APPLYING BCMP MULTI-CLASS QUEUEING NETWORKS FOR THE PERFORMANCE EVALUATION OF HIERARCHICAL AND MODULAR SOFTWARE SYSTEMS

Simonetta Balsamo Gian-Luca Dei Rossi Andrea Marin

Dipartimento di Informatica
Università Ca’ Foscari, Venezia

ESM’2010 Conference, October 25-27 2010
Outline

- Software Modularity and Performance Evaluation
- BCMP Queueing Networks
- An approach to modular and hierarchical software design
- The unfolding algorithm
- Applications and examples
- Conclusion
• Performance analysis of modular and hierarchical systems always an important topic in research (see Smith (1990)).

• Software system: interaction between black-box components, made of other black-box components . . .

An example of a black-box component

Main problem

Defining efficient algorithms to derive performance indexes.
BCMP Networks (Baskett et al. (1975)) are one of the most useful models for performance evaluation.

- A set of queueing centers and a (possibly infinite) set of customers.
- Classes, that determine:
 - routing probabilities;
 - service time distributions.
- Each class belongs to a chain
 - open (external arrivals) or closed.
- Class switching only within the same chain.
- Queueing station of one of the following types:
 1. FCFS Queueing discipline. Exponential and class-independent service time distribution,
 2. PS Queueing discipline,
 3. The station has infinite servers (Delay Station),
 4. LCFSPR service discipline.

With coxian service time distribution
Let us consider a multiple-class and multiple-chain QN, open, closed or mixed, whose queueing stations are of type 1, 2, 3 or 4. If the underlying stochastic process is ergodic, then:

\[\pi(n) = \frac{1}{G} \prod_{i=1}^{M} g_i(n_i), \]

where

- \(n = (n_1, \ldots, n_M) \) is the state of the network, \(n_i \) is the state of station \(S_i \);
- \(\pi \) is the steady-state distribution of the QN;
- \(g_i(n_i) \) is the steady-state distribution of station \(S_i \) considered in isolation;
- \(G \) is a normalising constant.
• BCMP Networks are widely used. Various solution algorithms.
 • for *open* networks, $G = 1$.
 • for *closed* or *mixed* network, algorithms to compute G or directly derive the average performance indices.

• BCMP Networks are inherently *flat*.
 • no modular and/or hierarchical design.

We propose an algorithm to compute a BCMP from an modular and hierarchical high-level model.
The design framework

A framework for the specification of hardware and software architectures.

- A set of interacting components \(d_1, d_2, \ldots, d_{\ell_1} \). Each component can be
 - A BCMP queueing station
 - A sub-model consisting of components \(d_{(i)1}, \ldots, d_{(i)\ell_2} \).
- Components interact as stations of an open multiple-class and multiple-chain QN.
- Sub-models as black boxes
 - access points with some labels, i.e., input and output classes.

We require that

- the set of input classes and the set of output classes must be equal,
- the model must be well formed.
More on the design framework

- A higher level class could be connected to any lower level class.
- Multiple classes of the higher level submodel could be connected to the same lower level class.
- The same component could be reused in different submodels.

An example of design of a CMS module

Class connections: $A_{d_i,d_j} : \mathcal{R}_i \rightarrow \mathcal{R}_j$

How to keep routing information in case of component or class reuse?
Algorithm UnfoldComponents

Input: routing matrix P_d of component d, component counter array Dc, functions $A_{i,j}$
Output: unfolded routing matrix P'_d of component d

if d is a station then
 foreach class r of d do
 insert in P' rows and a columns for El_d, r and EO_d, r of P
 end
else
 foreach $d_i | d \succ d_i$ do
 $Dc_i \leftarrow Dc_i + 1$
 Let Rc_i be a class counter array
 foreach class r_k of d_i as named in d do
 $r_i, j \leftarrow A_{d_i, d_i}(r_k)$
 $Rc_i, j \leftarrow Rc_i, j + 1$
 if $Rc_i, j > \max Rc_i$ then
 $U = \text{UnfoldComponents}(P_{d_i})$
 rename each class $r_{i, j}$ of d_i in U as $r_{i, j}, Dc_i, Rc_i, j$
 insert in P' rows and columns of U
 end
 end
 replace column $El_{d_i}, r_{i, j}, Dc_i, Rc_i, j$ in P' with column d_i, r_k of P
 replace row $EO_{d_i}, r_{i, j}, Dc_i, Rc_i, j$ in P' with row d_i, r_k of P
 end
end
return P'
Some notes on the algorithm

• Recursive and top-down.
• It adds classes whenever it is needed in order to not lose customer routing information.
• Base cases: BCMP queueing stations.
• Output: multiple-class, multiple-chain BCMP network.
• Computational complexity $O(rd^n)$ if, on average:
 • every component has the same number of sub-components d,
 • every component has the same number of classes r,
 • the depth of the model is n.
A small example

Database-indexed file archive for a CMS.

- A class of customer for read operations.
- A class of customers for write operations.

The CMS file archive module and the DB Module

How many classes should station d_4 have at the end of the algorithm run?
d_4 should have at least 4 classes.

- The algorithm doubles the number of classes for d_2.
- The classes of d_2 translates directly in classes of d_4.
- We cannot know if d_4 or d_2 are used by other components.
- More complex model topology may lead to a rapid increase of the number of classes.
Conclusion and future works

- A modeling technique for hierarchical systems.
- An algorithm that transforms such models in a multi-class and multi-chain BCMP.
- Main advantages:
 - a modular and hierarchical modelling technique,
 - an efficient and exact analysis method.
- More expressive formalisms, like LQNs in Woodside et al. (1995) may require approximate algorithms.
- Future works:
 - extension of the tractable class of models,
 - integration of the framework with web mining and log analysis.
Any question?

