
Optimisation of virtual machine garbage

collection policies
ASMTA’11

Simonetta Balsamo Gian-Luca Dei Rossi Andrea Marin

Dipartimento di Scienze Ambientali, Informatica e Statistica
Università Ca’ Foscari, Venezia

June 22, 2011



Outline

• Context

• Prerequisites

• Model

• Examples

• Heuristic

• Conclusions

Optimisation of virtual machine garbage collection policies 2 of 20



Memory management in HLLs

Automatic memory management (Garbage Collection)

• Easier

• Safer

• Performance issues

Many different technologies

• Algorithms

• Number of phases

• Blocking activities (stop-the-world approach)

• Activation timings

Performance optimisation strategies:

• Changing algorithms or implementations

• Reducing blocking phases

• Tuning the activation timing

• Service time degradation vs. blocking activities

Optimisation of virtual machine garbage collection policies 3 of 20



Model: Assumptions

• Customers (reqs) arrival poisson process, parameter λ

• Scheduling discipline: Processor Sharing

• Memory divided in B blocks

• At each customer arrival, b blocks are allocated, according to a
discrete random variable probability distribution.

• Service rate µi depends on the number i of allocated memory blocks.

• Garbage collector is activated periodically (rate αi) or when the
memory is full.

• The garbage collector frees unused allocated memory blocks with
rate γi.

• During the garbage collection phase all services are suspended

• The garbage collector stops unconditionally after a random delay,
with rate βi.

• When the system is empty (no customer), the memory is freed
instantaneously.

Optimisation of virtual machine garbage collection policies 4 of 20



Model: states space

State: a triplet (c, i, g), where

• c is the number of customers in the system

• i is the number of allocated memory blocks

• g is the state of the GC: ON (active) or OFF (non active)

When there is no customer in the system, i.e., c = 0, memory is always
completely unallocated and the garbage collector is inactive, i.e., i = 0,
g = OFF. Formally

E = (0, 0,OFF) ∪ {(c, i, g)|c ∈ N>0, i ∈ {1 . . . B}, g ∈ {ON,OFF}}.

The model is a Quasi-Birth-Death Process and is solvable using a Matrix

Geometric method [3, 2].

Optimisation of virtual machine garbage collection policies 5 of 20



Quasi-Birth-Death Processes

0 1 2 . . .

λ′ λ λ

µ′ µ µ

Q =





















B00 B01 0 0 0 0 . . .
B10 A1 A2 0 0 0 . . .
0 A0 A1 A2 0 0 . . .
0 0 A0 A1 A2 0 . . .

. . .
. . .

. . .
...

...
...

...
...

...
...





















• States are grouped in levels

• Transitions are permitted only between states in the same level or in
adjacent levels.

• Levels can be represented by square matrices

• Transitions between levels are also represented by matrices

• After an optional initial phase, all levels and transitions have an
identical structure.

Optimisation of virtual machine garbage collection policies 6 of 20



Model: initial state

(1, 1,OFF) (1, 2,OFF) (1, B − 1,OFF) (1, B,OFF)

(1, 1,ON) (1, 2,ON) (1, B − 1,ON) (1, B,ON)

α1 α2 αB−1 αBβB−1β2β1

γ2 γB

. . .

γB−1γ3

. . .

. . .

. . .

βB

(0, 0,OFF)

µ1 µ2 µB−1 µBλ

Optimisation of virtual machine garbage collection policies 7 of 20



Model: regular block of states

(n, 1,OFF) (n, 2,OFF) (n,B − 1,OFF) (n,B,OFF)

(n, 1,ON) (n, 2,ON) (n,B − 1,ON)

(n− 1, 1,ON) (n− 1, 2,ON) (n− 1, B − 1,ON) (n− 1, B,ON)

(n− 1, 1,OFF) (n− 1, 2,OFF) (n− 1, B − 1,OFF) (n− 1, B,OFF)

(n+ 1, 1,OFF) (n+ 1, 2,OFF) (n+ 1, B − 1,OFF) (n+ 1, B,OFF)

(n,B,ON)

(n+ 1, 1,ON) (n+ 1, 2,ON) (n+ 1, B − 1,ON) (n+ 1, B,ON)

α1 α2 αB−1 αBβB−1β2β1

γ2 γB

. . .

γB−1γ3

. . .

. . .

. . .

λ λ λλ λ

λ

λ λλ µBµ1 µ2 µB−1

βB

. . .

. . .

Optimisation of virtual machine garbage collection policies 8 of 20



Model: matrix representation

B0(i) =

{

µ i+1

2

if i is odd

0 otherwise
B1(1) = −λ B2(j) =

{

λ if j = 1
0 otherwise

A0(i, j) =

{

µ i+1

2

if i = j and i, j are odd

0 otherwise

A1(i, j) =



































α i+1

2

if j = i+ 1 ∧ i is odd

β i

2

if j = i− 1 ∧ i is even

γ i

2

if j = i− 2 ∧ i is even

−

∑

∀k 6=i

(A0(i, k) +A1(i, k) +A2(i, k)) if i = j

0 otherwise
(1)

A2(i, j) =







λ if j = i+ 2
λ if (i = 2B ∨ i = 2B − 1) ∧ j = 2B
0 otherwise

Optimisation of virtual machine garbage collection policies 9 of 20



Model: performance analysis

The model is a QBD processes

• Matrix Analytic Methods for steady state probabilities

• Closed forms for E[N ] and E[R]
• More performance indices, e.g., GC overhead, using iteration.

