

Scuola Dottorale di Ateneo
Graduate School

Dottorato di ricerca
in Informatica
Ciclo XXVI
Anno di discussione 2013

On the Solution of Cooperating Stochastic Models

SETTORE SCIENTIFICO DISCIPLINARE DI AFFERENZA: INF/01
Tesi di Dottorato di Gian-Luca Dei Rossi, matricola 955834

Coordinatore del Dottorato Tutore del Dottorando

Prof. Riccardo Focardi Prof.ssa Simonetta Balsamo

To the future readers of this thesis, for their patience.

Abstract

Stochastic models are widely used in the performance evaluation community. In
particular, Markov processes, and more precisely, Continuous Time Markov Chains
(CTMCs), often serve as underlying stochastic processes for models written in
higher-level formalisms, such as Queueing Networks, Stochastic Petri Nets and
Stochastic Process Algebras. While compositionality, i.e., the ability to express
a complex model as a combination of simpler components, is a key feature of most
of those formalisms, CTMCs, by themselves, don’t allow for mechanisms to ex-
press the interaction with other CTMCs. In order to mitigate this problem various
lower-level formalisms have been proposed in literature, e.g., Stochastic Automata
Networks (SANs) [146], Communicating Markov Processes [46], Interactive Markov
chains [100] and the labelled transition systems derived from PEPA models [101].

However, while the compositionality of those formalism is a useful property which
makes the modelling phase easier, exploiting it to get solutions more efficiently is a
non-trivial task. Ideally one should be able to either detect a product-form solution
and analyse the components in isolation or, if a product form cannot be detected,
use other techniques to reduce the complexity of the solution, e.g., reducing the
state space of either the single components or the joint process. Both tasks raised
considerable interest in the literature, e.g., the RCAT theorem [89] for the product-
form detection or the Strong Equivalence relation of PEPA [101] to aggregate states
in a component-wise fashion.

This thesis deals with the aforementioned problem of efficiently solving com-
plex Markovian models expressed in term of multiple components. We restrict our
analysis to models in which components interact using an active-passive semantics.
The main contributions rely on automatic product-forms detection [15, 9, 22], in
components-wise lumping of forward and reversed processes [12, 11] and in showing
that those two problems are indeed related, introducing the concept of conditional
product-forms [7].

Structure of the thesis This work is divided in three parts. The first one gives
to the reader a general introduction to stochastic modelling, with a particular fo-
cus on Markovian models, and to the formalisms that will appear throughout the
thesis. Moreover it gives some basic notions about product-form solutions and an
overview of available tools for multiformalism modelling, which is needed in order
to understand some of the applications that appear later in the thesis.

Part 2 deals with the main contributions of the thesis. First, it introduces al-
gorithmic product form detection and solution techniques, and a tool for designing,
detecting and solving product-form stochastic models in a compositional and mod-
ular way. It then presents a new criterion for component-wise state space reduction,
in a way similar to PEPA’s strong equivalence. Finally, it introduces the concept
of conditional product form, and it shows the relation between this notion and the
lumpability, according to our criterion, of reversed processes, thus linking the two
main topics of this work. This research has both a theoretical significance and a
practical impact, since all the aforementioned contributions allows for the efficient
solution of stochastic models for which an analysis was previously unfeasible.

Part 3 shows some applications of the aforementioned techniques to the analysis
of complex models, with a particular emphasis on heterogeneous models, i.e., models
whose components exhibit different behaviours and can even be expressed using
different higher level formalisms. An application of product-form theory to some
classes of stochastic Petri nets is also given.

The conclusion recapitulates the results of the thesis and analyses the impact of
the work on the performance evaluation community. Finally, a forecast on possible
future developments is discussed.

Acknowledgments

This thesis contains part of the work that I did during my Ph.D. studies. This
activity has led to a number of publications. For all the those papers I have given
an original and concrete contribution, however none of them would be born without
my co-authors. In particular I want to mention the fundamental help, guidance and
inspiration that I have been given by my supervisor, Simonetta Balsamo, and by
Andrea Marin, with whom I did most of my day-to-day work. I want also to thank
Lucia Gallina and Sabina Rossi for having made me aware of formal verification and
model checking issues in performance evaluation. Thanks to William J. Knottenbelt
and Enrico Vicario for their reviews of the preliminary version of this thesis, which
would have been much less refined in its content and form without their suggestions.

I finally have to remember all the other colleagues, co-authors, friends and family
members that have helped me during those 3 years full of events. I cannot name
them one by one without the risk to forget somebody.

Contents

Preface ix

Introduction xi

I An introduction to stochastic modelling 1

1 Stochastic models 3
1.1 Introduction . 3
1.2 Markovian models . 3

2 Formalisms and cooperation semantics 7
2.1 Queueing Networks . 7
2.2 Stochastic Petri nets . 8

2.2.1 Stochastic Petri nets . 9
2.2.2 Building blocks . 10

2.3 Markovian Process Algebra . 11
2.3.1 Classical process algebras . 11
2.3.2 Process algebras extensions 13
2.3.3 Performance Evaluation Process Algebra 14

2.4 Stochastic Automata . 16

3 Product Forms 19

4 Tools 23
4.1 Introduction . 23
4.2 Software Analysis . 26
4.3 A model example . 33
4.4 Software Comparison . 35
4.5 Conclusion . 37

II Contributions 41

5 Algorithmic Product form detection and solution 43
5.1 Introduction . 43
5.2 The INAP Algorithm . 44
5.3 INAP for models with infinite state spaces 46

ii Contents

5.3.1 The algorithm input . 46
5.3.2 Main idea of the algorithm . 47
5.3.3 Formal definition of INAP+ 48
5.3.4 Convergence, termination, complexity and optimisations . . . 50

5.4 Model and cooperation encoding . 50
5.5 Tool . 52

5.5.1 Specifying the interactions . 53
5.5.2 Client-server architecture . 54
5.5.3 Use cases . 55
5.5.4 MSI implementation example 56

5.6 A Numerical Example . 57
5.7 Conclusions . 60

6 Component-wise state space reduction 63
6.1 Introduction . 63

6.1.1 Related work . 63
6.1.2 Contribution . 65

6.2 Exact lumpability . 65
6.2.1 Exact lumping and strong equivalence 70

6.3 Conclusions . 72

7 Conditional Product-Forms 73
7.1 Introduction . 73

7.1.1 Feed-forward synchronisations 73
7.2 Conditional product-form and lumping of the reversed automata . . . 75

7.2.1 Theoretical considerations about Theorem 3 and 4 80
7.3 Conclusions . 84

8 Approximate aggregation techniques 85
8.1 Introduction . 85
8.2 Evaluation of the quality of clusters 85
8.3 Algorithm definition . 86
8.4 Example . 89
8.5 Conclusions . 92

III Case studies and applications 93

9 Exploiting product forms solution techniques in multiformalism
modelling 95
9.1 Introduction . 95
9.2 From multiformalism models to product-form solutions 96

9.2.1 Deciding and computing the product-form solution 97

Contents iii

9.2.2 The formalisms . 99
9.3 Case study . 101

9.3.1 Overall model description . 102
9.3.2 Model specification . 103
9.3.3 Model analysis and results . 105

9.4 Conclusions and future work . 109

10 Modelling retrial-upon-conflict systems with product-form stochas-
tic Petri nets 111
10.1 Introduction . 111
10.2 The conflict model . 112
10.3 Applications . 118

10.3.1 A computer network with collisions 118
10.3.2 A transactional database system 122

10.4 Conclusions . 125

Conclusions 127
C.1 Contributions . 127
C.2 Impact and Future Works . 127

Bibliography 129

iv Contents

List of Figures

2.1 Tandem of exponential queues. 17

4.1 SHARPE: a Multiclass Product Form Queueing Network 27

4.2 SHARPE: composed model, RBD . 28

4.3 SHARPE composed model, Markov chain 28

4.4 Plotting capabilities of SHARPE . 29

4.5 Möbius: a composed model . 30

4.6 Möbius: a PEPAk submodel . 31

4.7 Möbius: a SAN submodel . 31

4.8 Möbius: simulation results . 32

5.1 CTMC underlying a G-queue with catastrophes. 45

5.2 Example of CTMC underlying a Jackson queueing station. 46

5.3 Tandem of two exponential finite capacity queues. 52

5.4 Example of Figure 5.3 model with variated probabilistic routing. . . . 53

5.5 Types of connections between labels. 53

5.6 Truncation of the birth and death process underlying an exponential
queue. 56

5.7 Jackson network of Example 7. 56

5.8 Screenshot of the model corresponding to the Jackson network of
Figure 5.7. 57

5.9 Screenshot of the window for the synchronisation details. 57

5.10 Example of a heterogeneous queueing network. 58

6.1 Example of automaton with types T = {1, 2, 3, 4}. Arcs are labelled
by their type ℓ and the rate λℓE1ℓ(s1, s

′
1). Self-loops associated with

type 2 are omitted for the sake of clarity. 71

6.2 Lumping of the automaton of Figure 6.1. Arcs are labelled by their
type ℓ and the rate λ̃ℓẼ1ℓ. Self-loops associated with type 2 are omit-
ted for the sake of clarity. 71

7.1 Graphical representation of a G-network and the corresponding model
using automata. 83

7.2 Exponential queues with synchronised arrivals and their representa-
tion by stochastic automata. 83

8.1 Example model. 90

8.2 Automata of the example model. 91

vi List of Figures

9.1 Formalisms elements . 100
9.2 Overall model description . 102
9.3 Submodel QN1 . 103
9.4 Submodel QN2 . 104
9.5 SPN submodels . 106
9.6 Submodels composition . 107
9.7 Labelled Exponential Automata produced by SIMTHESysER 108

10.1 The main building block with 2 places 113
10.2 The main building block with 3 places 114
10.3 The conflict building block . 115
10.4 A complete model for l = 2 . 116
10.5 Average response time as a function of packet arrival rate, with dif-

ferent number of stations . 120
10.6 Average response time as a function of the number of stations 121
10.7 Average response time as a function of the arrival rate of transactions,

with different number of processors 123
10.8 Maximum arrival rate to each processor as a function of the number

of processors, with different conflict probabilities 124

List of Tables

4.1 Characteristics of multi-formalism software packages. 38

5.1 Parameters . 61
5.2 ρ and n . 61
5.3 Results . 61

7.1 Rates of the reversed automaton corresponding to the automaton of
Figure 6.1. 81

8.1 Ideal algorithm for computing the approximated marginal distribu-
tions of cooperating automata. 87

8.2 Comparison between approximation methods. 92

10.1 Parameter values for the example of Section 10.3.1 119
10.2 Parameter values for the example of Section 10.3.2 123

viii List of Tables

Preface

In this thesis we present some of the results that we obtained during the 3 years of
my Ph.D. (starting from September 2010), and that concern, as the title states, the
solution of stochastic models that cooperate among each other. The relevance of
those kind of models has ben widely stressed in literature, with a particular focus on
the efficiency of their solutions. Our work in this field led to some contributions to
the state of the art in the fields of product-form detection and solution [15, 9] and
component-wise states space reduction [12, 11]. We have then shown that those two
topics are indeed strongly related through the introduction of conditional product-
forms [7]. Moreover, in this thesis we consider some of the applications of the
aforementioned results to the solution of models expressed in multiple formalisms
[13, 22] and of particular classes of stochastic Petri nets [14].

While the aforementioned issues have been core topics of my Ph.D., I also worked
in several other areas that are not mentioned in this thesis, such as the translation
of models expressed in a high-level hierarchical formalism to BCMP networks [8],
the use of matrix-geometric methods to optimise garbage collectors’ performances
[10] and packets fragmentation in wireless networks [66], the use of semi-Markov
models and simulation to envise a heuristic for energy consumption optimisation in
ARQ protocols [67], the use of formal methods and process algebras to evaluate the
resistance of mobile networks to jamming [77] and of probabilistic model checking to
evaluate the performances of cognitive wireless networks and formally verify some
of their properties [65].

