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Cooperating stochastic models

• Models with underlying Continuous Time Markov Chain (CTMC)

• Exploitation of compositionality in model definition
• Each component is specified in isolation
• Semantics of cooperation is defined so that the joint model can be

algorithmically derived

• Stochastic automata considered here synchronise on the
active/passive semantics
• PEPA/EMPA active/passive synchronisation
• Buchholz’s Communicating Markov Processes
• Plateau’s stochastic automata networks (SAN) with master/slave

cooperation
• . . .
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Example: tandem of queues with finite capacity and
repetitive service blocking
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Motivation

• In general, the state-space’s size of the joint model grows
exponentially with the number of components

• Steady-state analysis becomes quickly unfeasible
• Space cost
• Time cost
• Numerical stability issues

• Workarounds
• Approximate analysis (e.g. fluid)
• Exploitation of the geometry of the state space
• Product-form decomposition
• Lumping
• . . .
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Product-form models

• Consider model S consisting of sub-models S1, . . . , SN

• Let m = (m1, . . . ,mN ) be a state of model S and π(m) its steady
state probability

• S is in product-form with respect to S1, . . . , SN if:

π(m) ∝ g1(m1) · g2(m2) · · · gN (mN )

where gi(mi) is the steady state probability distribution of Si
appropriately parametrised

• The size of the state space of S is proportional to the product of the
state space cardinalities of its sub-models ⇒ product-form models
can be studied more efficiently!
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Some problems. . .

• How to decide if a model yields a product-form solution?
• list of instances: BCMP theorem, Coleman/Henderson Stochastic

Petri Nets, G-networks. . .
• general criteria: Markov implies Markov property, RCAT (and

extensions),. . .

• How to find the correct parametrisation for the sub-models?
• solving the linear system of traffic equations for BCMP/Jackson

queueing networks
• solving the non-linear traffic equations for G-networks
• solving the system of equations of RCAT
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Sketch of the results: INAP+

In [Balsamo et al., 2010a] we proposed an algorithm that. . .

• decides if a model S has a product-form solution with respect to a
set of sub-models S1, . . . , SN

• derive the correct parametrisation for the sub-models

• compute the unnormalised steady-state solution

The Iterative Numerical Algorithm for product-forms (INAP+) is based
on the Reversed Compound Agent Theorem (RCAT) [Harrison, 2003]
and its extensions.

• Originally introduced in [Marin and Bulò, 2009] for models with
finite state spaces (INAP)

• The improvements in INAP+ [Balsamo et al., 2010a] are:
• possibility to deal with infinite state space models thanks to a

dynamic truncation
• faster convergence time (experimental results)
• possibility to express the iterations in Matrix-form (simplified

implementation)
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Pairwise interacting agents
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• PEPA-like cooperation with an active and a passive agent

• Active transitions have a rate

• Passive transitions have a unspecified rate

• Active/Passive transitions occur only simultaneously with the rate of
the active ones

• A sub-model may be passive with respect to a cooperation and
active WRT another

On the Solution of Cooperating Stochastic Models 10 of 56



RCAT conditions
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• Passive transitions outgoing from every state

• Active transitions incoming into every state

• Same reversed rate for all active transitions
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RCAT parametrisation and solution
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• Parametrisation: replace all the passive transitions with the reversed
rate 1 of the corresponding active transitions

• Solution: let g1 and g2 be the solution of the parametrised agents,
then the solution π of the cooperating agent is in product-form:

π ∝ g1 · g2
1qij =

π(i)
π(j)

qij
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Non-optimised algorithm

Initialize randomly gk for a truncation of S ′k for all k = 1, . . . , N
n = 0
repeat

Compute the reversed rates K
(n)
a for the active labels

Use K
(n)
a to close and truncate Sk for all k = 1, . . . , N

Update gk for all k = 1, . . . , N
n← n+ 1

until n > M or ∀k = 1, . . . , N. |gk − gprevk | < ε;
if the reversed rates are not constant then

fail: RCAT product-form not identified
return {gk}k=1,...,N

• N : number of agents

• Sk, 1 ≤ k ≤ N : state space of agent
k

• gk, 1 ≤ k ≤ N : hypothetical
stationary distribution of agent k

• n: number of the iteration being
performed

• gprevk : stationary distribution
computed at step n− 1

• M : maximum number of iterations

• ε: tolerance
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Computing new gk and convergence

Computing gk and product-forms

• gk are computed using the global balance equation system

• If gk at step n are identical to gk at step n− 1

• Constant reversed rates for active transitions ⇒ product-form
solution found

• Otherwise ⇒ no product-form found

Convergence

• Convergence has been proved for specific cases

• A maximum number of iterations is used to avoid infinite loops
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Computing the reversed rates

• Even if the RCAT product-form exists during the algorithm iteration
the reversed rates of the active transitions may be non-constant

• How to compute rates K
(n)
a for each synchronising label a at

iteration n?

