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The setting

Nowadays the use of cloud computing is widespread

I Infrastructure as a service

I Platform as a service

I Software as a service

I . . .

Cloud services providers have to manage capacity within constraints such as

I Performance constraints (SLAs,. . . )

I Economic constraints (budgets, pricing policies,. . . )

Economic constraints impose energy management policies

I Hardware powered on and off on demand

I Policies have to take into account performance constraints
I Strategies can be complex and at different granularities
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eDoS attacks

Cloud facilities may be subject to Denial of Service (DoS) attacks

I aiming at degrading performance indices, e.g., average response time, and
breaking SLAs

I easy to notice, but not so easy to counteract

I the attacker has a simple and noticeable goal

An Energy oriented Denial of Service (eDoS) attack, on the other hand

I aims at the maximisation of energy consumption

I using legitimate workload

I non-disruptive and long-term
I it should not crash the system
I it has to be hard to notice

I the attacker has not a feedback on the success of the attack
I no knowledge about energy management policies of providers
I lack of a simple correlation between load and energy consumption

We want to model the behaviour of those attacks with respect to different
strategies.
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A model for cloud infrastructures

0 1 2 · · · T T + 1 · · · K − 1 K
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µ(T )

µ(T + 1)
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OK, 1 OK, 1 OK, 1 OK, 1 LT+1, 1 LK−1, 1 LK , 1
λ, 1 λ, 1

λ, 1

λ, 1

λ, 1

λ, 1

Finite set of states SC = {0, 1, 2, . . .K}
I states 0 to T : system dynamically scales its computational power

I states T + 1 to K − 1: system cannot scale, performance degradation

I state K: the system has crashed or the attack was discovered

Transitions:

C0(i, j) = λ(i)[j = i+ 1] + µ(j)[j = i− 1][j 6= K] std. workload and services

COK(i, j) = [i = j][i ≤ T ] , 0 ≤ i, j ≤ K performance are OK

CLk
(i, j) = [i = j][i = k] , T + 1 ≤ k ≤ K performances are degraded

Cλ(i, j) = [j = i+ 1] workload from the attacker

Let p : SC → R+, p(K) = 0, represent the power spent in each state of the cloud.
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A model for e-attackers

0 1 2 · · · G− 2 G− 1

λ, λA(0) λ, λA(1) λ, λA(2) λ, λA(G− 2) λ, λA(G− 1)

OK, γ(0) OK, γ(1)
OK, γ(2)

OK, γ(G− 2)

Lk, γ(1) Lk, γ(2)
Lk, γ(G− 2)

Lk, γ(G− 1)

Finite set of states SA = {0, . . . , G− 1}
Transitions:

Aλ(i, j) = [i = j]λA(i) attack intensity

AOK(i, j) = γ(i)[j = i+ 1] increase intensity

ALk
(i, j) = γ(i)[j = i− 1] , T + 1 ≤ k ≤ K − 1 decrease intensity

Note: AOK and ALk
may vary with respect to the strategy adopted.
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Cloud-Attacker interaction

We define the joint model between attacker and cloud using the
G(K + 1)×G(K + 1) transition matrix

M = C0 ⊗ IG + COK ⊗AOK +

K−1∑
k=T+1

CLk
⊗ALk

+ Cλ ⊗Aλ

The corresponding infinitesimal generator is

Q = M− diag(M1)

and the associated Markov chain is X(t)

I states of X(t) are pairs (k, g) with 0 ≤ k ≤ K and 0 ≤ g ≤ G− 1

I we write |X(t)|1 (|X(t)|2) to denote the first (second) component of the pair.
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Quantitative Indices

States of M does not describe an ergodic CTMC

I Once the cloud is in state K (failure or attack detection) it cannot leave

I In the joint model all states (K, g) with g = 0, . . . G− 1 form an absorbing
subset of the states

τ is the r.v. representing the time required by the chain to reach an absorbing state:

τ = inf{t ≥ 0|X(t) = (K, g) , g ∈ [0, G− 1]}

τ = E[τ ] is the finite expected time to absorption.
The energy consumed up to absorption is the r.v. defined as:

R =

∫ ∞
0

p(|X(t)|1)dt ,

Since p(k) is bounded then P{R <∞} = 1 and we define R = E[R] as the
expected energy consumed by the cloud before the absorption.
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Exact computation of the indices

Let M′ = [M]KG be the transition rate matrix formed with the first K ·G rows
and columns of M, and let P be defined as:

P = ([diag(M1)]KG)
−1

M′ ,

i.e., the DTMC embedded in X(t) reduced to the transient states.
Let r be the vector s.t. r(s) = E[R|X(0) = s], computed as

r = (I−P)−1v ,

where v is a column vector whose s-th component is

v(s) =
p(|s|1)∑

j∈[0,K]×[0,G−1]
j 6=s

qsj
.

Let π(s) be the column vector with the initial distribution, then R is:

R = πT r .

The computation of τ is analogous, fixing the numerator of v to 1
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Approximate computation

When the attack is very long, I−P is almost singular =⇒ numerical instability
I We propose an approximation based on quasi stationarity theory
I If τ � trans. times of X(t), transient part may have a stationary behaviour.

Let U be the set of the transient states of X(t)

U = {(k, g) : k ∈ [0,K − 1] ∧ g ∈ [0, G− 1]} ,

and QU = [Q]KG be the infinitesimal generator matrix reduced to the states in U .