For all the papers that I cited in this preface I have given an original and concrete
contribution, however none of them would be born without my co-authors. In
particular I want to mention the fundamental help, guidance and inspiration that I
have been given by my supervisor, Simonetta Balsamo, and by Andrea Marin, with
whom I did most of my day-to-day work. I want also to thank Lucia Gallina and
Sabina Rossi for having made me aware of formal verification and model checking
issues in performance evaluation.

x Preface

Introduction

Stochastic models are widely used in the performance evaluation community. In
particular, Markov processes, and more precisely, Continuous Time Markov Chains
(CTMCs), often serve as underlying stochastic processes for models written in
higher-level formalisms, such as Queueing Networks, Stochastic Petri Nets and
Stochastic Process Algebras. While compositionality, i.e., the ability to express
a complex model as a combination of simpler components, is a key feature of most
of those formalisms, CTMCs, by themselves, don’t allow for mechanisms to ex-
press the interaction with other CTMCs. In order to mitigate this problem various
lower-level formalisms have been proposed in literature, e.g., Stochastic Automata
Networks (SANs) [146], Communicating Markov Processes [46], Interactive Markov
chains [100] and the labelled transition systems derived from PEPA models [101].

However, while the compositionality of those formalism is a useful property which
makes the modelling phase easier, exploiting it to get solutions more efficiently is a
non-trivial task. Ideally one should be able to either detect a product-form solution
and analyse the components in isolation or, if a product form cannot be detected,
use other techniques to reduce the complexity of the solution, e.g., reducing the
state space of either the single components or the joint process. Both tasks raised
considerable interest in the literature, e.g., the RCAT theorem [89] for the product-
form detection or the Strong Equivalence relation of PEPA [101] to aggregate states
in a component-wise fashion.

Prerequisites

In order to read this thesis the reader should be familiar with the basic notions of
probability theory, and in particular with the negative exponential distribution. For
a quick review on these topics, see Chapters 1-8 of [165]. In Part I, some background
notions and some informations on the state of the art are given. Chapter 1 gives
an introduction to stochastic models, with a particular focus on Markov Chains.
Chapter 2 introduces some of the basic notions about some of the most well known
higher level formalisms for stochastic modelling, as well as the semantics of the
interaction among components expressed using the same formalism. We consider,
in particular, queueing networks, stochastic Petri nets, stochastic process algebras
and stochastic automata. In Chapter 3 we give a very informal introduction to
product form decomposition and to the most important developments of its theory
in the last decade. Finally, in Chapter 4 we survey the most important tools for
the solution of stochastic models, with a particular focus on those that support the
interaction of components expressed using different formalisms.

xii Introduction

Main contributions

Part II deals with the main results we obtained on the solution of cooperating
stochastic models. The main contributions of the thesis rely on automatic product-
forms detection (Chapter 5), in components-wise lumping of forward and reversed
processes (Chapter 6) and in showing that those two problems are indeed related, in-
troducing the concept of conditional product-forms (Chapter 7). We finally propose
an approximation technique for models that cannot be exactly aggregated (Chapter
8).

The results illustrated in this thesis have both a theoretical significance and a
practical impact, since the reduction of the solutions’ spatial and computational
complexity allows for the development of tools that are capable of efficiently solving
models that are intractable with current softwares and methodologies due to the
cardinality of their states space.

Chapter 5 illustrates a tool, initially presented in [15], that given the descrip-
tion of a set of cooperating CTMCs (i.e., when some transitions in one chain force
transitions in other chains) it decides whether the model is in product-form and,
in this case, computes its stationary distribution. The tool is based on the algo-
rithm presented in [132]. Since the analysis of the product-form is performed at the
CTMC level, it is able to study product-form models that are originated form dif-
ferent formalisms, such as exponential queueing networks, G-networks or queueing
networks with blocking. To this aim, we observe that it is important to decouple
the analyser and the model specification interface (MSI). We propose both a Java
implementation of the analyser and a general MSI. Note that multiple specification
interfaces may be implemented according to the modeller needs. With this tool, a
modeller has a library of product-form models that, even if they were created using
some (possibly high-level) formalism, are stored as stochastic automata, basically a
CTMC with labelled transitions allowing self-loops or multiple arcs between states.
Using the MSI, which acts as a client with respect to the analyser, the various sub-
models can be instantiated and their interactions be specified. The operations that
the modeller performs in the MSI are translated into commands for the server side,
i.e., the analyser. The analysis is requested from the MSI, computed by the analyser
and displayed by the MSI. We have also developed a textual interface that will not
be presented in this chapter to allow the usage of the analyser from non-graphical
clients. Moreover we will describe an extension of the algorithm used by the tool,
originally introduced in [9], which is able to opportunely truncate models with infi-
nite state space. We finally show how the extended algorithm efficiently computes
the solution of non-homogeneous models.

In Chapter 6 we consider another way of reducing the complexity of the solution
of cooperating stochastic models, i.e., state-space aggregation. In particular, we
define a compositional approach to the problem, which has less strict requirements
with respect to the state of the art. In Chapter 7, we will show how aggregation
and product-form decomposition techniques are indeed related, as we will introduce

Introduction xiii

a novel concept of conditional product form, based on the reversibility of the ag-
gregation of reversed processes. This is the core chapter of the thesis, and the one
that justifies the juxtaposition of the previous two chapter. Finally, in Chapter 8
we define and evaluate a method to approximate the solutions of models for which
exact aggregation is not possible or feasible.

Case Studies and Applications

In Part III we show some applications of the solution of cooperating stochastic
models, namely on multi-formalism modelling and on a class of product-form Petri
nets.

In Chapter 9, we show how product-form solution theory easily couples with
multiformalism compositional modeling techniques, to obtain a modeling and anal-
ysis framework that offers modeling flexibility and efficient solutions. The contri-
bution is based on the design and implementation of an extensible modeling and
solution framework, supported by a tool solving multiformalism Markovian models
with a threefold solution mechanism. The tool automatically verifies and performs
a product-form solution. If this is not available it provides a state space based
analytical solution or a simulation as final backup tool. The research extends the
SIMTHESys framework and the tool for product-form solutions, presented in Chap-
ter 5 , in order to encompass product form models that satisfy the ERCAT [91]
and MARCAT [92] theorems. To date, it appears there is no other similar, tool-
supported approach in the current literature.

The aim of Chapter 10, is to analyse a class of SPNs which is useful to model
systems in which concurrent activities can lead to conflicts, requiring a recovery
phase before a new execution of the same activities is retried. Instances of this kind
of systems are quite frequent in the real world, for example in computer networks,
databases and operating systems. We provide a formal model for these systems in
terms of SPNs and show that they belong to the class studied in [17, 131]. Moreover,
we prove two interesting properties for such a class of SPNs: first, their product-
form does not require any condition on the transition rates and, second, the joint
state space is the Cartesian product of the states that are reachable by each of
the model’s places. The former property enhances the applicability of the proposed
model, while the latter allows us to derive the normalised stationary distributing in a
straightforward way for open models. The model that we proposed can be combined
with other quasi-reversible components maintaining the product-form property of
the joint steady-state distribution.

xiv Introduction

I
An introduction to stochastic

modelling

1
Stochastic models

1.1 Introduction

In this chapter we give some basic notions about stochastic models. As technical
details can be easily obtained from textbooks such as [165, 167, 153, 113], we give
only an informal outlook on the subject.

A stochastic model is a mathematical abstraction of a system that is charac-
terised by a stochastic process. A stochastic process is a set of random variables
{X(t) | t ∈ T} defined over the same probability space and indexed by the param-
eter t, which usually denotes time. The process random variables take values in set
Γ, which is called the state space of the process. Both set T and state space Γ can
be either discrete or continuous. If the time parameter t is continuous or discrete,
we have a continuous-time or a discrete-time process, respectively. A discrete-time
process can be denoted by {Xn | n ∈ T}, in which the time parameter n ∈ T
can be seen as a discrete step. If the state space Γ is discrete then the process
is called discrete-space or chain, while it is called a continuous-space process oth-
erwise. The probabilistic behaviour of a stochastic process is defined by the joint
probability distribution function of the random variables X(ti) for any set of times
ti ∈ T, 1 ≤ i ≤ n, n ≥ 1, denoted by Pr{X(t1) ≤ x1;X(t2) ≤ x2; . . . ;X(tn) ≤ xn},
where xi ∈ Γ.

1.2 Markovian models

In this thesis we will focus on Markovian (stochastic) processes. A discrete-time
Markov process is a process in which the probability of being in a specific state at
step n+1 only depends on the probability of being on a certain state at step n and
is independent of the previous history. The conditional probability distribution of
this kind of process satisfies the following condition:

Pr{Xn+1 = j | X0 = i0;X1 = i1; . . . ;Xn = in} = Pr{Xn+1 = j | Xn = in}, (1.1)

for all n > 0, and j, i0, i1, . . . , in ∈ Γ, which is called the Markov property for
discrete-time processes.

4 1. Stochastic models

Analogously, a continuous-time process is a Markov process if it satisfies the
condition:

Pr{X(t) = j | X(t0) = i0;X(t1) = i1; . . . ;X(tn) = in} =
Pr{X(t) = j | X(tn) = in}, (1.2)

for all set of times t0 < t1 < . . . < tn < t, and n > 0, j, i0, i1, . . . , in ∈ Γ, which is
called the Markov property for continuous-time processes.

It can be proved that, because of the Markov property, the residence time in each
state of the process is distributed according to a distribution with the memoryless
property, i.e., the geometric or the negative exponential distribution for discrete-time
or continuous-time Markov processes respectively.

First, let us focus on discrete Time Markov chains (DTMCs). If the right-hand
side of formula (1.1) is independent of time n, then a Markov chain is said to be
homogeneous. In that case, we define the transition probability from state i to
state j as pij = Pr{Xn+1 = j | Xn = i}, and the matrix of transition probabilities
P = [pij], where pij ∈ [0, 1],

j pij = 1, ∀i, j ∈ Γ.

The stationary (or steady-state) behaviour of a homogeneous discrete-time Markov
Chain can be analysed if the process satisfies some conditions that make it ergodic.
Informally, a Markov process is said to be irreducible if every state can be reached
from any other state. Each state can be either transient, if there is a non-null prob-
ability of never reaching again that state after a given time, or recurrent, and it is
said to be positive recurrent if the average return time to the state is finite. A state
is periodic if, after the process is in that state, it can return to the same state only in
a number of steps that is multiple of an integer constant c ̸= 1. An ergodic Markov
chain is irreducible and formed only by positively recurrent aperiodic states.

Let π = [π0π1π2 . . .] be the stationary state probability vector, where πj =
Pr{X = j} is the stationary probability of state j ∈ Γ, i.e., informally, the prob-
ability, on the long run, of observing, at any given moment, that the process is in
state j. Then for homogeneous ergodic discrete-time Markov chains we can compute
π as follows [115]:

π = πP, (1.3)

with the normalizing condition

j πj = 1. This is called the system of global balance
equations.

We can extend our considerations on DTMCs to continuous-time Markov chains
(CTMCs). A CTMCs is homogeneous if the conditional probability on the right-
hand side of formula (1.2) is independent of time tn, and it only depends on the
interval width (t− tn). Thus, we can write the transition probability from state i to
state j, depending only on the interval width s, as:

pij(s) = Pr{X(tn + s) = j | X(tn) = i}, ∀i, j ∈ Γ,∀tn ≥ 0.

Therefore, the state transition probability matrixP(s) = [pij(s)] is width-dependent.
We can then define a transition rate matrixQ = [qij], i, j ∈ Γ, which is usually known

1.2. Markovian models 5

as infinitesimal generator, as follows:

Q = lim
s→0

P(s)− I

s
.

The steady state behaviour of the continuous-time Markov chain can be evaluated
for homogeneous ergodic chain. Notice that checking the ergodicity in a CTMC
does not require to verify aperiodicity, since CTMCs are never periodic. The steady
state probabilities π = [π0, π1, π2, . . .], where πj = Pr{X = j} for each state j ∈ Γ,
can be computed by solving the following system of global balance equations:

πQ = 0, (1.4)

with the normalizing condition

j πj = 1.

