Cooperating stochastic automata: approximate lumping an reversed process

Simonetta Balsamo Gian-Luca Dei Rossi Andrea Marin

Dipartimento di Scienze Ambientali, Informatica e Statistica Università Ca' Foscari, Venezia

ISCIS '12, Paris, 3-4 October 2012

Context: Cooperating stochastic models

- Models with underlying Continuous Time Markov Chain (CTMC)
- Exploitation of compositionality in model definition
 - Each component is specified in isolation
 - Semantics of cooperation is defined so that the joint model can be algorithmically derived
- Stochastic automata considered here synchronise on the active/passive semantics
 - Performance Evaluation Process Algebra (PEPA) active/passive synchronisation
 - Buchholz's Communicating Markov Processes
 - Plateau's stochastic automata networks (SAN) with master/slave cooperation
 - . . .

Motivation

- In general, the state-space's cardinality of the joint model grows exponentially with the number of components
- Steady-state analysis becomes quickly unfeasible
 - Space cost
 - Time cost
 - Numerical stability issues
- Workarounds
 - Approximate analysis (e.g. fluid)
 - Exploitation of the geometry of the state space
 - Product-form decomposition
 - Lumping
 - Approximate lumping

Previous work: Lumping on cooperating automata

Definition (Lumping condition)

Given active automaton M_1 , a set of labels \mathcal{T} , and a partition of the states of M_1 into N_1 clusters $\mathcal{C} = \{\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_{N_1}\}$, we say that \mathcal{C} is an exact lumping for M_1 if:

 $\begin{array}{l} \textcircled{\bullet} \ \forall \mathcal{C}_i, \mathcal{C}_j, \ \mathcal{C}_i \neq \mathcal{C}_j, \ \forall s_1 \in \mathcal{C}_i \ \ \sum_{s_1' \in \mathcal{C}_k} q_1(s_1 \rightarrow s_1') = \tilde{q}_1(\mathcal{C}_i \rightarrow \mathcal{C}_j) \ \text{not} \\ \text{synchronising label} \end{array}$

$$\mathbf{Q} \ \forall t \in \mathcal{T}, \forall \mathcal{C}_i, \mathcal{C}_j , \forall s_1 \in \mathcal{C}_i \ \sum_{s_1' \in \mathcal{C}_k} q_1^t(s_1 \to s_1') = \tilde{q}_1^t(\mathcal{C}_i \to \mathcal{C}_k)$$

where $\varphi_1^t(s_1, \tilde{s}'_1) = \sum_{s'_1 \in \tilde{s}'_1} q_1^t(s_1, s'_1)$.

- Reduce complexity GBEs' solution through component-wise lumping
 - If both automata have a spate-space of cardinality M, time cost reduces from $\mathcal{O}((MM)^3)$ to $\mathcal{O}((NM)^3)$, where N is the number of clusters in the lumping
- Intuition: for each synchronising label the original and lumped automata must behave (in steady-state) equivalently
- We treat non-synchronising transitions as a special case
- Conditions are stronger than the ones for regular lumpability and weaker than for PEPA strong equivalence

Example



Theorem

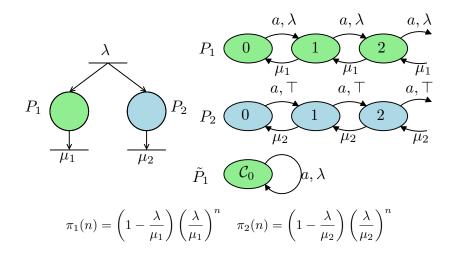
Let M_1 and M_2 be two cooperating automata, where M_2 is passive and M_1 active. If:

- M_2 never blocks M_1
- \tilde{M}_1 is a lumped automaton of M_1

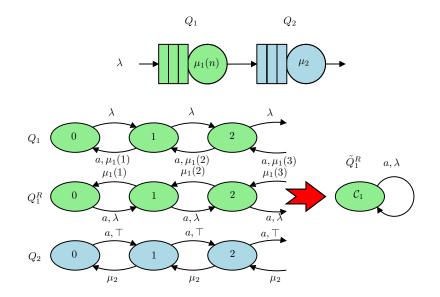
Then the marginal steady state distribution of M_2 in the cooperations $M_1 \otimes M_2$ and $\tilde{M}_1 \otimes M_2$ are the same.