• K(n)
a is defined as the weighted mean of the reversed rates of all the

active transitions labelled by a

• The weight of transition α
a−→ β is gi(β)

(n)

• Hence:

K(n)
a =

∑
α∈Si

g
(n)
i (α)

g
(n)
i (β)

qi(α
a−→ β)g

(n)
i (β) (1)

h
∑

α∈Rτi (Si)
g
(n)
i (α)qi(α

a−→ β) (2)
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Mix of negative customer and catastrophes triggers
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• J: Jackson queue, C: Queue with catastrophes, G: G-queue with
negative customers
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Queue with negative customers
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• Transitions a cause a customer deletion, b a customer arrival

• Geometric distribution π(n) ∝ ρn

ρ =
Kb

µ+Ka
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Queue with catastrophes
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• Transitions a cause a catastrophe, b a customer arrival

• Geometric distribution π(n) ∝ ρn

ρ =
Kb + µ+Ka −

√
K2
b + µ2 +K2

a + 2KbKa + 2µKa − 2Kbµ

2µ
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Final remarks on INAP+

• Fast convergence (experimental result):
• 6 iterations for the considered example, with a tolerance of 10−5

• Convergence proved only for special cases

• Can solve heterogeneous models (consisting of Petri net blocks, and
various types of queues)

• Complexity of K models with N states each: O(N3 +K2N) for
each iteration
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Future works

• Proof of convergence for more general cases

• Extension of both the formalism and the algorithm to include
non-pairwise cooperations (e.g. G-networks with positive and
negative triggers)

• How to easily express the operator of truncation?

• Approximated product-form analysis based on
[Marin and Vigliotti, 2010a, Marin and Vigliotti, 2010b]

• Development of a tool with a simple GUI to allow the user to
analyse heterogeneous models...
• ... oh, wait, we have done it :-)
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A tool for the solution of product-form models

In [Balsamo et al., 2010b] we proposed a tool that. . .

• decides if a model M has a product-form solution with respect to a
set of sub-models M1, . . . , MN

• derives the correct parametrisation for the sub-models

• computes the unnormalised steady-state solution (INAP, INAP+)

• allows for a modular composition of the sub-models using a system
or renaming
• The user can create or use a library of sub-models that may be in

product-form
• sub-models are created without any knowledge about the model in

which they will be instantiated
• the same sub-model can be instantiated several times within the

same model
• composition rules avoid conflicts among labels
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Name policies

Each sub-models consists of:

• a set of transitions (ε) that cannot synchronize

• a finite number of sets of labelled transitions, which can synchronise.

A cooperation between two sub-models requires to specify:

• name of the instance of the active sub-model

• name of the instance of the passive sub-model

• name assigned to the transitions corresponding to the cooperation in the
joint model

Example:

M1

c
×

(a,b)
M2

specifies a cooperation between active label a in model M1 with passive label b

in model M2. The resulting transitions are labelled by c
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Example
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This cooperation can be specified as follows:

M1

c
×

(a,a)
M2

M2

d
×

(b,b)
M1
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Example 1-1 cooperation

a

SINGLE SUB-MODEL IN LIBRARYCOOPERATING MODEL (TWO INSTANCES

OF THE SAME SUB-MODEL) d

a a a

d d d

0 1 2

M M1 2

STATE TRANSITION DIAGRAM

This cooperation can be specified as follows (departures are active and
arrivals are passive):

M1

s1×
(d,a)

M2 and M2

s2×
(d,a)

M1
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Other cooperation features

• Probabilistic cooperation
• an active transition synchronises with a passive one with a certain

probability
• useful to model probabilistic routing in queueing networks

• More than one active label synchronise on the same passive label
• useful to model multiple arrival flows to the same queueing station