6 1. Stochastic models

2
Formalisms and cooperation

semantics

In this chapter we introduce some of the basic notions about some of the best
known higher level formalisms for stochastic modelling, as well as the semantics of
the interaction among components expressed using the same formalism.

2.1 Queueing Networks

Queueing networks [20] have been widely used to represent and analyse systems
in which resource sharing and, therefore, contention, has to be considered, such as
production, communication and computer systems, and have proved to be a powerful
and versatile tool for system performance evaluation and prediction. A queueing
network (QN) consist of a set of service centres, representing system resources, which
serve a set of customers, which may represent users of a system, requests to a servers,
packets to be sent, etc.. Customers compete for the use of the services, and they
possibly wait to be served in queues, according to a queueing discipline. The analysis
of isolated queueing centres was originally introduced by Erlang to model congestion
of telephonic systems [70], and became popular to model computer networks thanks
to Kleinrock’s seminal work [116]. Queueing networks extend this class of models
allowing customers to move between different service centres according to some
routing rules [115, 80, 124, 170, 127, 110].

Usually the modeler is interested in analysing a queueing network in order to
evaluate a set of performance measures (or indices), such as resource utilisation,
throughput and customer response time. The dynamic behaviour of a queueing net-
work can be described by a set of random variables that define a stochastic process.
Under some constraints on the network itself, it is possible to define an associated
underlying stochastic Markov process, usually a (possibly infinite) CTMC, and to
compute the desired performance indices by its solution.

In spite of the constraints needed in order to have an underlying CTMC, and the
assumptions that have to be made to keep the model reasonably simple, queueing
networks have been proved to be a robust class of models [166].

8 2. Formalisms and cooperation semantics

The analysis and solution of queueing networks, i.e., the computation of perfor-
mance indices, can be done either analytically or by simulation. While analytical
methods offer a theoretically sound analysis of network behaviour, they usually re-
quire a set of strict assumptions on both the queueing centres characteristics and on
the routing of customers. On the other hand, simulation techniques have a wider
range of applicability, but, in order to achieve the desired accuracy, they can be
quite onerous to develop and computationally costly to run. Moreover, checking
correctness and interpreting simulation outcomes is a difficult task [125].

In order to overcome the aforementioned difficulties in the solution of queueing
network models, various paths have been explored in the literature.

Various kind of product-form (see Chapter 3 networks where identified, such
as Jackson [107], Gordon-Newell [84] and BCMP [26] networks. It is worth noting
that, even when the solution exhibits a product-form, the computation of normalised
steady state probabilities, in the general case, is not a trivial task. The most relevant
solution algorithms for closed networks are the Convolution Algorithm [48] and
the Mean Value Analysis [151], as well as their extensions for networks in which
the customers belong to classes [149, 157, 122, 42]. However, other algorithms
for multiclass QNs, with different computational complexities, have been proposed
[123, 172, 105, 59, 60, 58, 64].

In the more recent past, research has been focused to the extension of the class
of product-form network models and to its characterisation, such as the G-Networks
with positive and negative customers [78] that can be used to represent special
dynamics of real systems. Other classes of models include various functions of state-
dependent routing and several special cases of QNs with finite capacity queues, finite
population constraints and blocking [1, 6, 38, 85, 121, 168, 173]. The mathematical
properties leading to queueing networks’ product-forms are surveyed in [143], while
some extensions of product-form QN are presented in [173]. Product-form solution
has been extended to networks with batch arrivals and batch services [96, 97] which
concern also discrete-time models.

Queueing networks that do not exhibit a product-form solution where also anal-
ysed, e.g., Layered Queueing Networks [175, 76] and other types of networks ex-
tended to represent more complex system, e.g., with simultaneous resource posses-
sion, finite capacity queues and blocking, and fork and join [124, 158, 3, 152, 145, 6].

2.2 Stochastic Petri nets

Petri nets (PNs) and their timed extension Stochastic Petri nets (SPNs) [142, 141]
are widely used to model concurrent systems in which fork and join synchronisations
can occur. Informally, Petri nets are bipartite graphs consisting of places and tran-
sitions. Arcs connect places with transitions or vice versa and they are associated
with a natural number that represent the weight. When all the arcs have weight
1 we say that the Petri nets is ordinary. A marking associates a natural number

2.2. Stochastic Petri nets 9

with each place and represents the state of the net. The transitions determine the
dynamic behaviour of the net according to the firing semantics that is formally de-
fined in Section 2.2.1. The problem of reachability, i.e., deciding whether, given the
initial marking, another marking is reachable, is known to belong to the class of
EXPSPACE.

While some timed extensions to Petri nets, such as Stochastic Preemptive Time
Petri Nets [43], have a Discrete Time Markov Chain (DTMC) as the underlying
stochastic process, here we focus on Stochastic Petri Nets (SPNs), in which each
transition fires after an exponentially distributed time that is independent of the
firing times of all the other transitions. This implies that the underlying stochastic
process is a Continuous Time Markov Chain (CTMC) and the chain’s state space
corresponds to the state space of the corresponding PN. Once the CTMC is derived,
the performance indices can be computed using standard algorithms.

In this section we give some basic notions about stochastic Petri nets and building
blocks, which will be used thorough the thesis.

2.2.1 Stochastic Petri nets

A stochastic Petri net [142, 141] is a tuple, SPN = (P , T , χ(·), I(·),O(·),m0) where:

• P = {P1, . . . , PN} is a set of N places,

• T = {T1, . . . , TM} is a set of M transitions,

• χ : T → R+ is a positive valued function that associates a firing rate with
every transition; we usually write χi as an abbreviation for χ(Ti),

• I : T → NN associates an input vector with every transition,

• O : T → NN associates an output vector with every transition.

A marking of the model is a vector m ∈ NN that represents the numbers of tokens
mi in each place Pi, i = 1, . . . , N , and thus it identifies the current state of the
model. The initial marking is called m0. A transition Ti is enabled by m if m−I(ti)
has non-negative components. An enabled transition Ti fires after an exponentially
distributed random time with rate χi. In this case, the new state m′ is m− I(Ti) +
O(Ti). If the input and output vector domains are {0, 1}N , i.e. tokens move one by
one, the net is called ordinary.

The graphical representation of SPNs uses circles for places and bars for transi-
tions. If the j-th component of I(Ti) (respectively O(Ti)) is k > 0, we draw an arc
from Pj (respectively Ti) to Ti (respectively Pj) and we label it with k (for ordinary
nets we omit the labels).

The reachability set RS(m0) is the set of all the possible states of the net, given
the initial marking m0. In general, the problem of determining the reachability
set of a SPN is NP-hard and has an exponential space requirement [71]. The

10 2. Formalisms and cooperation semantics

nodes in the reachability graph are the states of the reachability set and there is
an arc from every node m′ to m′′ for which there exists a transition T such that
m′′ = m′ − I(T) +O(T). The incidence matrix A of an SPN is an M ×N matrix,
row i of which is defined as O(Ti)− I(Ti).

The reachability graph can be either finite or infinite and from it, the continuous
time Markov chain (CTMC) underlying the SPN model can be derived simply (ei-
ther lazily or in a parameterised way if the state space is infinite) [141]. Henceforth
we consider models whose underlying CTMCs are ergodic and so admit a unique,
equilibrium, state probability distribution. Calculating this can be a difficult com-
putational task because of the state space explosion problem, which causes even a
structurally small net to have a reachability set with high cardinality. In such cases,
solution of the global balance equations rapidly becomes numerically intractable.

We call the fundamental structure that we use to analyse SPNs in product-form
a building block (BB). We now formally define a BB and give an expression for its
product-form solution, together with sufficient conditions for it to exist.

2.2.2 Building blocks

According to [17], a BB consists of a set of places P1, . . . , PN , a set TI of input
transitions whose input vectors are null (i.e. 0 = (0, . . . , 0)), and a set TO of output
transitions whose output vectors are null. All the arcs have weight 1. In the BBs
for each input transition Ty there must exist an output transition T ′y whose input
vector is equal to the output vector of Ty.

Definition 1 (Building block (BB)). Given an ordinary (connected) SPN S with
set of transitions T and set of N places P, then S is a building block if it satisfies
the following conditions:

1. For all T ∈ T , either O(T) = 0 or I(T) = 0. In the former case we say that
T ∈ TO is an output transition while in the latter we say that T ∈ TI is an
input transition. Note that T = TI ∪ TO and TI ∩ TO = ∅, where TI is the set
of input transitions and TO is the set of output transitions.

2. For each T ∈ TI , there exists T ′ ∈ TO such that O(T) = I(T ′) and vice versa.

3. Two places Pi, Pj ∈ P, 1 ≤ i, j ≤ N , are connected, written Pi ∼ Pj, if there
exists a transition T ∈ T such that the components i and j of I(T) or of O(T)
are non-zero. For all places Pi, Pj ∈ P in a BB, Pi ∼∗ Pj, where ∼∗ is the
transitive closure of ∼.

Note that in an isolated BB, if two or more input (output) transitions have the
same output (input) vector, we can fuse them in one transition whose rate is the
sum of the rates of the original transitions. Therefore, without loss of generality,
we assume that all the input (output) transitions have different output (input)
vectors. Finally, to simplify the notation, we use Ty (T

′
y) to denote an input (output)

2.3. Markovian Process Algebra 11

transition, where y is the set of place-indices of the non-zero components in the
output (input) vector of Ty (T ′y). We now recall Theorem 1 that gives sufficient
condition for the product-form of a BB.

Theorem 1 (Theorem 2 of [17]). Consider a BB S with N places. Let ρy = λy/µy,
where λy, µy are the firing rates for Ty, T

′
y ∈ T , |y| ≥ 1, respectively. If the following

system of equations has a unique solution ρi, (1 ≤ i ≤ N):
ρy =

i∈y ρi ∀y : Ty, T

′
y ∈ T ∧ |y| > 1

ρi =
λi

µi
∀i : Ti, T

′
i ∈ T , 1 ≤ i ≤ N

(2.1)

then the net’s balance equations – and hence stationary probabilities when they exist –
have product-form solution:

π(m1, . . . ,mN) ∝
N
i=1

ρmi
i . (2.2)

Another interesting result is proved in [131] where the throughput (namely, the
reversed rate) of the output transition of a product-form BBs are derived:

Lemma 1. In a product-form BB that satisfies the conditions of Theorem 1, the
throughput (reversed rate) of every output transition labelled T ′y is λy, i.e., the rate
of the corresponding input transition.

2.3 Markovian Process Algebra

Process algebras are widely used as a formalism for functional analysis of concurrent
systems. The main strength of this family of formalisms is the combination of a well-
defined semantics and compositionality.

2.3.1 Classical process algebras

Process algebras are formal languages, with their own syntax and semantics, which
have been widely used for the design and specification of concurrent systems. The
most popular and influential process algebras are:

• Milner’s Calculus of Communicating Systems (CCS) [137] and its evolution,
π-calculus [138].

• Hoare’s Communication Sequential Processes (CSP) [104].

Process algebra models (either CCS and CSP) have been used to establish the
correctness of concurrent systems. In fact, several qualitative properties can be
derived such as liveness.

12 2. Formalisms and cooperation semantics

A process algebra model consists of a set of agents that perform atomic actions.
The actions can represent sequential behaviours of the agents, communications or
synchronisations among them. The major difference between CCS and CSP is on the
definition of the semantics for the communication actions. We informally introduce
the basic syntax of those calculi and then describe the communication techniques
defined for CCS and CSP.

An agent P is defined according to the following syntax:

P ::= 0

| a.S

| S +Q

| S||Q
| S ∖M

| S[a1/a0, . . .]

| 0

where S and Q are agents, a and ai denote a label and M is a set of labels.
Informally, the semantics of the operators is the following:

• The prefix operator a.S models an agent that after performing action a behaves
like S.

• The choice operator S +Q says that the agent behaves either as S or Q.

• The parallel composition S||Q denotes that S and Q proceed in parallel, pos-
sibly communicating with each other.

• The restriction S ∖M hides the set of labels M of S from outside agents.

• The relabelling S[a1/a0, ...] replaces in S the label a0 by a1, more than one
replacement can be specified.