Definition

A distribution u is to be quasi-stationary for X(t) if

Prq{X(t) = s|τ > t} = q(s) ,

where Prq denotes that the distribution of X(0) is q.

QU has a unique eigenvalue −α with maximal real part. q is the unique vector s.t.

qTQU = −αqT ,

with 1Tq = 1. q is the unique distribution that satisfies the Definition above.
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Approximate computation: absorption time

Proposition (Time to absorption)

Let q be the quasi-stationary distribution of X(t) for the subset of states U , then:

Prq{τ > t+ ∆t|τ > t} = e−α∆t t,∆t ≥ 0 .

i.e., the absorption time from a q.s. distribution is exponentially distributed with
parameter given by the highest (negative) real (left) eigenvalue of QU .

Therefore τ = α−1 when the chain at time 0 is q.s. distributed.
In general we cannot make that assumption, however the following results hold

Proposition

Let w be any probability distribution over U , then
I limt→∞ Prw{τ > t+ ∆t|τ > t} = e−α∆t ;

I limt→∞ Prw{X(t) = s|τ > t} = q(s) .

Therefore, for large absorption times, regardless to the initial distribution of X(t),

τ ' α−1
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Approximate computation: energy consumption

The computation of the approximate average energy consumption is given by

R ' α−1
∑
s∈U

p(|s|1)q(s) .

In practice the precision of the approximation depends on the spectral gap η
between α and α2, where α2 is the eigenvalue with the next largest real part after
α:

η = Re(α2)− α .

The convergence of the initial distribution of X(t) to the quasi-stationary
distribution is fast if η >> α.

Since QU is a diagonal dominant M-matrix, the computation of the eigenvalue
with the smallest real part can use fast and stable algorithms.
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Experimenting with the model

The presented model can be used to

I evaluate the energy consumption of a cloud infrastructure given a (legitimate
or not) load

I evaluate the behaviour and the effectiveness of an eDoS attacker using a
particular strategy

I evaluate the quality of the quasi-stationarity based approximation

In order to perform those evaluations, we use a MATLAB R© custom-made
implementation of the described methods.

In the following examples, the initial distribution π(s) is assumed to be

π(s) =

{
π(s)[C]K

(⌊
s
G

⌋)
if s mod G = 0

0 otherwise

where π(s)[C]K is the stationary distribution of the cloud C, conditioned on the
fact that the absorbing states have not been visited, considered in isolation.
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Attack strategies

Strategy 1 I The attacker moves from state g to state g+ 1, i.e., it increases
the arrival intensity at the cloud system whenever it observes a
QoS of type OK.

I The attacker moves from state g to state g − 1 whenever it
observes a QoS of type Lk.

Strategy 2 I The attacker moves from state g to state g + 1 whenever it
observes a QoS of type OK.

I The attacker goes back to state 0 whenever it observes a QoS
of type Lk.

Strategy 3 I The attacker moves from state g to state g + 1 whenever it
observes a QoS of type OK.

I When a QoS of type Lk is observed, the attacker moves from
state g to state max(g − k + T, 0).
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Parameters

Parameter Approx. Validation Strategies comparison
K 20 20
T 14 14
G 6 6
λ [1.3, 7.0] 1
µ 1.2 0.5
γ(g) µ/30 min (max (λA(g), λ) , Tµ) /30
λA(g) Fg Fgµ
F 0.8 [2.0, 8.0]
p(k) min(k, T ) min(k, T )

Table: Parameter values for the experiments
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Figure: Exact and approximate computation of R
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Figure: Exact and approximate computation of τ
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Figure: Relative approximation error for R and τ , Strategy 1
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Figure: Relative approximation error for R and τ , Strategy 2
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Figure: Relative approximation error for R and τ , Strategy 3
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Figure: Computation of R for different strategies
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Figure: Computation of τ for different strategies
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Figure: Comparison of R with or without attacker. Strategy 1
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Figure: Comparison of R with or without attacker. Strategy 2
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Figure: Comparison of R with or without attacker. Strategy 3
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Figure: Ratio between values of R with and without attacker, F ∈ (0, 2]
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Figure: Ratio between values of R with and without attacker, F ∈ [2, 10]
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Figure: Ratio between values of τ with and without attacker, F ∈ (0, 2]
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Figure: Ratio between values of τ with and without attacker, F ∈ [2, 10]
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Conclusions

I We proposed a Markovian model to study the impact of eDoS attacks to cloud
infrastructures.

I We analysed the mean time to absorption and on the expected cumulated
rewards in a CTMC describing the attacker strategy and the cloud state.

I We gave numerically stable methods to compute (or approximate for
long-lasting attacks) the performance indices that allow us to evaluate the
impact of an attack.

I We found that low-aggressive strategies of the attackers are more dangerous
for the cloud since the do not change significantly the life-time of the systems
while they maintain a higher energy consumption.

Future works:

I give a more detailed model of the cloud infrastructure

I give a model for non-coordinated attackers performing a distributed eDoS

I perform a validation of the analysis on real data

I design a statistic approach to estimate the probability of being in presence of
an eDoS attack in a cloud infrastructure

I . . .
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Thanks!

Thanks for your attention

...

(even if you slept during the whole presentation)

any question?
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