Note that ergodicity is assumed and the state-space of the joint process is the Cartesian product of the single automata state-spaces.

A trivial example



Another trivial one



Reversed lumping and product-forms

- Both previous examples allowed for a lumping into a single cluster
 - First is derived from the forward automaton
 - Second is derived from the reversed automaton
- In both cases we obtain the marginal distribution, but in the latter we also have product-form!
 - product-form \Rightarrow the joint distribution is the product of the marginal ones

Corollary (Product-forms)

A synchronisation is in product-form if the reversed active automaton can be lumped into a single state

Note that, in general the marginal steady state distribution of M_2 in $\tilde{M}_1^R \otimes M_2 \simeq$ the one in $\tilde{M}_1 \otimes M_2$, and is equal in product-form models.

Approximation of marginal SSD through aggregation

- With our theorem we can reduce the cost to compute marginal steady state distributions of a cooperating automaton *if we're able to find an exact lumping of the other one.*
- What if this is not feasible or even possible?
 - We could try to find an approximated lumping.
 - Can be applied also to the reversed process.
- How we evaluate the quality of an approximation?
- How we can adapt clustering algorithms to use our definition of (approximated) exact lumping?

Evaluating the quality of an approximate lumping

How close is an arbitrary state partition $\ensuremath{\mathcal{W}}$ to an exact lumping?

- We measure the coefficient of variation of the outgoing fluxes $\phi_1^t(s_1)$ of the states in \tilde{s}_1 .
- We further refine that measurement.

Definition (*e*-error)

Given model M_1 and a partition of states $\mathcal{W} = \{\tilde{1}, \ldots, \tilde{N}_1\}$, for all $\tilde{s}_1 \in \mathcal{W}$ and t > 2, we define:

$$\overline{\phi}_{1}^{t}(\tilde{s}_{1}) = \frac{\sum_{s_{1} \in \tilde{s}_{1}} \pi_{1}(s_{1})\phi_{1}^{t}(s_{1})}{\sum_{s_{1} \in \tilde{s}_{1}} \pi_{1}(s_{1})}$$

$$\epsilon^{t}(\tilde{s}_{1}) = 1 - \exp\left(-\sqrt{\sum_{s_{1} \in \tilde{s}_{1}} \frac{\pi_{1}(s_{1})(\phi_{1}^{t}(s_{1}) - \overline{\phi}_{1}^{t}(\tilde{s}_{1}))^{2}}{\sum_{s \in \tilde{s}_{1}} \pi_{1}(s_{1})}}\right)$$

$$\epsilon^{t}(\epsilon) = \sum_{s_{1} \in \tilde{s}_{1}} \frac{\pi_{1}(s_{1})(\phi_{1}^{t}(s_{1}) - \overline{\phi}_{1}^{t}(\tilde{s}_{1}))^{2}}{\sum_{s \in \tilde{s}_{1}} \pi_{1}(s_{1})}$$

where $\phi_1^t(s_1) = \sum_{s_1'=1}^{N_1} q_1^t(s_1, s_1')$.