Notice that the null agent 0 is the agent that cannot do anything and can thus be
considered as stuck in a deadlock.

In CCS the communication is defined between pairs of agents. If an agent per-
forms an action a, then the communication occurs when the other agent performs a
complementary action a. The resulting communication action has the special label
τ that denotes an internal action invisible to the environment.

In CSP there is not any concept of complementary action. The synchronization
occurs when two agents perform an action with the same label. Here the joint action
remains visible to the environment, therefore other concurrent processes can reuse
it to communicate with the process just formed by the interaction of the previous
ones. This leads to a multiway synchronization.

2.3. Markovian Process Algebra 13

Stochastic Process Algebras (SPAs) usually have a communication semantics
similar to the one of CSP.

CCS and CSP have a structured operational semantics. This is based on a labelled
transition system (LTS). This allows for the construction of a derivation graph, in
which the vertices are the language terms and the arcs are the transitions.

A bisimulation is a binary equivalence relation that can be applied to process
algebra models. Informally, two systems are bisimilar if they match each other’s
visible moves. In the bisimulation style of equivalence an agent is characterized
by its actions and, in general, the analysis of the derivation graphs is required. If
the internal actions are considered observable then we have a strong equivalence,
otherwise we have a weak equivalence.

As we already stated, both CCS and CSP, being process algebras, allow one
to derive several qualitative properties of the modelled systems. In order to per-
form quantitative analysis, however, timed extensions of these formalisms have been
introduced.

2.3.2 Process algebras extensions

Since in classical process algebras time is not represented explicitly, performance
measures of the models are not possible. The extensions that we name in this
section aim to introduce the timing and/or the probabilities of different behaviours
in the model description, in order to derive quantitative measures such as expected
response time or throughput. In the last years several extensions to process algebras
have been defined in order to deal with quantitative analysis. We can identify three
classes of extensions:

• Timed process algebras. The idea behind those extensions is to assign a dura-
tion to every action, i.e., the operator α.P becomes (α, t).P where t denotes the
time required for action α. These extensions have been proposed for different
languages: ACP [4], CSP, CCS and LOTOS [98].

• Probabilistic process algebras. In this case the main idea consists in defining
a new semantics for the choice operator. Informally, S = P +Q in a standard
process algebra means that process S can behave either as P or Q. In proba-
bilistic process algebras this non-determinism becomes a probabilistic choice,
whose details depends on the algebra that is used. Again, the probabilistic
extension has been introduced for ACP, CCS, CSP and LOTOS.

• Stochastic process algebras. In this case an action requires a random time to
be performed. Timed processes and performance analysis (TIPP) is a stochas-
tic process algebra that extends CSP [99]. Action durations are modelled
by exponential random variables, therefore the underlying stochastic process
is a Markov process. Another process algebra based on a CSP extension is
Performance evaluation process algebra (PEPA) defined by Hillston in [101].

14 2. Formalisms and cooperation semantics

Even in this case the action duration are exponentially distributed. Extended
Markovian Process Algebra (EMPA) [31] has been introduced by Bernardo
et al. in [30] and provides constructs to represent immediate transitions and
non-determinism as well. Stochastic extensions of the CCS family of algebras
include the stochastic π-calculus [148] and SPADES [93].

Adding temporal and probabilistic informations to a Process algebra influences
the following analysis [98]

• functional behaviour (e.g. liveness or deadlocks),

• temporal behaviour (e.g. throughput, waiting times, reliability),

• combined properties (e.g. probability of timeout).

In this section we focus on Performance Evaluation Process Algebra (PEPA),
the most widely used Markovian Process Algebra (MPA). In PEPA every action has
a duration that is modelled by an exponentially distributed random variable. The
aim of the formalism definition is, using the SOS (Structural Operational Semantics)
rules of the algebra, to be able to obtain a Continuous Time Markov Chain (CTMC)
given any PEPA model. As for other process algebras, a PEPA model consists of
a set of components that can interact according to a small number of combinators:
prefix, choice, parallel composition and abstraction. We briefly recall this formal
model description in Section 2.3.3. Thanks to the great flexibility of this formalism
and the available software tools (see Chapter 4), PEPA has become quite popular
in the performance analysis field. However, even a system consisting of simple
interacting components may generate a very large CTMC and the exact analysis of
the system performance can soon become unfeasible. For this reason, many research
efforts have been devoted to study product-forms for PEPA that could possibly allow
for more efficient solution algorithms [102, 87, 159, 89, 91]. As we will see in Chapter
3, roughly speaking a product-form model has a steady-state distribution that can
be calculated by product of the steady state distributions of its components, even
if the components are not stochastically independent. Note that defining efficient
solution algorithms for product-models can be a non-trivial task. In Chapter 5 we
will show such an algorithm, along with a tool that implements it, while in Chapters
6, 7 and 8 we will show some methods that can be applied even when the model is
not in product-form.

2.3.3 Performance Evaluation Process Algebra

In this section we introduce PEPA and we recall its syntax. PEPA models are based
on the description of component interactions. Each component has an associated
set of actions. Let Act be the set of all actions, then a ∈ Act is a pair (α, r) where
α ∈ A is the type of the action (and A the set of action types) and r ∈ R+ is the

2.3. Markovian Process Algebra 15

parameter of a negative exponential distribution. In what follows we briefly recall
the PEPA operational semantics presented in details in [101].

• The prefix combinator models the sequential behaviour, i.e., the component
(α, r).P carries out the activity (α, r) in ∆t time and then behaves as compo-
nent P . ∆t is an exponentially distributed random variable with parameter
r.

• The choice combinator +, i.e. P + Q, models a component that behaves as
component P or as component Q. When a component can perform an activity
(α, r) we say that the activity with type α is enabled. Let us denote all the
activities enabled in P by Act(P). Then Act(P + Q) = Act(P) ⊎ Act(Q),
where ⊎ denotes the multiset union. The first completed activity determines
if the component behaves as P ′ or Q′, where P ′ is the component that results
from P completing the activity, and similarly Q′.

• The cooperation combinator models the synchronization and the cooperation
among components. We use the following notation: P ▷◁

L
Q where L is a set

of action types. All the activities in P and Q whose type is not in L are called
individual and are not affected by the operator. On the other hand, the shared
activities can be carried on only when they are enabled in both the components
P and Q. This can cause a component to block waiting for the other. When
the activity is enabled in both the components it is carried on with the rate of
the slowest. This ensures that P ▷◁

L
Q has an exponentially distributed state

resident time. One of the activities contributing to the cooperation can be
passive, i.e., it has an unspecified rate (α,⊤). In this case the other activity
determines the rate of the cooperation.

• If L = ∅ the components carry on their activities independently. We call this
case pure parallel combinator and we denote it by P ||Q.

• The last combinator is the abstraction. We use the syntax P/L where P is a
component and L a set of types. All the activities in P with type in L cannot
be carried out in cooperation with other components, that is they are hidden
and assume the unknown type τ . However, they still require a time to be
completed. The hidden activities can be thought as internal activities of the
component.

It is worth recalling that some of the most important recent results about
product-forms [89, 91, 92] as well as the seminal idea about component-wise state
space aggregations, i.e., the notion of strong equivalence [101], were originally ex-
pressed using the PEPA syntax and exploiting the PEPA’s cooperation semantics.
However, since in this thesis we will not focus on the linguistics aspects of that
process algebra, we will recall those theorems, where needed, using a simplified
notation.

16 2. Formalisms and cooperation semantics

2.4 Stochastic Automata

In this section we introduce another formalism capable of modelling synchronisations
between components, i.e., cooperating automata –in a similar fashion of what is done
in [46] – however, we restrict our analysis to pairwise cooperations (as, e.g., in [72]).
We use bold letters to denote matrices and vectors (which must be considered row-
vectors unless differently stated). en is the n−dimension vector whose components
are all 1, In is the identity matrix of size n × n. Sizes are omitted when they can
be implicitly assumed. In what follows, we first introduce the semantics of the
synchronisation between two components and then give the restrictions assumed in
this thesis.

Let us consider a pair of automata M1 and M2 which synchronise on a set of
transition types T = {1, 2, . . . , T}. The rate of a transition type is a positive real
number λt, t ∈ T . For each label t ∈ T we define two matrices E1t and E2t that
describe the behaviour of component-automaton M1 and M2, respectively, with
respect to synchronising label t and whose dimensions are Nk × Nk for Ekt, with
k = 1, 2 and Nk representing the number of states of Mk.

Matrix element Ekt(s, s
′) denotes the probability that automatonMk moves from

state s to state s′ joint with a transition with the same type t performed by the other
automaton; hence 1 ≤ s, s′ ≤ Nj, and 0 ≤ Ekt(s, s

′) ≤ 1. Moreover, the sum Rkt(s)
of any row s of matrix Ekt is in the interval [0, 1] and can be interpreted as the
probability that component Mk accepts to synchronise on t given that its actual
state is s.

The infinitesimal generator Q of the CTMC underlying the synchronisation of
the two automata is defined as follows [164]:

Q =
T
t=1

λt(E1t ⊗ E2t)−
T
t=1

λt(D1t ⊗D2t), (2.3)

where Dkt = diag(Ekte
⊤), and diag(v) (with v a n-dimension row-vector) is defined

as the n× n matrix:

diag(v)(s, s′) =

v(s) if s = s′

0 otherwise
,

and ⊗ denotes the Kronecker’s product operator.
Note that if model M1 is such that E1t1 = E1t2 = I with t1 ̸= t2, then we

can replace transition types t1 and t2 with a new type t∗ for which E1t∗ = I and
E2t∗ = (λt1E2t1 + λt2E2t2)λ

−1
t∗ , where λt∗ = maxs(

s′(λt1E2t1 + λt2E2t2)(s, s

′)). As
a consequence, we order the transition types such that: for t = 1, we have E21 = I,
for t = 2 we have E12 = I whereas for 2 < t ≤ T we have the remaining non-trivial
synchronising transition. The reason for distinguishing t = 1, 2 and t > 2 will be
clear later on.

2.4. Stochastic Automata 17

λ µ1 µ2

M1 M2

p

1− p

Figure 2.1: Tandem of exponential queues.

In order to familiarise with the proposed notation, we model a simple tandem
of two exponential queues by means of automata and discuss the advantages of the
choice of this formalism with respect to other possible candidates.

Example 1 (Automata representation). Note that this model representation re-
moves the asymmetries that arise in some Markovian process algebra (e.g. PEPA)
between active and passive transitions. To see this, consider a simple tandem of
two queueing stations with independent, exponentially distributed, service time with
mean 1/µ1 and 1/µ2. Customers arrive from the outside according to a homogeneous
Poisson process with rate λ. After being served at the first queue, customers may
enter the second one with probability 1−p or leave the network with probability p (see
Figure 2.1). In this example, the independent transitions of M1 (t = 1) correspond
to the arrival of customers and to the service completions at the first queue after
which the customers leave the network, whereas the independent transitions of M2

(t = 2) correspond to the service completions at the second queue. According to the
notation introduced, we have:

E11 =

0 1 0 0
γ 0 1 0 . . .
0 γ 0 1
...

.

 , E12 = I , E13 =

0 0 0 0
1 0 0 0
0 1 0 0 . . .

. . .

 ,

E21 = I , E22 =

0 0 0 0
1 0 0 0 . . .
0 1 0 0

. . .

 , E23 =

0 1 0 0
0 0 1 0 . . .
0 0 0 1

...
. . .

 ,

whith λ1 = λ, γ = µ1(1 − p)/λ, λ2 = µ2, and λ3 = µ1p. As mentioned before, in
the SAN master/slave synchronisation [146] or in the PEPA active/passive cooper-
ation [101], the modeller has to choose for each synchronising type which automaton
is active (and hence determine the rate of the transition in the joint model) and
which is passive (i.e., is forced to move at the rate imposed by the active). Using the
formalism proposed in [46] there is no need for this distinction.