• The modifications on the models required by these types of
synchronisations are performed automatically by the tool
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The architecture

• Client-server architecture

• Server:
• keeps in memory the sub-model instances
• stores the cooperations (possibly modifying the instances)
• runs the algorithm to compute the stationary solution
• allows for multiple, independent, parallel sessions

• Client:
• translates the user-friendly operations performed by the user into

commands for the server
• several clients can be created using different interfaces
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A formalism-agnostic product-form analyser

On the Solution of Cooperating Stochastic Models 27 of 56



Some remarks

• We presented a tool to detect and solve product form models
• Application: integration with SIMTHESys and MARCAT conditions

checking [Barbierato et al., 2012] for multi-formalism performance
modelling and analysis.

• What if the model is NOT in product form?

• We can still try to reduce the state space through lumping

• We found some interesting relations between lumping and product
form
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Condition of lumping for CTMC

• Notation:
• S state space
• s ∈ S state
• q(s→ s′) transition rate from s to s′

• C = (C1, C2.., CN ) partition of states

• C induces a lumping on the chain if:

∀Ci, Cj , i 6= j, ∀s ∈ Ci
∑
s′∈Cj

q(s→ s′) = q̃(Ci → Cj)

• If π∗ is the steady-state distribution of the lumped process and π
that of the original, then:

∀Ci, π∗(Ci) =
∑
s∈Ci

π(s)
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Example
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C1 = {s0, s1} C2 = {s2, s3}

On the Solution of Cooperating Stochastic Models 30 of 56



Main idea

• Following the idea of PEPA strong equivalence we aim at lumping
the automata before the cooperation with other ones

• We want to reduce the solution complexity for the system of Global
Balance Equations
• Suppose the two automata have both a spate-space of size M
• Time cost reduces from O(M6) to O((NM)3), where N is the

number of clusters in the lumping

• Intuition: for each synchronising label the original and lumped
automata must behave (in steady-state) equivalently
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Lumped automaton

Definition (Lumping condition)

Given active automaton M1, a set of labels T , and a partition of the
states of M1 into N1 clusters C = {C1, C2, . . . , CN1}, we say that C is an
exact lumping for M1 if:

1 ∀Ci, Cj , Ci 6= Cj , ∀s1 ∈ Ci
∑
s′1∈Ck q1(s1 → s′1) = q̃1(Ci → Cj) not

synchronising label

2 ∀t ∈ T ,∀Ci, Cj , ∀s1 ∈ Ci
∑
s′1∈Ck q

t
1(s1 → s′1) = q̃t1(Ci → Ck)

• lumped automaton is derived straightforwardly (see next example)

• condition on synchronising labels may generate self-loops in lumped
automaton!
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Example
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Marginal distribution and lumping

Theorem

Let M1 and M2 be two cooperating automata. If M̃1 is a lumped
automaton of M1, then the marginal steady state distribution of M2 in
the cooperations M1 ⊗M2 and M̃1 ⊗M2 are the same.

Note that ergodicity is assumed and the state-space of the joint process is the

Cartesian product of the single automata state-spaces.
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Example: original process
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Example: lumped process

A B C
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A trivial example
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Reversed processes

• An ergodic CTMC can always be reversed
• Same state space
• A transition from s to s′ with rate q(s→ s′) becomes a transition

from s′ to s with rate qR(s′ → s) = π(s)/π(s′)q(s→ s′)

• The forward and reversed processes share the same steady-state
distribution
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Conditional product-forms

Theorem (Conditional product-forms)

Given the model M1 ⊗M2, in a feed-forward and non-blocking
synchronisation. Let MR

1 be the reversed automaton of M1 and let M̃R
1

be an exact lumping of MR
1 whose clusters are S = {1̃, . . . , Ñ1} and let

M̃R
1 be reversible. Then, under ergodicity assumption, the following

Ñ1-order product-form expression holds:

π(s1, s2) = π̃R
M2|M̃R

1
(s2|s̃1)π1(s1) , (3)

where π is the steady-state distribution of M1 ⊗M2 and π̃R that of
M̃R

1 ⊗M2, π1 that of M1 and:

π̃R
M2|M̃R

1
(s2|s̃1) =

π̃R(s̃1, s2)

π̃1(s̃1)
,

where, since the stochastic process underlying M̃R
1 is a lumping of that

underlying MR
1 , we have π̃1(s̃1) =

∑
s1∈s̃1 π1(s1).