$\delta\text{-}\mathrm{error}$

Definition (δ -error)

Given model M_1 and a partition of states $\mathcal{W} = \{\tilde{1}, \ldots, \tilde{N}_1\}$, for all $\tilde{s}_1, \tilde{s}'_1 \in \mathcal{W}$, we define:

$$\overline{\varphi}_{1}^{t}(\tilde{s}_{1}, \tilde{s}_{1}') = \begin{cases} 0 & \tilde{s}_{1} = \tilde{s}_{1}' \wedge t = 1\\ \frac{(\sum_{s_{1} \in \tilde{s}_{1}} \pi_{1}(s_{1})\varphi_{1}^{t}(s_{1}, \tilde{s}_{1}'))}{\sum_{s_{1} \in \tilde{s}_{1}} \pi_{1}(s_{1})} & \text{otherwise} \end{cases}$$
$$\left(\sigma^{t}(\tilde{s}_{1}, \tilde{s}_{1}')\right)^{2} = \sum_{s_{1} \in \tilde{s}_{1}} \frac{\pi_{1}(s_{1})(\varphi_{1}^{t}(s_{1}, \tilde{s}_{1}') - \overline{\varphi}_{1}^{t}(\tilde{s}_{1}, \tilde{s}_{1}'))^{2}}{\sum_{s \in \tilde{s}_{1}} \pi_{1}(s)}$$
$$\delta^{t}(\tilde{s}_{1}, \tilde{s}_{1}') = 1 - e^{-\sigma(\tilde{s}_{1}, \tilde{s}_{1}')}$$

where function φ_1^t has been defined in Lumping conditions.

An ideal algorithm

Definition (Ideal algorithm)

- Input: automata M_1 , M_2 , \mathcal{T} , tolerances $\epsilon \geq 0$, $\delta \geq 0$
- **Output:** marginal distribution π_1 of M_1 ; approximated marginal distribution of M_2
- Find the minimum \tilde{N}'_1 such that there exists a partition $\mathcal{W} = \{\tilde{1}, \dots, \tilde{N}'_1\}$ of the states of M_1 such that $\forall t \in \mathcal{T}, t > 2$ and $\forall \tilde{s}_1 \in \mathcal{W} \ \epsilon(\tilde{s}_1) \leq \epsilon$
- 2 Let $\mathcal{W}' \leftarrow \mathcal{W}$
- **③** Check if partition W' is such that ∀t ∈ T, ∀ŝ₁, ŝ₂ ∈ W, ŝ₁ ≠ ŝ₂, δ^t(ŝ₁, ŝ'₁) ≤ δ. If this is true then return the marginal distribution of M₁ and the approximated of M₂ by computing the marginal distribution of $\tilde{M}_1 \otimes M_2$ and terminate.
- Otherwise, refine partition W to obtain W^{new} such that the number of clusters of W^{new} is greater than the number of clusters in W'. W' ← W^{new}. Repeat from Step 3

Constructing the approximate lumped automata

Definition (Approx. lumped automata)

Given active automaton M_1 , a set of transition types \mathcal{T} , and a partition of the states of M_1 into \tilde{N}_1 clusters $\mathcal{W} = \{\tilde{1}, \tilde{2}, \ldots, \tilde{N}_1\}$, then we define the automaton M_1^{\simeq} as follows:

$$\begin{split} \tilde{\mathbf{E}}_{11}(\tilde{s}_1, \tilde{s}_1') &= \begin{cases} \overline{\varphi}_1^1(\tilde{s}_1, \tilde{s}_1') \tilde{\lambda}_1^{-1} & \text{if } \tilde{s}_1 \neq \tilde{s}_2 \\ 0 & \text{otherwise} \end{cases} \\ \tilde{\mathbf{E}}_{12} &= \mathbf{I}, \\ \tilde{\mathbf{E}}_{1t}(\tilde{s}_1, \tilde{s}_1) &= \overline{\varphi}_1^t(\tilde{s}_1, \tilde{s}_1') \lambda_t^{-1} \ t > 2 \end{split}$$

where

$$\tilde{\lambda}_t = \max_{\tilde{s}_1=1,\dots,\tilde{N}_1} \left(\sum_{\tilde{s}_1'=1}^{\tilde{N}_1} \overline{\varphi}_1^t(\tilde{s}_1, \tilde{s}_1') \right)$$

are the rates associated with the transition types in the cooperation between M_1^{\simeq} and $M_2.$

Initial clustering and refinement phase

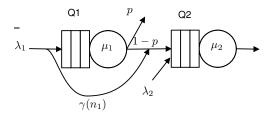
Initial clustering:

- similarity measure can be Euclidean distance between $(\phi_1^3(s_1),\ldots,\phi_1^T(s_1))$ and $(\phi_1^3(s_1'),\ldots,\phi_1^T(s'))$
- can be implemented using various algorithm
 - hierarchical clustering
 - K-means (but number of clusters must be decided a priori...)
 - ...