18 2. Formalisms and cooperation semantics

3
Product Forms

As we have already seen, Markovian models have proved to be a robust and versatile
support for the system performance analysis community. Performance modelling
and analysis of complex heterogeneous systems and networks based on analytical
model is usually done on an abstraction described using a high-level formalism, such
as Stochastic Petri Nets (SPNs), Performance Evaluation Process Algebra (PEPA),
queueing systems or networks, that have an underlying Continuous Time Markov
Chain (CTMC). The desired performance indices, under steady-state conditions,
are computed by the evaluation of the stationary state probabilities of the CTMC.
This computation is usually a hard task, when not unfeasible, since it requires the
solution of the system of Global Balance Equations with a computational time cost
of O(Z3), where Z denotes the number of ergodic states of the model. Under special
conditions it is possible to define some efficient algorithms for numerical (exact or
approximated) solution of the GBEs.

Product-form models take a different approach. They apply the divide et impera
paradigm to efficiently solve complex models. Informally, a model S is seen as
consisting of a set of N interacting sub-models S1, . . . , SN . A state of S can be
defined as m = (m1, . . . ,mN) where mi is a state of Si. S is in product-form
with respect to S1, . . . , SN if its stationary distribution π(m) satisfies the following
property:

π(m) ∝
N
i=1

gi(mi),

where gi is the stationary distribution of sub-model i considered in isolation and
appropriately parametrised. Roughly speaking, from the point of view of a single
sub-model, the parametrisation abstracts out the interactions with all the other sub-
models. Since the state space of a sub-model Si is much smaller than that of S the
solution of its GBEs may be computed efficiently. Modularity becomes a key-point
both for the analysis and the description of the model, since it is a good engineering
practice to provide modular models of systems.

Exploiting the product-form solutions requires to address two problems:

1. Deciding whether model S is in product-form with respect to the given sub-
models S1, . . . , SN ;

20 3. Product Forms

2. Computing the parametrisation of the sub-models S1, . . . , SN in order to study
them in isolation.

We have not listed the solution of the sub-model CMTCs as a problem because we
suppose that the cardinalities of their state spaces are small enough to directly solve
the GBEs. If this is not the case, a product-form analysis of the sub-models may
be hierarchically applied. In literature, Problem 1 has been addressed in two ways.
The first consists in proving that a composition of models that yield some high-level
characteristics is in product-form. For instance the BCMP theorem [26] specifies
four types of queueing disciplines with some service properties and states that, under
certain conditions, a queueing network of such models has a product-form solution.
The second approach is more general, i.e., the properties for the product-form are
defined at the CTMC level. Although this can lead to product-form conditions that
are difficult to interpret, this approach really enhances the compositionality of the
models, because it is possible to combine sub-models originated by different high-
level formalisms. In this chapter, we often refer to a recent result about product-
forms: the Reversed Compound Agent Theorem (RCAT) [89]. This theorem has
been extensively used to prove a large set of product-form results previously known
in literature (BCMP product-form [88], G-networks with various types of triggers
[90], just to mention a few). Problem 2 is usually strictly related to Problem 1. In
general, the parametrisation of the sub-models requires the solution of a system of
equations that is called system of traffic equations. For several years it was assumed
that product-form solutions must be derived from linear systems of traffic equations,
but the introduction of G-networks has shown that this is not necessary.

In this section we provide the basic theoretical background and the notation
needed to understand the content of Chapter 5. Most of the topics will be introduced
informally, but the interested reader may refer to the original works for more precise
and detailed information.

The algorithm that is described in Section 5.3 is based on the product-form
analysis introduced by Harrison in [89]. The following paragraphs briefly sketch
these results, using a simplified notation, after giving an introduction to the class
of models we refer to.

Model description and interaction. Consider a finite set of models S1, . . . , SN .
We denote by ni, n

′
i, n
′′
i . . . the states belonging to the state space of Si. Transitions

may change the state of model Si and are characterised by:

• a label ai

• a departing state ni and an arrival state n′i, we write ni
ai−→ n′i

• an active transition with rate qi(ni
ai−→ n′i), i.e., the positive parameter of

the exponential random variable associated with the time required by that
transition to be carried out. Alternatively, the transition may be passive, i.e.,
its rate is undetermined and we denote this by the ⊤ symbol.

21

Note that it is required that all the transitions with the same label in Si are either
active or passive. Let Ai denote the set of active labels for Si and Pi that of the
passive labels. The synchronisation between two models Si and Sj occurs when
there is a label a ∈ Ai∩Pj or a ∈ Pi∩Aj. In the former case Si is the active model
with respect to the synchronisation a, in the latter it is the passive (and vice versa
for Sj). When a is a synchronising label for models Si and Sj, these perform the
transitions labelled by a only jointly. The rate of the joint transition is defined by
the rate of the active model. Note that we are defining pairwise synchronisations.
A formal analysis of this semantics can be found in [101, 89]. A final assumption is
that if a ∈ Ai, for each state in Si there is a finite number of outgoing arcs labelled
by a and if a ∈ Pi for each state in Si there is only one outgoing arc labelled by a.
This condition is trivially satisfied for all the well-known product-form stochastic
models.

RCAT formulation. Since a model Si may have passive transitions, its infinites-
imal generator in isolation cannot be computed, and hence its equilibrium probabil-
ities are unknown. Roughly speaking, RCAT gives us a way to compute a value Ka

associated with each passive label a. Once these are known, we can modify model
Si such that all the transitions labelled by a ∈ Pi take Ka as a rate (and we write
Sc
i = Si{a← Ka}). This modified model is called Sc

i , where the c stands for closure.
Then, the stationary distribution of the cooperating model is the product of the sta-
tionary distributions of the closure of its sub-models Sc

1, . . . , S
c
N if Ka is the reversed

rate of all the transitions labelled by a in Sc
j such that a ∈ Aj. The formulation

of the following theorem is slightly different from the original [89] mainly because
we use a different notation (in the original paper a Markovian process algebra is
used). In what follows we state RCAT extended to multiple pairwise interactions
and adapted to the notation we introduced.

Theorem 2 (RCAT [89]). Given a set of cooperating models S1, . . . , SN assume that
the following conditions are satisfied:

1. for all i, if a ∈ Ai then for each state ni of Si there is exactly one state n′i
such that n′i

a−→ ni

2. for all i, if a ∈ Pi then for each state ni of Si there is exactly one state n′i such
that ni

a−→ n′i

3. there exists a set of positive values K = {Ka, a ∈ Ai ∩ Pj, i, j = 1, . . . , N}
such that when all the models are closed using the values in K we have that
Ka ∈ K is the rate of all the transitions labelled by a in the reversed process of
Sc
i , where a ∈ Ai.

Then, the stationary distribution of positive recurrent state n = (n1, . . . nN) is in

22 3. Product Forms

product-form:

π(n) ∝
N
i=1

πi(ni),

where πi(ni) is the stationary distribution of state ni in Sc
i .

We refer to conditions 1 and 2 of Theorem 2 as structural conditions, and to
condition 3 as the traffic equation condition. Note that a key-concept in the formu-
lation of Theorem 2 is the rate of the active transitions in the reversed processes
of the closed sub-models. If we have a transition ni

ai−→ n′i, with ai ∈ Ai and ni, n
′
i

states of Si, then the following relation holds [111, 89]:

qi(ni
ai−→ n′i) =

πi(ni)

πi(n′i)
qi(ni

ai−→ n′i), (3.1)

where qi(ni
ai−→ n′i) denotes the rate of the transition from n′i to ni labelled by ai in

the reversed process corresponding to ni
ai−→ n′i in the forward one.

4
Tools

4.1 Introduction

As we already noted, performance and reliability evaluation of computer systems
and networks is a widely studied topic and a powerful tool for system designers and
maintainers. However, for a practitioner in the software or hardware engineering
field, the modelling phase required by those kinds of analysis could represent a
showstopper, because commonly used formalisms can be difficult to understand and
because they are suitable and designed for specific and restricted classes of problems.
For example, while Queueing Networks [20] are an easy to learn formalism to model
resource contention, Stochastic Petri Networks [141], are better suited for modelling
synchronisation in concurrent settings. Hence performance engineers and designers
would take a great advantage from the availability of a set of different formalisms
in performance modelling tool, to exploit the different potentials for modelling and
analysis of complex computer systems.

However, the differences in the semantics of formalisms often poses significant
difficulties in defining how they should integrate. Moreover, usually system perfor-
mance evaluation can be carried on through different modelling solution techniques
and algorithms, e.g., symbolic or numerical analysis, which could be exact or approx-
imate, and simulation. The various modelling solution methods should be included
in the tools and available to the user, along with the statistical information on the
quality of the result obtained. Notice, however, that in general there is a tradeoff
between the expressivity of a formalism and the computational complexity required
for the exact derivation of the desired performance/reliability indices. Finally, the
availability of an intuitive user interface is of paramount importance. Ideally, a user
should choose between a Graphical User Interface (GUI), which allows one to rapidly
design complex systems, and a textual, command line interface or a programming
language, in order to automatise repetitive tasks and to feed the tool with data
generated automatically by other software.

The purpose of this chapter is to analyse software packages that allow analysts to
express and solve models using more than one formalism. Having introduced some
of the difficulties that the development of such a software could encounter, it should
not be a surprise that very few of them actually exists. The motivation behind this

24 4. Tools

analysis is to put the tool described in Chapter 5, and in particular its integration
with a multi-formalism designing tool, described in Chapter 9. . At the best of our
knowledge, a surveying activity on this topic was never attempted before. However,
in [109] the authors gives an overview on tools for evaluating reliability, availability
and serviceability available at the time.

This chapter does not focus neither on design methodologies that allow for per-
formance analysis during the software development cycle nor on the mathematical
basis underlying modelling formalisms. A survey on the former topic is presented
in [19], while for the latter the reader can refer to [32].

Software classification In order to classify the analysed software packages, it is
necessary to determine some qualitative criteria. In this chapter we consider the
following characteristics:

• The type of formalisms used.

• The kind of solutions obtainable by the tool.

• The kind of user interface.

• The amount of available documentation.

• The license of the software.

• The maintenance status of the software.

• The hardware and software platforms supported.

Other important characteristics of the software, such as the level of interoperability
with other software tools, the ease of use or the pricing scheme are not considered
here, because they need a subjective evaluation, which is out of the scope of this
document.

Single-Formalism Tools Over the years, many tools able to model and anal-
yse systems expressed in a single formalism have been proposed and implemented.
Restricting the modelling expressiveness often allows one to exploit formalisms’ fea-
tures that permit faster or more precise solutions. As we are focusing on multiple-
formalism softwares, here we recall only some of the most popular or influential
single-formalism performance design tool in the literature. We can roughly distin-
guish the design formalisms, and thus tools, in the following categories:

• Markov Processes: this is the class of formalisms at the lowest level of
abstraction usually employed for performance evaluation. Most of the higher-
level formalism used in that field is based on them. As the number of states
increases, advanced software techniques are required in order to maintain nu-
merical stability and a reasonable space and time computational complexity,

4.1. Introduction 25

e.g., exploiting the presence of regularities in the model specification. Tools
that solve Markov or Semi-Markov processes [113, 154], given some structural
assumptions, include SMCSolver [34]. Some extension to classical continuous
time Markov chains in which it is possible to synchronise transition between
different chains, such as Stochastic Automata [146] or formalisms derived from
process algebras, have been proposed. A softwares that allows for the solution
of such models is described in [15].

• Stochastic or Probabilistic Process Algebras: those formalisms, such as
PEPA [101] describe a system in term of interacting processes specified using
a formal language with a well-defined semantics, on which algebraic manip-
ulations and model checking are possible. Tools that allow models written
using process algebras to be analysed include the PEPA Eclipse Plugin [169],
the Imperial/International PEPA Compiler [41], the PEPA workbench [82],
ipc/HYDRA [40] and PRISM [119].