On the Solution of Cooperating Stochastic Models 39 of 56



Another trivial example
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Reversed lumping and product-forms

Corollary (Marginal distributions)

The marginal distribution of M2 may be computed as:

π2(s2) =

Ñ1∑
s̃1=1̃

π(s̃1, s2) .

Corollary (Product-forms)

A synchronisation is in product-form if the reversed active automaton can
be lumped into a single state
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Remarks on lumping and CPF

• Relaxation of strong equivalence conditions for component-wise
lumping

• Introduction of the concept of Conditional Product Form.

Current development

• Application of conditional product form to real-world examples (see
[Balsamo et al., 2013]).

• Automatic detection of models in conditional product form.
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Approximation of marginal SSD through aggregation

• With our theorem we can reduce the cost to compute marginal
steady state distributions of a cooperating automaton if we’re able
to find an exact lumping of the other one.

• What if this is not feasible or even possible?
• We could try to find an approximated lumping.
• Can be applied also to the reversed process.

• How to evaluate the quality of an approximation?

• How to adapt clustering algorithms to use our definition of
(approximated) exact lumping?
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Evaluating the quality of an approximate lumping

How close is an arbitrary state partition W to an exact lumping?

• We measure the coefficient of variation of the outgoing fluxes φt1(s1)
of the states in s̃1.

• We further refine that measurement.
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ε-error

Definition (ε-error)

Given model M1 and a partition of states W = {1̃, . . . , Ñ1}, for all
s̃1 ∈ W and t > 2, we define:

φ
t

1(s̃1) =

∑
s1∈s̃1 π1(s1)φ

t
1(s1)∑

s1∈s̃1 π1(s1)

εt(s̃1) = 1− exp

−
√√√√∑
s1∈s̃1

π1(s1)(φt1(s1)− φ
t

1(s̃1))
2∑

s∈s̃1 π1(s1)

 .

where φt1(s1) =
∑N1

s′1=1 q
t
1(s1, s

′
1).
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δ-error

Definition (δ-error)

Given model M1 and a partition of states W = {1̃, . . . , Ñ1}, for all
s̃1, s̃

′
1 ∈ W, we define:

ϕt1(s̃1, s̃
′
1) =

0 s̃1 = s̃′1 ∧ t = 1
(
∑
s1∈s̃1

π1(s1)ϕ
t
1(s1,s̃

′
1))∑

s1∈s̃1
π1(s1)

otherwise

(
σt(s̃1, s̃

′
1)
)2

=
∑
s1∈s̃1

π1(s1)(ϕ
t
1(s1, s̃

′
1)− ϕt1(s̃1, s̃′1))2∑

s∈s̃1 π1(s)

δt(s̃1, s̃
′
1) = 1− e−σ(s̃1,s̃′1)

where ϕt1(s1, s̃
′
1) =

∑
s′1∈s̃′1 q

t
1(s1, s

′
1).
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An ideal algorithm

Definition (Ideal algorithm)

• Input: automata M1, M2, T , tolerances ε ≥ 0, δ ≥ 0

• Output: marginal distribution π1 of M1; approximated marginal
distribution of M2

1 Find the minimum Ñ ′1 such that there exists a partition
W = {1̃, . . . , Ñ ′1} of the states of M1 such that ∀t ∈ T , t > 2 and
∀s̃1 ∈ W ε(s̃1) ≤ ε

2 Let W ′ ←W
3 Check if partition W ′ is such that ∀t ∈ T , ∀s̃1, s̃2 ∈ W, s̃1 6= s̃2,
δt(s̃1, s̃

′
1) ≤ δ. If this is true then return the marginal distribution of

M1 and the approximated of M2 by computing the marginal
distribution of M̃1 ⊗M2 and terminate.