Refinement phase:

- using the tolerance constant $\boldsymbol{\delta}$
- distances between clusters depend on clusters themselves \Longrightarrow K-means cannot be used.
- spectral analysis or iterative algorithms

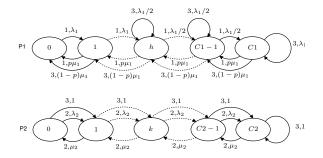
Example



where

$$\gamma(n_1) = \begin{cases} 0 & \text{if } n_1 \leq \left\lfloor \frac{C1}{2} \right\rfloor \\ \frac{\lambda_1}{2} & \text{if } \left\lfloor \frac{C1}{2} \right\rfloor < n_1 < C1 \\ \lambda_1 & \text{if } n_1 = C1 \end{cases}$$

Example



Not exactly lumpable. For $C1 = 20, C2 = 20, \lambda_1 = 6, \lambda_2 = 1, \mu_1 = 4, \mu_2 = 4, p = 0.7, \epsilon = 10^{-13}$ and $\delta = 0.95$ we could find

- $L_1 = \{0\}, L_2 = \{1, \dots, 10\}, L_3 = \{11, \dots, 19\}$ and $L_4 = \{20\}$ on the forward process
- $\overline{L_1} = \{0, \dots, 10\}, \overline{L_2} = \{11, 12\}, \overline{L_3} = \{13, \dots, 19\} \text{ and } \overline{L_4} = \{20\}$ on the reversed one

	FW-Lump	RV-Lump	APF	FPA	Exact
KL div.	0.0065	0.0045	0.0451	0.0112	0
E[N]	11.62	11.55	9.990	11.80	11.33
Rel. err.	0.0259	0.0200	0.1178	0.0424	0

Where

- APF is the Approximated Product Form of order 4 [Buchholz, 2010]
- PFA is the Fixed Point Approximation [Miner et al., 2000]

Conclusion

- Lumping of automata can be applied to other formalisms
- Approximate lumpings can be used to derive approximate marginal distributions
 - Several examples show that in case of queueing networks lumping the reversed automata gives better approximations!
- Future works: definition of efficient algorithms
 - The algorithm proposed in [Gilmore et al., 2001] based on strong equivalence can be adapted to consider our notion of lumpability
 - also for reversed automata
 - optimality issues

References

- [Balsamo et al., 2012] Balsamo, S., Dei Rossi, G., and Marin, A. (2012). Lumping and reversed processes in cooperating automata. In *LNCS* 7314, Proc. of Int. Conf. ASMTA, pages 212–226, Grenoble, FR. Springer.
- [Buchholz, 2010] Buchholz, P. (2010). Product form approximations for communicating Markov processes. *Perf. Eval.*, 67(9):797 – 815. Special Issue: QEST 2008.
- [Gilmore et al., 2001] Gilmore, S., Hillston, J., and Ribaudo, M. (2001). An Efficient Algorithm for Aggregating PEPA Models. *IEEE Trans. on Software Eng.*, 27(5):449–464.
- [Miner et al., 2000] Miner, A. S., Ciardo, G., and Donatelli, S. (2000). Using the exact state space of a markov model to compute approximate stationary measures. In *Proc. of ACM SIGMETRICS*, pages 207–216, New York, NY, USA. ACM.

Thanks!

Thanks for the attention any question?