• Queueing Networks: they are among the oldest and most used class of
formalism for performance modelling and evaluation. Unfortunately, while
their use can be fairly intuitive, their lack of a formal and simple semantics
makes the implementation of all their possible variants difficult for a software
designer point of view. Software packages that implement some classes of
queueing networks include the qnetworks toolbox [135], QMAM [144], QNAP2
[174], FiFiQueues [155], PEPSY-QNS [114] and the Java Modelling Tools [33].
Layered Queueing Networks [76], an extension of this class of formalism, can be
analysed using the Layered Queueing Network Solver. SPE·ED [162] is a tool
for the Software Performance Engineering (SPE) [161] where the behaviour of
software is modelled as an execution graph, on which the tool can perform a
static analysis and translate it in a queueing network.

• Petri Nets: Variants of Petri Nets that take into account time and prob-
abilistic behaviour, e.g., Stochastic Petri Nets, Generalised Stochastic Petri
Nets [134] or Stochastic Activity Networks [136], have proved to be a popular
choice among performance evaluation software designers. Among the tools
that can be used to analyse models designed using this class of formalisms we
can find TimeNET [177], PIPE [36, 68, 37], DSPNExpress [129], SPNP [103]
and GreatSPN [51]. A hybrid formalism named Queueing Petri Nets [27],
which combines Coloured GSPNs with queues, is used by QPME [118]. An-
other extension to Petri Nets, the Abstract Petri Net Notation (APNN) [28],
was proposed in order to have a formalism capable to encompass all the pos-
sible features of common formalisms used in performance evaluation. APNN
Toolbox [47] is a tool which allows the analysis of systems modelled using
APNNs. The DEDS (Discrete Event Dynamic Systems) Toolbox [29] allows
the analyst to design tools that support multiple formalisms through APNN

26 4. Tools

as a common intermediate one. To the best of our knowledge the tool is no
more publicly available, and thus has not been included in this chapter.

The list above does not cover all the possible input formalisms used by software
tools. Less popular formalisms have also been exploited, such as the ad hoc specifi-
cation languages used by Mosel [57] and Modest/Motor [35], or probabilistic tempo-
ral logics used by model checkers such as the already-cited PRISM Although those
formalisms could be useful in specific environment, and they can help practition-
ers coming from other fields to include performance analysis in their work, their
scarce diffusion among the performance evaluation community makes their use and
acceptance somewhat more problematic.

4.2 Software Analysis

In this section we analyse some of the softwares that allow one to design system mod-
els combining different formalisms. Although some early efforts on multi-formalism
design tools development are mentioned in the literature, e.g., the Integrated Mod-
elling Support Environment (IMSE) [147] and DNAmaca [117], we focus only on
software packages for which we were able to verify the existence of their implemen-
tation and that appear to have been in active development at least after the year
2000.

SHARPE SHARPE (Symbolic Hierarchical Automated Reliability and Perfor-
mance Evaluator) [156], developed at the Duke University since 1986 [171], is a
software that allows one to specify and analyse performance, reliability and per-
formability models using a variety of formalisms. SHARPE provides a specification
language that can be used both interactively or to write scripts (batch mode). More-
over, a graphical user interface is available. Each modelling formalism has keywords
in the language in order to specify the design of the model.

Supported formalisms include Markov and semi-Markov chains, Markov regener-
ative processes Single and Multi-Chain Product Form Queueing Network, i.e., closed
queueing networks whose nodes belong to the set of types defined for BCMP net-
works [26], Generalised Stochastic Petri Nets (GSPNs) , Stochastic Reward Nets,
Reliability Block Diagrams (RBDs), fault trees, reliability graphs, and series-parallel
graphs [170]. For each of these formalisms, a set of corresponding solution functions
can be invoked, in order to get numerically-computed values for performance param-
eters. Different solution methods, both for transient and steady state analysis, are
used, depending on the input formalism. Submodels written in different formalisms
can be composed hierarchically, even if not all formalisms, most notably queueing
networks or GSPNs, can benefit from this feature. Part of a composed model, drawn
from the example library of the software, is shown in Figure 4.2, while graphing ca-
pabilities can be seen in Figure 4.4. SHARPE’s supported platforms include Solaris,

4.2. Software Analysis 27

Windows and Linux. SHARPE is a proprietary software, but it is free for academic
users. The software is mature and well documented, and its latest release at the
time of the writing of this chapter was released, for Windows only, on February
2010. Other tools, such as the Software Reliability Estimation and Prediction Tool
(SREPT) [150], can use SHARPE as a component to solve some class of models.

Figure 4.1: SHARPE: a Multiclass Product Form Queueing Network

Möbius Möbius [54], developed at the University of Illinois, is a tool for modelling
complex systems using various formalisms, such as Stochastic Activity Networks
(SAN) and their simplified version, called Buckets and Balls, PEPA and its extension
PEPAk [55], Fault Trees.Each formalism can be used to create atomic models, i.e.,
models described using a single formalism. Models consist of state variables and
actions, representing transitions among states. Composed models can be made by
combining atomic models that use different formalisms in order to describe complex
systems made up of different components. Once a model is built, in order to specify
performance measures it is necessary to have a reward model, that associates reward

28 4. Tools

Figure 4.2: SHARPE: composed model, RBD

Figure 4.3: SHARPE composed model, Markov chain

variables with a composed model. It is then possible to use a solver to compute the
values of those variables, i.e., a result.

There are two kinds of solver: numerical solvers and simulators. Numerical
solvers are able to find the exact values (within a numerical precision) of perfor-
mance variables. However, the applicability of those solvers is limited to models
whose underlying stochastic processes are Markovian or deterministic with a finite
state space. In order to compute this state space, a transformer is used. Those
transformers can generate a flat state space exploring the process or a symbolic one,

4.2. Software Analysis 29

Figure 4.4: Plotting capabilities of SHARPE

i.e., a compact representation of the space state, obtained using lumping techniques.
Once the state space is generated, the chosen numerical solver computes the steady
state probabilities of the model. The Möbius’ simulator can be used with every kind
of model that can be expressed using the software itself and, using discrete event
simulation, it can find both transient and steady state solutions for the model. More-
over, the simulation can be distributed among different computers, parallelising the
computation. However simulation results can suffer from statistical and numerical
problems [125]. Solutions are provided with confidence intervals. Solutions found
using different techniques can be combined into connected model solvers, where, in
a multi-step approach, the solutions of separate models are combined using connec-
tion functions in order to compute the global solution. Moreover, solution data of
multiple experiments can be analysed using a study.

Möbius is equipped with a graphical user interface, that is used both to design
models and to get and analyse solutions, although many of its components can be
also executed in a non-interactive fashion using the command line. A screenshot
from an example composed model available in Möbius is shown in Figure 4.5, while
the output of a simulation run on the same model is shown in Figure 4.8.

30 4. Tools

Figure 4.5: Möbius: a composed model

The tool is written in Java and supported platforms include Linux, MacOS X and
Windows. Möbius is a proprietary software, but it is free for academic non-profit
users. The software is mature, it appears to be regularly updated and maintained,
and provides an extensive documentation of the features implemented. The last
release, as we write those words, is numbered 2.3.1.

SMART SMART (Stochastic Model checking Analyzer for Reliability and Tim-
ing) [52] is a software tool that allows one to model complex systems and to analyse
them using both performance analysis and symbolic model checking techniques.
Currently the formalisms supported are Markov Chains (both at discrete and con-
tinuous time) and Stochastic Petri Nets, however the authors plan to add more
formalisms in the future.

SMART provides a language to specify the behaviour of the system. The lan-
guage supports features like cycles and recursion, which allow the user to write algo-
rithms. From the performance evaluation perspective, SMART provides numerical
solution algorithms for transient and steady-state analysis of stochastic processes.
Discrete event simulation is mentioned in the documentation but it seems that it is
not yet completely implemented. The literature on the tool shows a particular focus
on enhancing the efficiency of the tool, e.g., storing large state spaces in a compact
representation [53, 139].

The software is available for Linux, Mac OS X and Windows. The licensing

4.2. Software Analysis 31

Figure 4.6: Möbius: a PEPAk submodel

Figure 4.7: Möbius: a SAN submodel

32 4. Tools

Figure 4.8: Möbius: simulation results

4.3. A model example 33

scheme is not stated in the home page of the projects, and a private inquiry has to
be made in order to get the software. At the time of the writing of this chapter,
we were not able to test the tool. However an extensive documentation is freely
available, and we have based our considerations on it. The first prototype of the
software was built between 1994 and 1996. The last public activities on the project
appears to be from 2008.

SIMTHESysEr SIMTHESysEr is a software, based on the Structured Infras-
tructure for Multiformalism modeling and Testing of Heterogeneous formalisms and
Extensions for SYStems (SIMTHESys) methodology [106], that allows users to cre-
ate tools to solve arbitrary, user-defined classes of models. The key feature of the
SIMTHESys approach, is the possibility to integrate different models, formalisms
and solvers within a single framework, through the use of Behavioural Facilities
(BFs). A Behavioural Facility can be seen as a translation layer between formalisms
and solvers. BFs provide standard interfaces allowing to introduce new formalisms
or new solvers simply adding a new implementation of those interfaces.

At the moment, SIMTHESysEr provides some predefined formalisms, such as
some kind of queueing networks, Stochastic Petri Nets and Markov chains, along
with some solution techniques for transient and steady state analysis. All the models
that could be specified must have a finite state space. Although it does not provide
a graphical interface, models can be designed using the Draw-Net software [86] and
used by SIMTHESysEr.

The tool is written in Java, with some optional C++ modules, and the source
code is freely available. Although installation instructions are provided only for
Windows, it should run with little effort in every architecture that provides a Java
Virtual Machine and a C++ compiler, including Linux and Mac OS X. The software
and its documentation is in ongoing development.

4.3 A model example

In this section we give an example on how a model could arise from the analysis of
a practical system, and we then show how such a model could be represented with
the previously analysed tools.

Performance and reliability evaluation softwares should be used to model com-
plex entities. Consider, for instance, a distributed system in which some services
are shared among components, i.e., storage areas or computing facilities, while other
are independent and can perform their work in parallel. Moreover, some tasks could
be completed only if some other components have all finished some other jobs, i.e.,
there are some synchronisation points. Some of the activities in this system can
be initiated by users, that exhibit a behaviour that could be dependent on their
interaction with each others or with the system itself, while other ones could be of
endogenous nature. In modelling the aforementioned system, one should identify

34 4. Tools

the indices to be evaluated, decide a set of sensible assumptions, and then choose
among a variety of formalisms the most suitable ones to express those requirements.
Describing this process is out of the scope of the present chapter, and thus we only
note that a model of such complexity would be impractical to describe in this chap-
ter. Therefore, we limit this section to a toy example, i.e., an ideal system with a
reduced complexity and that exhibits some features which are typical of real systems
and which are usually useful to model in practical applications.

Consider a system where Nu identical users, during a specific phase of a strict
corporate workflow, request some computation to each of a set of Ns servers, which
can perform their job in parallel. Each of these servers is, in turn, made of various
software components, which use different hardware components, which can or cannot
be shared among different servers. Once a user has collected all the information
resulting from the computation of each server and he has spent some random time
to merge them, he can continue to follow the workflow. A possible modelling strategy
for such system is the following:

• Each of the users subject to the corporate workflow can be modelled by a
process algebraic agent, e.g., a PEPA one, in which some activities have their
own rates, while some other are synchronising with actions of other compo-
nents, e.g., managers, clients, etc. Some action types represent requests to
the servers, while others, with unknown rates, represent the completion of the
entire set of tasks requested to the servers.

• The servers, along with their hardware and software components, can be mod-
elled by a multiple-class and multiple-chain BCMP network, or, if more suit-
able, by a higher level hierarchical and/or modular formalism that can be
translated in such networks, e.g., as described in [8].

• The synchronisation phase, in which the user has to wait for the results of all
the computations of the servers, along the random time the user has to spend
to collect those data, is best modelled by a very simple SPN.

Of those formalisms, only SPNs are directly supported by all the previously de-
scribed tools. PEPA models are supported only by Möbius, while multiple-class and
multiple-chain open BCMP networks can be reasonably well approximated using
the multiple chain product form queueing networks formalism of SHARPE, which,
however, cannot be used in composition with other formalisms. It is worth noting
that an user with sufficient programming and theoretical skills could theoretically
write a plugin to support the corresponding formalism in SIMTHESysEr.