Performance indices in function of a variable parameter

• How a performance index, e.g., the average response time, vary over
the GC activation rate?

• To simplify the examples, we assume αi = α, βi = β ∀i ∈ {1 . . . B}

• R(α): mean response time of the model as function of α

• Numerical search for a minimum

Optimisation of virtual machine garbage collection policies 10 of 20



Model: minimum search

Where to search for a minimum?

Proposition

If the optimisation problem α∗ = argminαR(α) admits a solution, then

the following inequality holds:

0 < α∗ <
(β + γ)(µ+ − λ)

λ
,

where µ+ = maxi(µi), 0 ≤ i ≤ B.

ATM no proof for minimum existence or uniqueness.

• Experimental evidence seems to suggest so

Optimisation of virtual machine garbage collection policies 11 of 20



Numerical Examples

Where not stated otherwise, the parameters are the following

Parameter Name Value

B 50
λ 3.0
βi 3 ∀i ∈ {1 . . . B}
γi 25 ∀i ∈ {1 . . . B}
µi 5.0 for 1 ≤ i ≤ B/2, 0.05 for B/2 < i ≤ B

Table: Parameter Values in Numerical Examples

Optimisation of virtual machine garbage collection policies 12 of 20



Numerical examples: R

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
1.78

1.8

1.82

1.84

1.86

1.88

1.9

1.92

1.94

1.96

Garbage Collector Activation Rate

M
ea

n 
R

es
po

ns
e 

T
im

e

Figure: An example of the function R

Optimisation of virtual machine garbage collection policies 13 of 20



Numerical examples: effects of increasing customer

arrivals

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Customer Arrival Rate

O
pt

im
al

 G
ar

ba
ge

 C
ol

le
ct

or
 A

ct
iv

at
io

n 
R

at
e

Figure: Optimal α value in function of λ

Optimisation of virtual machine garbage collection policies 14 of 20



Numerical examples: utilisation

0.6 0.7 0.8 0.9 1 1.1 1.2
0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Garbage Collector Activation Rate

U
til

is
at

io
n

Figure: ρ value in function of α

Optimisation of virtual machine garbage collection policies 15 of 20



A Heuristic for optimising GC Policies

Use the model to determine on flight the optimum garbage collector
activation rates αi for a real system with GC in order to minimise the
average response time.
Suppose that we can measure:

• the number of available memory blocks B̄

• the number of free memory blocks f

• the average customer arrival rate λ̄

• the average service times µ̄i

• the average rates at which the garbage collector can free a block of
memory γ̄i

• the average rate at which the garbage collector returns control to
the program β̄i

Where i = B̄ − f is the number of allocated memory blocks.
Easily measurable stats, e.g., using the -verbose:gc option of the Sun
JVM.

Optimisation of virtual machine garbage collection policies 16 of 20



Heuristic: optimisation of α

Parameter α is unbound.

• We can solve the optimisation problem α∗ = argminαR(α)

• We can also solve the problem over a function of α that determines
the values of αi ∀i

• Other performance indices can be optimised using stationary
probabilities.

Once determined the optimum α value, this is set as the activation rate
for the GC of the real system.
What if some measured values changes, e.g., λ̄, or more data is
recovered, e.g., for new values of i?

• The model is parametrised again and new values for αi are
generated.

Optimisation of virtual machine garbage collection policies 17 of 20



Conclusions

• We have proposed a queueing model for systems with garbage
collection

• We have shown that the solution is numerically tractable

• We have proposed a heuristic for the optimisation of garbage
collection activation rates

• Easy to implement

Future works:

• Better validation of the model with experimental data

• Results in [1] seem to be coherent with results from our model.

• Comparison with traditional policies for garbage collection activation

• Energy-aware optimisation of the activation rate

Optimisation of virtual machine garbage collection policies 18 of 20



References

[1] Matthew Hertz and Emery D. Berger. Quantifying the performance of
garbage collection vs. explicit memory management. SIGPLAN Not.,
40(10):313–326, October 2005.

[2] G. Latouche and V. Ramaswami. Introduction to Matrix Anlytic

Methods in Stochastic Modeling. Statistics and applied probability.
ASA-SIAM, Philadelphia, PA, 1999.

[3] M. F. Neuts. Matrix Geometric Solutions in Stochastic Models. John
Hopkins, Baltimore, Md, 1981.

Optimisation of virtual machine garbage collection policies 19 of 20



Any question?

Optimisation of virtual machine garbage collection policies 20 of 20



Stationary distribution of the model

The minimum of the utilisation ρ is different from the minimum of the
average response time R.
This behaviour can be explained by the fact that, for this model, given
two distribution π and π′, after a certain k,

π(k + i) < π′(k + i) for i ∈ N

even if π(0) > π′(0).

Optimisation of virtual machine garbage collection policies 21 of 20



0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

Number of Customers

S
ta

tio
na

ry
 P

ro
ba

bi
lit

y

 

 

α = 0.7
α = 0.9

Figure: Vector π for two different α values and λ = 3

Optimisation of virtual machine garbage collection policies 22 of 20


	Appendix

