {D} have same support & confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

Application of Interestingness Measure

Computing Interestingness Measure

 Given a rule X → Y, information needed to compute rule interestingness can be obtained from a contingency table

	Y	Y	
Х	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f ₀₊
	f ₊₁	f ₊₀	T

Contingency table for $X \rightarrow Y$

 f_{11} : support of X and Y f_{10} : support of X and Y f_{01} : support of X and Y

 f_{00} : support of X and Y

Can apply various Measures

 support, confidence, lift, Gini, J-measure, etc.

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Confidence = P(Coffee | Tea) = 15/20 = 0.75

but P(Coffee) = 0.9

⇒ Although confidence is high, rule is misleading ⇒ P(Coffee|Tea) = 75/80 = 0.9375

- Population of 1000 students
 - 600 students know how to swim (S)
 - 700 students know how to bike (B)
 - 420 students know how to swim and bike (S,B)
 - $P(S \land B) = 420/1000 = 0.42$
 - $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
 - P(S∧B) = P(S) × P(B) => Statistical independence
 - $P(S \land B) > P(S) \times P(B) =>$ Positively correlated
 - P(S∧B) < P(S) × P(B) => Negatively correlated

Measures that take into account statistical dependence

$$\begin{split} Lift &= \frac{P(Y \mid X)}{P(Y)} \\ Interest &= \frac{P(X,Y)}{P(X)P(Y)} \\ PS &= P(X,Y) - P(X)P(Y) \\ \phi - coefficient &= \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}} \end{split}$$

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea \rightarrow Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

$$\implies$$
 Lift = 0.75/0.9= 0.8333

(< 1, therefore it is
negatively correlated)</pre>

	Y	Y	
Х	10	0	10
IX	0	90	90
	10	90	100

	Y	Ŷ	
X	90	0	90
IX	0	10	10
	90	10	100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Statistical independence:

Rare itemsets with low counts (low probability) which per chance occur a few times (or only once) together can produce enormous lift values.

Drawback of \phi-Coefficient

 φ-coefficient is analogous to correlation coefficient for continuous variables

	Y	Y	
Х	60	10	70
×	10	20	30
	70	30	100

	Y	Y	
Х	20	10	30
X	10	60	70
	30	70	100

$$\phi = \frac{0.6 - 0.7 \times 0.7}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}} \qquad \phi = \frac{0.2 - 0.3 \times 0.3}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}} = 0.5238 \qquad \qquad = 0.5238$$

 $\boldsymbol{\varphi}$ Coefficient is the same for both tables