Although model expressed in any of the aforementioned formalisms can be trans-
formed into corresponding Continuous Time Markov Chains (CTMCs), thus allow-
ing all the four tools to be able to solve the same set of problems, the translation
process is difficult, and doing it manually reduces drastically the usefulness of an au-
tomated tool. It is sometimes possible to translate models among different high-level

4.4. Software Comparison 35

formalisms, e.g, BCMP queueing networks in Stochastic Petri Networks [5]; how-
ever, those transformations often preserve only some of the characteristics of the
original model, e.g., the average performance indices, while other aspects can vary.
Moreover, doing those translations manually is, again, difficult or even unfeasible
for larger models.

Once single submodels are conceived, one should combine them in a composed
model. This is the most critical step in a multi-formalism framework, because of
the aforementioned semantic issues and of the possible limitations of composition
methods. For instance, while a hierarchical composition method is a clear and easy
technique to combine models maintaining a layered abstraction, it is not always
possible to identify a top-level model, with its associated formalism, which is able to
express all the interaction among components. On the other hand, a flat composition
method, i.e., one in which all the submodels are at the same level, could become
unmanageable when the number of components increases.

While systems such as this example are quite common, none of the analysed
software packages can represent directly the composition of the previous described
submodels. However this is due to our choice of the formalism to be used to model
the system itself. Other choices, although perhaps less immediate to understand,
could have led to a model tractable by some or all the aforementioned tools.

4.4 Software Comparison

All the analysed software packages offer powerful tools for the design and analysis
of complex systems, with particular regard to performance evaluation. All the soft-
ware considered here arose in academic background, although some of them have
subsequently become commercial products. From the point of view of a practi-
tioner, while a fast and accurate solution for a vast set of models is desirable, the
lack of implementation polishing or application support and maintenance could be
a showstopper. On the other hand, academic users could be more interested in the
availability of source code and in the extendability of the product.

Table 1 summarises the main features of all the multi-formalism softwares anal-
ysed, from which we can draw some conclusions, if not a relative ranking, among the
analysed tools with respect to each of the represented qualitative characteristics.

• Supported formalisms : clearly SHARPE offers the widest choice of formalisms,
and the possibility to have models that combine them. The only major family
of formalisms not available in SHARPE is that of process algebras; however,
these are supported by Möbius. While SIMTHESysEr can potentially support
arbitrary formalisms through the use of pluggable components, at the moment
their selection is quite restricted.

• Solution techniques : each of the software packages supports different solution
methods for transient and steady state analysis, both analytical and through

36 4. Tools

simulations. While SIMTHESysEr could support any method available in
plugins, at the moment this feature is not really exploited. SMART supports
also model checking algorithms.

• User interface: only SHARPE and Möbius have graphical user interfaces. The
one of Möbius has a little more modern design.

• Documentation: Möbius has, in our judgment, the best documentation. SHARPE
and SMART are also very well documented. SIMTHESysEr, due to the fact
that it is an ongoing project, has very little documentation.

• License: SIMTHESysEr is the only tool with a freely available source code.
SHARPE and Möbius are proprietary softwares which allows academic users
to get the software for free. The SMART license schema is on request, and,
as stated before, at the time of the writing of this chapter we have not yet
received an answer to our enquiry.

• Maintenance and support : SHARPE and Möbius are actively maintained and
supported. The maintenance status of SMART is unclear; however, the docu-
mentation and the supported platforms (see below) suggests that the software
was maintained at least until the recent past. SIMTHESysEr is part of an
ongoing project, and thus it is still in development.

• Platforms: Möbius supports the three major operating systems for personal
computing, i.e., Linux, MacOS X andWindows. The documentation of SMART
also states the support of those three platforms. SHARPE, at least in solder
version, supports Linux, Solaris and Windows, but the latest release seems
to be packaged only for Windows. SIMTHESysEr should run for every plat-
form that has Java support and a C++ compiler; however, its installation is
documented only on Windows.

Each of the analysed softwares has peculiar characteristics which make them
suitable for different purposes. As previously stated, SIMTHESysEr is the only
product with a freely available source code, even if the license terms are not ex-
plicitly specified in the source itself. The aim of the project, more than building a
finished design product, seems to be the definition of an infrastructure, based on
the SIMTHESys methodology, to combine different design formalisms and solvers.
As previously noted, the tool, while functional, is in a development stage, and thus
cannot be easily used in a production environment. The other software analysed,
i.e., SHARPE, Möbius and SMART are closed-source products. SHARPE is widely
recognised as the earliest multi-formalism performance evaluation software still ac-
tively maintained. It offers a wide plethora of formalisms, and it is well documented
both on the technical aspects by online references and on the design formalism as-
pects by a popular book on performance evaluation [170]. It also notable because it
is the only tool to offer a comprehensive support for the most used classes of queueing

4.5. Conclusion 37

networks. Möbius is another mature product, with a considerable implementation
polishing and a very detailed and updated documentation. While the set of sup-
ported formalism is less abundant than the one of SHARPE, the comprehensive user
interface, the support for modern environment and the availability of instruments
to analyse the results provided by the solvers may make this tool a better choice
for practitioners who are not interested in the formalisms supported by SHARPE.
SMART, is a very well documented product. However, it lacks a graphical user in-
terface and supports a limited set of formalisms. The main strength of the tool lays
on the availability of a programming language for the specification of models and
on the support for model checking techniques. The lack of a public license scheme
may be drawback for professional users.

Overall, while all these tools have remarkable qualities and are of great interest
for academic users, from a practitioner point of view the most interesting products
are Möbius, due to its implementation quality, and SHARPE, due to the wide variety
of supported formalisms.

As a final remark, we point out the limited number of existing tools that allow
for the solution of models expressed using different formalisms. As we noted in the
introduction, the differences in the semantics of formalisms often poses significant
difficulties in defining how they should integrate. Moreover, while efficient solution
techniques may have been devised for some limited class of models, specified using
a particular formalism, solution of general cases are often difficult and time and
space consuming. Designing and building such tools requires a significant effort
and a considerable amount of resources, which often cannot be afforded by single
universities and research groups.

4.5 Conclusion

In this chapter we surveyed the state of the art of performance and reliability evalua-
tion packages, with a particular focus on those that allows the modelling of systems
using more than one class of formalisms. While all the surveyed tools are com-
plex software packages with an impressive set of features, we noticed that there is
still room for many improvements in this field. As noted before, combining differ-
ent formalisms arises some difficulties in defining the semantics of their integration.
Moreover solution algorithms defined only for a class of models expressed in a single
formalism could not be applicable to composed models. In particular, while well-
known product form solutions exist for queueing networks or stochastic Petri nets,
models arisen from their combination could be difficult to solve efficiently for current
tools. Since the advent of the RCAT theorem [89] and its extensions [91, 92], the
presence of many intra-formalism product forms were proven [17, 21]. Iterative algo-
rithms that solve models expressed as a set of cooperating PEPA agents, such as the
tool described in Chapter 5, or that compute directly the reversed rates for known
higher-level formalisms, could be used to efficiently solve such models. However,

38 4. Tools

SHARPE Möbius SMART SIMTHESysEr
Supported
Formalisms

Markov and
Semi-Markov,
RBDs,
FTs, RGs,
MCPFQN,
GSPNs, SPGs

SAN, Buckets
and Balls,
PEPAk, Fault
Trees

Markov
Chains, SPNs

pluggable, ATM
Markov Chains,
QNs (limited),
SPNs

Solution
Methods

Numerical
(Approximate
and Exact)

Exact Numeri-
cal, Simulation

Numerical pluggable, ATM
CTMC solution
and simulation

User Inter-
face

Textual, GUI Textual, GUI Textual Textual

Platforms Windows
(Linux and
Solaris in older
versions)

Linux, Mac OS
X, Windows

Linux, Mac OS
X, Windows

Windows (other
platforms may
work)

License Proprietary, no
cost for aca-
demic users

Proprietary, no
cost for aca-
demic users

Not Specified
(on demand)

Source code
freely available

Maintenance Supported and
updated

Supported and
updated

Not recently
updated

In active devel-
opment

Table 4.1: Characteristics of multi-formalism software packages.

4.5. Conclusion 39

only a small subset of the possible stochastic models are in product form, thus those
methods cannot be generally applied. Other difficulties arise in the restrictions in
the ways an user can combine models, e.g., either only in a hierarchical fashion or in
a flat one, thus reducing the expressivity of such compositions. In Chapter 9 we will
present a tool that integrates SIMTHESysEr (Section 4.2) and the tool described
in Chapter 5 in order to perform the analysis of some classes of multi-formalism
product-form models.

40 4. Tools

II
Contributions

5
Algorithmic Product form detection

and solution

5.1 Introduction

This chapter describes a tool, initially presented in [15], that given the description
of a set of cooperating CTMCs (i.e., when some transitions in one chain force tran-
sitions in other chains) it decides whether the model is in product-form and, in
this case, computes its stationary distribution. The tool is based on the algorithm
presented in [132], which is briefly summarised in Section 5.2. Since the analysis of
the product-form is performed at the CTMC level, it is able to study product-form
models that are originated form different formalisms, such as exponential queueing
networks, G-networks or queueing networks with blocking. To this aim, we observe
that it is important to decouple the analyser and the model specification interface
(MSI). We propose both a Java implementation of the analyser and a general MSI.
Note that multiple specification interfaces may be implemented according to the
modeller needs. With this tool, a modeller has a library of product-form mod-
els that, even if they were created using some (possibly high-level) formalism, are
stored as stochastic automata, basically a CTMC with labelled transitions allowing
self-loops or multiple arcs between states. Using the MSI, which acts as a client
with respect to the analyser, the various sub-models can be instantiated and their
interactions be specified. The operations that the modeller performs in the MSI
are translated into commands for the server side, i.e., the analyser. The analysis is
requested from the MSI, computed by the analyser and displayed by the MSI. We
have also developed a textual interface that will not be presented in this chapter to
allow the usage of the analyser from non-graphical clients.

Moreover in Section 5.3 we describe an extension of the algorithm used by the
tool, originally introduced in [9], which is able to opportunely truncate models with
infinite state space. We show how the extended algorithm efficiently computes the
solution of non-homogeneous models, e.g., models consisting of Jackson queues [107],
G-queues with positive and negative customers [78], G-queues with catastrophes (or
jumps back to zero) [50, 73].

44 5. Algorithmic Product form detection and solution

5.2 The INAP Algorithm

This section briefly summarises the original formulation of INAP given in [132]. We
refer to the original paper for the formal algorithm definition and considerations
about its efficiency and convergence. Let us consider a set of cooperating models
S1, . . . , SN , and let π

(f)
i be the steady-state distribution of model i = 1, . . . , N

at the f -th algorithm iteration. We denote the reversed rate of cooperating label
a at the f -th iteration by K

(f)
a . Finally, let ε be the precision required and T the

maximum number of iterations. Let us assume that the structural RCAT conditions
are satisfied, i.e., conditions 1 and 2 of Thereom 2.

The INAP algorithm, in its base version, operates as follows:

1. Initialisation: f ← 0, set up randomly π
(0)
i for all i = 1, . . . , N

2. For all synchronising transitions a, compute K
(f)
a as the mean of the reversed

rates of the transitions labelled by a using π
(f)
i with i such that a ∈ Ai

3. For all j = 1, . . . , N , set Sc
j = Sj{a← K

(f)
a }, for all a ∈ Pj

4. f ← f + 1

5. For all i = 1, . . . , N compute π
(f)
i as the stationary solution of Sc

i

6. If there exists i ∈ [1, N] such that π
(f)
i ̸= π

(f−1)
i within precision ε and f ≤ T

cycle to Step 2

7. Terminate with one of the following options:

• If f > T return No product-form solution found

• For all synchronising transitions a, use π
(f)
i with i such that a ∈ Ai to

check if the reversed rates of all transitions labelled by a are constant.

