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Memory management in HLLs

Automatic memory management (Garbage Collection)

• Easier

• Safer

• Performance issues

Many different technologies

• Algorithms

• Number of phases

• Blocking activities (stop-the-world approach)

• Activation timings

Performance optimisation strategies:

• Changing algorithms or implementations

• Reducing blocking phases

• Tuning the activation timing

• Service time degradation vs. blocking activities
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Model: Assumptions

• Customers (reqs) arrival poisson process, parameter λ

• Scheduling discipline: Processor Sharing

• Memory divided in B blocks

• At each customer arrival, b blocks are allocated, according to a
discrete random variable probability distribution.

• Service rate µi depends on the number i of allocated memory blocks.

• Garbage collector is activated periodically (rate αi) or when the
memory is full.

• The garbage collector frees unused allocated memory blocks with
rate γi.

• During the garbage collection phase all services are suspended

• The garbage collector stops unconditionally after a random delay,
with rate βi.

• When the system is empty (no customer), the memory is freed
instantaneously.
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Model: states space

State: a triplet (c, i, g), where

• c is the number of customers in the system

• i is the number of allocated memory blocks

• g is the state of the GC: ON (active) or OFF (non active)

When there is no customer in the system, i.e., c = 0, memory is always
completely unallocated and the garbage collector is inactive, i.e., i = 0,
g = OFF. Formally

E = (0, 0,OFF) ∪ {(c, i, g)|c ∈ N>0, i ∈ {1 . . . B}, g ∈ {ON,OFF}}.

The model is a Quasi-Birth-Death Process and is solvable using a Matrix

Geometric method [3, 2].
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Quasi-Birth-Death Processes
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• States are grouped in levels

• Transitions are permitted only between states in the same level or in
adjacent levels.

• Levels can be represented by square matrices

• Transitions between levels are also represented by matrices

• After an optional initial phase, all levels and transitions have an
identical structure.
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Model: initial state
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Model: regular block of states
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Model: matrix representation
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Model: performance analysis

The model is a QBD processes

• Matrix Analytic Methods for steady state probabilities

• Closed forms for E[N ] and E[R]
• More performance indices, e.g., GC overhead, using iteration.

Performance indices in function of a variable parameter

• How a performance index, e.g., the average response time, vary over
the GC activation rate?

• To simplify the examples, we assume αi = α, βi = β ∀i ∈ {1 . . . B}

• R(α): mean response time of the model as function of α

• Numerical search for a minimum
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Model: minimum search

Where to search for a minimum?

Proposition

If the optimisation problem α∗ = argminαR(α) admits a solution, then

the following inequality holds:

0 < α∗ <
(β + γ)(µ+ − λ)

λ
,

where µ+ = maxi(µi), 0 ≤ i ≤ B.

ATM no proof for minimum existence or uniqueness.

• Experimental evidence seems to suggest so
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Numerical Examples

Where not stated otherwise, the parameters are the following

Parameter Name Value

B 50
λ 3.0
βi 3 ∀i ∈ {1 . . . B}
γi 25 ∀i ∈ {1 . . . B}
µi 5.0 for 1 ≤ i ≤ B/2, 0.05 for B/2 < i ≤ B

Table: Parameter Values in Numerical Examples
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Numerical examples: R
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Figure: An example of the function R
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Numerical examples: effects of increasing customer

arrivals
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Figure: Optimal α value in function of λ
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Numerical examples: utilisation

0.6 0.7 0.8 0.9 1 1.1 1.2
0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Garbage Collector Activation Rate

U
til

is
at

io
n

Figure: ρ value in function of α
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A Heuristic for optimising GC Policies

Use the model to determine on flight the optimum garbage collector
activation rates αi for a real system with GC in order to minimise the
average response time.
Suppose that we can measure:

• the number of available memory blocks B̄

• the number of free memory blocks f

• the average customer arrival rate λ̄

• the average service times µ̄i

• the average rates at which the garbage collector can free a block of
memory γ̄i

• the average rate at which the garbage collector returns control to
the program β̄i

Where i = B̄ − f is the number of allocated memory blocks.
Easily measurable stats, e.g., using the -verbose:gc option of the Sun
JVM.
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Heuristic: optimisation of α

Parameter α is unbound.

• We can solve the optimisation problem α∗ = argminαR(α)

• We can also solve the problem over a function of α that determines
the values of αi ∀i

• Other performance indices can be optimised using stationary
probabilities.

Once determined the optimum α value, this is set as the activation rate
for the GC of the real system.
What if some measured values changes, e.g., λ̄, or more data is
recovered, e.g., for new values of i?

• The model is parametrised again and new values for αi are
generated.
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Conclusions

• We have proposed a queueing model for systems with garbage
collection

• We have shown that the solution is numerically tractable

• We have proposed a heuristic for the optimisation of garbage
collection activation rates

• Easy to implement

Future works:

• Better validation of the model with experimental data

• Results in [1] seem to be coherent with results from our model.

• Comparison with traditional policies for garbage collection activation

• Energy-aware optimisation of the activation rate
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Any question?
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Stationary distribution of the model

The minimum of the utilisation ρ is different from the minimum of the
average response time R.
This behaviour can be explained by the fact that, for this model, given
two distribution π and π′, after a certain k,

π(k + i) < π′(k + i) for i ∈ N

even if π(0) > π′(0).
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