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Context: Cooperating stochastic models

e Models with underlying Continuous Time Markov Chain (CTMC)

e Exploitation of compositionality in model definition
e Each component is specified in isolation
e Semantics of cooperation is defined so that the joint model can be
algorithmically derived
e Stochastic automata considered here synchronise on the
active/passive semantics
o Performance Evaluation Process Algebra (PEPA) active/passive
synchronisation
e Buchholz's Communicating Markov Processes
e Plateau’s stochastic automata networks (SAN) with master/slave
cooperation
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Motivation

o In general, the state-space's cardinality of the joint model grows
exponentially with the number of components

o Steady-state analysis becomes quickly unfeasible

e Space cost
e Time cost
e Numerical stability issues
e Workarounds
Approximate analysis (e.g. fluid)

Exploitation of the geometry of the state space

°
°
e Product-form decomposition
e Lumping

e Approximate lumping
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Previous work: Lumping on cooperating automata

Definition (Lumping condition)
Given active automaton My, a set of labels 7, and a partition of the
states of M into Ny clusters C = {C1,Ca,...,Cn, }, we say that C is an
exact lumping for M if:
(1) VCi,Cj, Ci 75 Cj, Vs € Cl Zs’leck (]1(81 — 9’1) = (11((/’1' — CJ) not
synchronising label
@ Vi€ T,VCi,C; Vs1 €Ci Yoyec, qi(s1 — 81) = G (C — C)

where @4 (s1,8)) = Xy e €L (51, 5)).

e Reduce complexity GBEs' solution through component-wise lumping
e If both automata have a spate-space of cardinality M, time cost
reduces from O((MM)?) to O((NM)?), where N is the number of
clusters in the lumping
e Intuition: for each synchronising label the original and lumped
automata must behave (in steady-state) equivalently
e We treat non-synchronising transitions as a special case
e Conditions are stronger than the ones for regular lumpability and
weaker than for PEPA strong equivalence
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Example
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Marginal distribution

Theorem

Let M,y and M5 be two cooperating automata, where Mo is passive and
My active. If:

e M5 never blocks My

° M1 is a lumped automaton of M,
Then the marginal steady state distribution of M in the cooperations
M ® My and My ® My are the same.

Note that ergodicity is assumed and the state-space of the joint process is the

Cartesian product of the single automata state-spaces.
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A trivial example
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Another trivial one
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Reversed lumping and product-forms

e Both previous examples allowed for a lumping into a single cluster

e First is derived from the forward automaton
e Second is derived from the reversed automaton

e In both cases we obtain the marginal distribution, but in the latter
we also have product-form!

e product-form = the joint distribution is the product of the marginal
ones

Corollary (Product-forms)

A synchronisation is in product-form if the reversed active automaton can
be lumped into a single state

Note that, in general the marginal steady state distribution of My in
M1 ® M, ~ the one in My ® M>, and is equal in product-form models.
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Approximation of marginal SSD through aggregation

o With our theorem we can reduce the cost to compute marginal
steady state distributions of a cooperating automaton if we're able
to find an exact lumping of the other one.

e What if this is not feasible or even possible?

e We could try to find an approximated lumping.
e Can be applied also to the reversed process.

o How we evaluate the quality of an approximation?

e How we can adapt clustering algorithms to use our definition of
(approximated) exact lumping?
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Evaluating the quality of an approximate lumping

How close is an arbitrary state partition W to an exact lumping?

e We measure the coefficient of variation of the outgoing fluxes ¢ (s1)
of the states in §;.

o We further refine that measurement.
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e-error

Definition (e-error)

Given model M, and a partition of states W = {1,..., Ny}, for all
51 € W and t > 2, we define:

Zslggl 7T1(51)¢§(31)
Y s es, M(51)

€(3) = 1l—exp|— Z

51€51

5?(51) =

m(51) (84 (51) — 1 (51))?
25651 1 (81)

