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Context: Cooperating stochastic models

• Models with underlying Continuous Time Markov Chain (CTMC)

• Exploitation of compositionality in model definition
• Each component is specified in isolation
• Semantics of cooperation is defined so that the joint model can be

algorithmically derived

• Stochastic automata considered here synchronise on the
active/passive semantics

• Performance Evaluation Process Algebra (PEPA) active/passive
synchronisation

• Buchholz’s Communicating Markov Processes
• Plateau’s stochastic automata networks (SAN) with master/slave

cooperation
• . . .
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Motivation

• In general, the state-space’s cardinality of the joint model grows
exponentially with the number of components

• Steady-state analysis becomes quickly unfeasible
• Space cost
• Time cost
• Numerical stability issues

• Workarounds
• Approximate analysis (e.g. fluid)
• Exploitation of the geometry of the state space
• Product-form decomposition
• Lumping

• Approximate lumping
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Previous work: Lumping on cooperating automata

Definition (Lumping condition)

Given active automaton M1, a set of labels T , and a partition of the
states of M1 into N1 clusters C = {C1, C2, . . . , CN1

}, we say that C is an
exact lumping for M1 if:

1 ∀Ci, Cj , Ci 6= Cj , ∀s1 ∈ Ci
∑
s′1∈Ck q1(s1 → s′1) = q̃1(Ci → Cj) not

synchronising label

2 ∀t ∈ T ,∀Ci, Cj , ∀s1 ∈ Ci
∑
s′1∈Ck q

t
1(s1 → s′1) = q̃t1(Ci → Ck)

where ϕt1(s1, s̃
′
1) =

∑
s′1∈s̃′1 q

t
1(s1, s

′
1).

• Reduce complexity GBEs’ solution through component-wise lumping
• If both automata have a spate-space of cardinality M , time cost

reduces from O((MM)3) to O((NM)3), where N is the number of
clusters in the lumping

• Intuition: for each synchronising label the original and lumped
automata must behave (in steady-state) equivalently

• We treat non-synchronising transitions as a special case
• Conditions are stronger than the ones for regular lumpability and

weaker than for PEPA strong equivalence
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Marginal distribution

Theorem

Let M1 and M2 be two cooperating automata, where M2 is passive and
M1 active. If:

• M2 never blocks M1

• M̃1 is a lumped automaton of M1

Then the marginal steady state distribution of M2 in the cooperations
M1 ⊗M2 and M̃1 ⊗M2 are the same.

Note that ergodicity is assumed and the state-space of the joint process is the

Cartesian product of the single automata state-spaces.
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A trivial example
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Another trivial one
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Reversed lumping and product-forms

• Both previous examples allowed for a lumping into a single cluster
• First is derived from the forward automaton
• Second is derived from the reversed automaton

• In both cases we obtain the marginal distribution, but in the latter
we also have product-form!

• product-form ⇒ the joint distribution is the product of the marginal
ones

Corollary (Product-forms)

A synchronisation is in product-form if the reversed active automaton can
be lumped into a single state

Note that, in general the marginal steady state distribution of M2 in
M̃R

1 ⊗M2 ' the one in M̃1 ⊗M2, and is equal in product-form models.
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Approximation of marginal SSD through aggregation

• With our theorem we can reduce the cost to compute marginal
steady state distributions of a cooperating automaton if we’re able
to find an exact lumping of the other one.

• What if this is not feasible or even possible?
• We could try to find an approximated lumping.
• Can be applied also to the reversed process.

• How we evaluate the quality of an approximation?

• How we can adapt clustering algorithms to use our definition of
(approximated) exact lumping?
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Evaluating the quality of an approximate lumping

How close is an arbitrary state partition W to an exact lumping?

• We measure the coefficient of variation of the outgoing fluxes φt1(s1)
of the states in s̃1.

• We further refine that measurement.
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ε-error

Definition (ε-error)

Given model M1 and a partition of states W = {1̃, . . . , Ñ1}, for all
s̃1 ∈ W and t > 2, we define:

φ
t

1(s̃1) =

∑
s1∈s̃1 π1(s1)φ

t
1(s1)∑

s1∈s̃1 π1(s1)

εt(s̃1) = 1− exp

−
√√√√∑
s1∈s̃1

π1(s1)(φt1(s1)− φ
t

1(s̃1))
2∑

s∈s̃1 π1(s1)

 .

where φt1(s1) =
∑N1

s′1=1 q
t
1(s1, s

′
1).
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δ-error

Definition (δ-error)

Given model M1 and a partition of states W = {1̃, . . . , Ñ1}, for all
s̃1, s̃

′
1 ∈ W, we define:

ϕt1(s̃1, s̃
′
1) =

0 s̃1 = s̃′1 ∧ t = 1
(
∑

s1∈s̃1
π1(s1)ϕ

t
1(s1,s̃

′
1))∑

s1∈s̃1
π1(s1)

otherwise

(
σt(s̃1, s̃

′
1)
)2

=
∑
s1∈s̃1

π1(s1)(ϕ
t
1(s1, s̃

′
1)− ϕt1(s̃1, s̃′1))2∑

s∈s̃1 π1(s)

δt(s̃1, s̃
′
1) = 1− e−σ(s̃1,s̃′1)

where function ϕt1 has been defined in Lumping conditions.
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An ideal algorithm

Definition (Ideal algorithm)

• Input: automata M1, M2, T , tolerances ε ≥ 0, δ ≥ 0

• Output: marginal distribution π1 of M1; approximated marginal
distribution of M2

1 Find the minimum Ñ ′1 such that there exists a partition
W = {1̃, . . . , Ñ ′1} of the states of M1 such that ∀t ∈ T , t > 2 and
∀s̃1 ∈ W ε(s̃1) ≤ ε

2 Let W ′ ←W
3 Check if partition W ′ is such that ∀t ∈ T , ∀s̃1, s̃2 ∈ W, s̃1 6= s̃2,
δt(s̃1, s̃

′
1) ≤ δ. If this is true then return the marginal distribution of

M1 and the approximated of M2 by computing the marginal
distribution of M̃1 ⊗M2 and terminate.

4 Otherwise, refine partition W to obtain Wnew such that the number
of clusters of Wnew is greater than the number of clusters in W ′.
W ′ ←Wnew. Repeat from Step 3
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Constructing the approximate lumped automata

Definition (Approx. lumped automata)

Given active automaton M1, a set of transition types T , and a partition
of the states of M1 into Ñ1 clusters W = {1̃, 2̃, . . . , Ñ1}, then we define
the automaton M'1 as follows:

Ẽ11(s̃1, s̃
′
1) =

{
ϕ1
1(s̃1, s̃

′
1)λ̃
−1
1 if s̃1 6= s̃2

0 otherwise

Ẽ12 = I,

Ẽ1t(s̃1, s̃1) = ϕt1(s̃1, s̃
′
1)λ
−1
t t > 2

where

λ̃t = max
s̃1=1,...,Ñ1

 Ñ1∑
s̃′1=1

ϕt1(s̃1, s̃
′
1)


are the rates associated with the transition types in the cooperation
between M'1 and M2.

Cooperating stochastic automata: approximate lumping an reversed process 15 of 22



Initial clustering and refinement phase

Initial clustering:

• similarity measure can be Euclidean distance between
(φ31(s1), . . . , φ

T
1 (s1)) and (φ31(s

′
1), . . . , φ

T
1 (s
′))

• can be implemented using various algorithm
• hierarchical clustering
• K-means (but number of clusters must be decided a priori...)
• . . .

Refinement phase:

• using the tolerance constant δ

• distances between clusters depend on clusters themselves =⇒
K-means cannot be used.

• spectral analysis or iterative algorithms
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Example
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Example
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Not exactly lumpable. For
C1 = 20, C2 = 20, λ1 = 6, λ2 = 1, µ1 = 4, µ2 = 4, p = 0.7, ε = 10−13

and δ = 0.95 we could find

• L1 = {0}, L2 = {1, . . . , 10}, L3 = {11, . . . , 19} and L4 = {20} on
the forward process

• L1 = {0, . . . , 10}, L2 = {11, 12}, L3 = {13, . . . , 19} and L4 = {20}
on the reversed one
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Comparison

FW-Lump RV-Lump APF FPA Exact
KL div. 0.0065 0.0045 0.0451 0.0112 0
E[N ] 11.62 11.55 9.990 11.80 11.33

Rel. err. 0.0259 0.0200 0.1178 0.0424 0

Where

• APF is the Approximated Product Form of order 4 [Buchholz, 2010]

• PFA is the Fixed Point Approximation [Miner et al., 2000]
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Conclusion

• Lumping of automata can be applied to other formalisms

• Approximate lumpings can be used to derive approximate marginal
distributions

• Several examples show that in case of queueing networks lumping
the reversed automata gives better approximations!

• Future works: definition of efficient algorithms
• The algorithm proposed in [Gilmore et al., 2001] based on strong

equivalence can be adapted to consider our notion of lumpability
• also for reversed automata
• optimality issues
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Thanks!

Thanks for the attention
any question?
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