4 Otherwise, refine partition W to obtain Wnew such that the number
of clusters of Wnew is greater than the number of clusters in W ′.
W ′ ←Wnew. Repeat from Step 3
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Constructing the approximate lumped automata

Definition (Approx. lumped automata)

Given active automaton M1, a set of transition types T , and a partition
of the states of M1 into Ñ1 clusters W = {1̃, 2̃, . . . , Ñ1}, then we define
the automaton M'1 as follows:

Ẽ11(s̃1, s̃
′
1) =

{
ϕ1
1(s̃1, s̃

′
1)λ̃
−1
1 if s̃1 6= s̃2

0 otherwise

Ẽ12 = I,

Ẽ1t(s̃1, s̃1) = ϕt1(s̃1, s̃
′
1)λ
−1
t t > 2

where

λ̃t = max
s̃1=1,...,Ñ1

 Ñ1∑
s̃′1=1

ϕt1(s̃1, s̃
′
1)


are the rates associated with the transition types in the cooperation
between M'1 and M2.
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Initial clustering and refinement phase

Initial clustering:

• similarity measure can be Euclidean distance between
(φ31(s1), . . . , φ

T
1 (s1)) and (φ31(s

′
1), . . . , φ

T
1 (s
′))

• can be implemented using various algorithm
• hierarchical clustering
• K-means (but number of clusters must be decided a priori...)
• . . .

Refinement phase:

• using the tolerance constant δ

• distances between clusters depend on clusters themselves =⇒
K-means cannot be used.

• spectral analysis or iterative algorithms
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Example

Q1 Q2

µ1 µ2

p

1− pλ1

λ2

γ(n1)

where

γ(n1) =


0 if n1 ≤

⌊
C1

2

⌋
λ1
2

if

⌊
C1

2

⌋
< n1 < C1

λ1 if n1 = C1
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Example

P1

P2

1,λ11,λ1 1,λ1/21,λ1/2

3,λ1/23,λ1/2

3,λ1

1,pµ11,pµ11,pµ11,pµ1

3,(1 − p)µ13,(1 − p)µ13,(1 − p)µ13,(1 − p)µ1

0

0

1

1 h C1 − 1

C2 − 1

C1

C2k 3,1

3,13,13,13,1

2,λ2 2,λ2 2,λ2 2,λ2

2,µ22,µ22,µ22,µ2

Not exactly lumpable. For
C1 = 20, C2 = 20, λ1 = 6, λ2 = 1, µ1 = 4, µ2 = 4, p = 0.7, ε = 10−13

and δ = 0.95 we could find

• L1 = {0}, L2 = {1, . . . , 10}, L3 = {11, . . . , 19} and L4 = {20} on
the forward process

• L1 = {0, . . . , 10}, L2 = {11, 12}, L3 = {13, . . . , 19} and L4 = {20}
on the reversed one
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Comparison

FW-Lump RV-Lump APF FPA Exact
KL div. 0.0065 0.0045 0.0451 0.0112 0
E[N ] 11.62 11.55 9.990 11.80 11.33

Rel. err. 0.0259 0.0200 0.1178 0.0424 0

Where

• APF is the Approximated Product Form of order 4 [Buchholz, 2010]

• PFA is the Fixed Point Approximation [Miner et al., 2000]
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Remarks on lumping approximations

• Lumping of stochastic automata can be applied to other formalisms

• Approximate lumpings can be used to derive approximate marginal
distributions
• Several examples show that in case of queueing networks lumping

the reversed automata gives better approximations!

• Future works: definition of efficient algorithms
• The algorithm proposed in [Gilmore et al., 2001] based on strong

equivalence can be adapted to consider our notion of lumpability
• also for reversed automata
• optimality issues
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Conclusion

• We have shown some novel techniques to efficiently solve some
classes of cooperating models
• Automatic product form detection and solution
• Compositional lumping techniques
• Conditional Product Forms

• Current research
• real-world conditional product-forms
• Better approximate aggregations

• What I didn’t show:
• Multi-formalism product form analysis
• Applications of product-form SPNs
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[Marin and Vigliotti, 2010b] Marin, A. and Vigliotti, M. G. (2010b). On product-form approximations of cooperating stochastic models.
In Proc. of 25th Int. Symp. on Computer and Information Sciences, pages 65–70, The Royal Society, London. LNEE, Springer.

[Miner et al., 2000] Miner, A. S., Ciardo, G., and Donatelli, S. (2000). Using the exact state space of a markov model to compute
approximate stationary measures. In Proc. of ACM SIGMETRICS, pages 207–216, New York, NY, USA. ACM.

On the Solution of Cooperating Stochastic Models 55 of 56



Thanks!

Thanks for the attention
any question?
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