N-
where ¢4 (s1) = Y0, g (51, 5,).
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d-error

Definition (d-error)

Given model M; and a partition of states W = {1,..., N, }, for all

51,87 € W, we define:

L 0 Sr=8nat=1
P1(51,81) = { (S, 5, m ()0 (51,50)

otherwise
Zsl €3, m1(s1)

(O’t(gl,g/l))Q Z 771(51)(()01(25157621)71—1(?)1(51751))

§(51,8)) = 1 — e77 0%

where function (! has been defined in Lumping conditions.
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An ideal algorithm

Definition (ldeal algorithm)
e Input: automata My, My, T, tolerances ¢ > 0, § > 0

e Qutput: marginal distribution 71 of Mj; approximated marginal
distribution of Ms

@ Find the minimum N/ such that there exists a partition
W ={1,...,Nj} of the states of M; such that Vt € T,¢ > 2 and
Vs e W 6(51) <e

A Let W «— W

© Check if partition W' is such that V¢t € T, V51,8, € W, §; # 3o,
8%(81,8)) < 4. If this is true then return the marginal distribution of
M and the approximated of My by computing the marginal
distribution of Ml ® My and terminate.

O Otherwise, refine partition WV to obtain W"™¢" such that the number
of clusters of W"¢% is greater than the number of clusters in W'.
W'« Wne¥ Repeat from Step 3
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Constructing the approximate lumped automata

Definition (Approx. lumped automata)

Given active automaton Ml, a set of transition types 7, and a partition
of the states of M; into N; clusters W = {1,2,. Nl} then we define
the automaton M7~ as follows:

_ —liz 5\71 if 3 =
Ei(5,58) = P11 5)A " 7&.82
0 otherwise
El? - :[7
Ei(51,51) = 75,8\ " t>2

where

1
N —t(x
At =  max E ?1(81,57)
§1=1,...,N | 2
T &) =il

are the rates associated with the transition types in the cooperation
between M and M.
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Initial clustering and refinement phase

Initial clustering:

e similarity measure can be Euclidean distance between
(63(s1), ..., 01 (s1)) and (¢1(s1), ..., 41 (s))
e can be implemented using various algorithm
e hierarchical clustering

e K-means (but number of clusters must be decided a priori...)
o ...

Refinement phase:
e using the tolerance constant §

o distances between clusters depend on clusters themselves —-
K-means cannot be used.

e spectral analysis or iterative algorithms
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Example

where o1
= A 1
7(n1) ?1 if {QJ <n <Cl1
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Example

Not exactly lumpable. For
C1=20,C2=20,A\ =6, =1, 01 =4, 10 =4,p=0.7, e=10"13
and § = 0.95 we could find
e [, ={0}, Ly ={1,...,10}, Ly = {11,...,19} and Ly = {20} on
the forward process
o L1 ={0,...,10}, Ly = {11,12}, Lz = {13,...,19} and L, = {20}
on the reversed one
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Comparison

FW-Lump | RV-Lump | APF FPA Exact
KL div. 0.0065 0.0045 0.0451 | 0.0112 0
E[N] 11.62 11.55 9.990 | 11.80 | 11.33
Rel. err. 0.0259 0.0200 0.1178 | 0.0424 0
Where

o APF is the Approximated Product Form of order 4 [Buchholz, 2010]

e PFA is the Fixed Point Approximation [Miner et al., 2000]
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Conclusion

e Lumping of automata can be applied to other formalisms
e Approximate lumpings can be used to derive approximate marginal
distributions
e Several examples show that in case of queueing networks lumping
the reversed automata gives better approximations!
e Future works: definition of efficient algorithms

e The algorithm proposed in [Gilmore et al., 2001] based on strong
equivalence can be adapted to consider our notion of lumpability

® also for reversed automata
® optimality issues
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Thanks!

Thanks for the attention
any question?
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