– In case of positive check then return for all i = 1, . . . , N solution π
(f)
i

– In case of negative check then return No product-form solution found

Note that the steps of the algorithm are computable if the state spaces of models
S1, . . . SN are finite. However, in [132] it is shown that thanks to the special structure
of the stations in G-networks with negative customers and in Jackson networks, these
can be modelled with just a pair of states. In this way, the algorithm has been proved
to be equivalent to the Jacobi iterative scheme on the traffic equation system in case
of Jackson networks, and to Gelenbe’s iterative scheme in case of G-networks [78].
On the other hand, the special class of models with infinite state space for which
this technique may be adopted is very small, i.e., those whose underlying process
is a Birth and Death process. Most of the models with infinite state space cannot
be reduced to this analysis and a different algorithm has to be defined, as we shall
introduce in the next section. The following examples illustrate two well-known
models with infinite state space that cannot be reduced in such a way.

5.2. The INAP Algorithm 45

0 1 2 3 ...

λλλλ

γ + µ µµµ

γγγ

Figure 5.1: CTMC underlying a G-queue with catastrophes.

Example 2 (G-queues with catastrophes). Consider a queueing system where cus-
tomers and triggers arrive according to independent Poisson processes with rates λ
and γ, respectively. The service time is exponentially distributed with rate µ and
at a trigger arrival epoch all the customers in the queue are removed, i.e., the state
jumps back to zero. The product-form properties of this model are studied in [50, 73].
Figure 5.1 depicts the stochastic process underlying this model. The G-queue with
catastrophes has a geometric steady-state distribution [50] π(k) = π(0)ρk with

ρ =
λ+ γ + µ−

λ2 + γ2 + µ2 + 2λγ + 2µγ − 2λµ

2µ
. (5.1)

This model cannot be reduced to one with finite state space using the technique
described in [132] because the process depicted by Figure 5.1 is not a Birth and Death
one. Note that the reversed rates of the departure transitions (i.e., those going from
state i+ to state i, i ≥ 0, with rate µ) are constant and equal to π(k+1)/π(k)µ = ρµ.

Example 3 (Multiclass FCFS queue with single exponential server). Consider a
queue with R classes of customers, First Come First Served (FCFS) discipline,
single exponential server. Let λ(r) be the rate of the independent Poisson process
modelling the arrivals of class r customers, and µ(r) be the service rate for the same
class, 1 ≤ r ≤ R. The model has been widely studied in literature, and the product-
form properties are derived in [26]. The state is a finite and unlimited vector whose
dimension is equal to the number of customers in the queue at a given time. Its i-th
component is the class of the i-th oldest customer in the queue. The oldest customer
is then in position 1 and is the customer being served. At a job completion event the
vector length is reduced by a unit and all customers move ahead in the queue. It is
well-known that the condition for product-form is that µ(1) = µ(2) = . . . = µ(r) = µ.
As for the previous example, the technique adopted in [132] cannot be applied since
the CTMC is not a Birth and Death process.

46 5. Algorithmic Product form detection and solution

5.3 INAP for models with infinite state spaces

In this section we describe the new algorithm for the analysis of product-form mod-
els. In general, when one models a system with components whose state spaces may
be infinite, the problem is to provide a suitable truncation of the process. We first
introduce the algorithm input, which is slightly different from that of original INAP,
then we describe the main idea, and finally we formalize the algorithm definition.
We call this improved algorithm INAP+.

5.3.1 The algorithm input

INAP input consists of sub-model descriptions in form of square matrices Lk × Lk,
where Lk is the number of states of Sk, 1 ≤ k ≤ N . These matrices describe the
transitions among the states and the associated labels. Another input is the set
of the synchronising labels. INAP+ works with models with infinite state spaces,
hence the matrix-form description presented for INAP in [15] is no more usable.

Models are described through a program which allows the definition of infinite
state spaces, for instance a parametrised PEPA language (without the synchronising
operator). Examples of infinite state space models described in this way are quite
common, e.g., they can be found in [89]. Finally, we need to define an operator to
reduce infinite state spaces to finite ones. Note that, if an automaton is closed, i.e.,
it has not passive transitions, the truncation may be done before the algorithm runs.
This is what usually happens when applying numerical techniques for the analysis
of open models. However, in this context, we want the user to be able to specify
how to truncate the process in a parametric way, i.e., referring to values Ka for each
a ∈ Pi. The following example illustrates this idea for a trivial case.

Example 4 (Truncation of a Jackson queue). Consider a queueing station in a
Jackson network [107]. A suitable model for this queue is depicted by Figure 5.2.
Since the rates of transitions labelled by a are not known we are not able to decide

0 1 2 3 ...

(a,⊤)(a,⊤)(a,⊤)(a,⊤)

(b, µ)(b, µ)(b, µ)(b, µ)

Figure 5.2: Example of CTMC underlying a Jackson queueing station.

which states have a stationary probability higher than a given τ ∈ R+. However, if
RCAT is applicable, we know that all those passive transitions have the same rate
Ka. At each iteration of INAP, a value for the passive transitions is computed,

5.3. INAP for models with infinite state spaces 47

hence, at each iteration we can compute a (possibly different) truncation. In this
example, a possible choice is to truncate the process for n > ln τ/(ln(Ka) − ln(µ)).
This means that the parametric truncation is useful when the station is embedded in a
heterogeneous queueing network (i.e., not a Jackson network whose analytic solution
is known) and hence the rate of the passive transition cannot be easily derived.

Formally, we define an operator Rτ , τ ∈ R+ on a stochastic automaton S, with
the following properties:

Definition 2 (Truncation operator properties).

• Rτ (S) has a finite number of states

• If m ∈ S does not belong to the state space of Rτ (S) then π(m) < τ

• Transitions in Rτ (S) are a subset of those in S. n
a−→ n′ is both in S and

Rτ (S) if and only if n, n′ belong to Rτ (S)

• Rτ (S) is ergodic

• Rτ (S) has at least one transition labelled by a, for each label a involved in the
synchronisation

Note that these requirements are not strict and this type of truncation is often
done when one wants to analyse an open model by means of the GBE solution and
knows all the rates of the underlying chain. However, when defining an interaction
among several components it is not obvious at all where the truncation should be
applied, because some model parameters are unknown. Finally, it is worthwhile
to point out that, as expected, in order to satisfy Definition 2 requirements, it is
sufficient to provide an upper bound for the steady-state solution of the model, and
not its exact expression. For what concerns the notation, the algorithm takes as
input the set of models S1, . . . SN , and the associated operators Rτ

1, . . . ,Rτ
N . How

to simply express the Rτ operators is outside the scope of this work, but in the
application framework we are developing it is embedded in the model definition,
where each transition may be labelled with a condition, which in general depends
on τ and other transition rates. A transition and its incoming state belong to Rτ (S)
only if its associated condition is satisfied.

5.3.2 Main idea of the algorithm

The algorithm presented in Section 5.2 is modified in two ways. The first one is how
the algorithm manages the dynamic truncation of the sub-model state spaces, and
the second one is how the reversed rates of the active labels are computed at each
iteration.

48 5. Algorithmic Product form detection and solution

Dynamic truncation of the state spaces. At each iteration f , values K
(f−1)
a ,

i.e., the reversed rates computed in the previous step, are used to close the automata
and to truncate them according to operator Rτ

i , 1 ≤ i ≤ N . This technique is based
on the observation that the knowledge at step f of the temporary reversed rates
of the transitions a ∈ Pi associated with automata Si, 1 ≤ i ≤ N , completes the
information needed to compute the result of the application of operator Rτ

i (S).

Iterative parametrisation of the sub-models. The computation of the re-
versed rates is changed with respect to what was proposed in INAP, and is not
based on the computation of the means of the reversed rates of all the active tran-
sitions. Roughly speaking, we would like the reversed rates of the active transitions
incoming into states with low probability to count less in the computation of K

(f)
a

than those incoming into states with higher stationary probabilities. The reason for
this can be understood through an analysis of RCAT proof in [89] where the au-
thor points out the relation of product-form solutions with the reversed processes.
Indeed, when considering the reversed process of a closed agent Sc

i all the active
transitions with the same label have the same rates and are outgoing from every
state of the model. This means that if n is a state with a very low stationary
probability, an active transition outgoing from n has a lower impact on the model
behaviour than one outgoing form a state with higher stationary probability. For
this reason we apply a weighted sum approach, i.e.:

K(f)
a =

n,n′∈Si:

∃n
a−→n′

qi(n
a−→ n′)π

(f)
i (n′) =

n,n′∈Si:

∃n
a−→n′

π
(f)
i (n)qi(n

a−→ n′) (5.2)

Since each state, by hypothesis, has exactly one incoming active transition, Equa-
tion (5.2) gives the weighted mean of the reversed rates. Note that Equation (5.2)

computes K
(f)
a using all the arcs labelled by a outgoing from the states regardless

to the fact n′ belongs to Rτ
i (S

c
i) or not. This is possible because the expression of

K
(f)
a is independent of the computation of π

(f)
i (n′).

5.3.3 Formal definition of INAP+

We shall now formalise the INAP+ algorithm. We use ▷◁N
k=1
L

Sk to denote the joint

model, where Sk is a cooperating automaton and L =
N

k=1Ak =
N

k=1Pk is the set

of cooperating labels. Note that π
(f)
k , with 1 ≤ k ≤ N , can be seen as a vector, but

its size depends on f . When comparing π
(f)
k with π

(f−1)
k we consider them different

if their size are not equal, while in case they are equal their components in the
same position must not differ more than ε. Note that although we keep track of all
the stationary probability vectors π

(f)
k for readability, only two of them are actually

necessary, i.e., the current, f , and the previous ones, f − 1. Algorithm 1 shows the
formal definition.

5.3. INAP for models with infinite state spaces 49

Algorithm 1: Simplified algorithm.

Input: agents S1, . . . , SN and their truncation operators Rτ
i ; precisions ε, τ ;

maximum number of iterations T

Output: unnormalized stationary distribution π of
N

▷◁
k=1
L

Sk

Set up initial sizes of Si for all k = 1, . . . , N
f ← 0 Randomly initialize π

(f)
k for all k = 1, . . . , N

repeat
f ← f + 1
/* Reversed rates */

for k = 1, . . . , N do
foreach a ∈ Ak do

Compute K
(f)
a using Equation (5.2)

/* Prepare the models for the new iteration */

for k = 1, . . . , N do

SR
k ← Rτ

k(Sk{∀a ∈ Pk, a← K
(f)
a })

Compute π
(f)
k as the solution of SR

k

until f > T or ∀k = 1, . . . , N. π
(f)
k =ε π

(f−1)
k ;

/* Check if a fixed point has been reached */

if f > T then
Output No product-form identified

else
/* Check if the reversed rates are constant */

ans← true
for k = 1, . . . N do

foreach a ∈ Ak do

Λ← {π(f)
k (n)/π

(f)
k (n′)qk(n

a−→ n′) : n
a−→ n′ ∈ SR

k }
if maxΛ−minΛ > ε then

ans← false

if ans then

Output π
(f)
k for k = 1, . . . , N

else
Output No product-form identified

50 5. Algorithmic Product form detection and solution

5.3.4 Convergence, termination, complexity and optimisa-
tions

INAP+ shares with its predecessor the absence of a proof of convergence for general
cases, although positive results for Jackson queueing networks and G-networks with
negative customers are provided in [132]. In our tests we have not found an example
of a false negative, i.e., a model that is known to be in product-form but for which
the algorithm could not find a solution. Note that special cases in which the basilar
iterative schemes on the traffic equations do not work as that presented in [74]
cannot be modelled in our framework because they involve a trigger definition that
is not pairwise. The termination of the algorithm is ensured by the introduction
of a maximum number of iteration. This is needed because although the algorithm
cannot diverge, it may exhibit an undesired cyclic behaviour. The complexity of the
algorithm depends on the state space cardinalities of subsystems. Since these are
dynamically computed we cannot easily predict the complexity for general cases.
However, if at each step f , each of the N agents has r states, then the complexity
of the iteration is O(Nr3).

The optimisations proposed in [132] are still applicable to INAP+. We just
summarise them:

• Active transition self-loops: since the reversed rate of a self-loop is equal to its
forward rate, if two self-loops with the same label a have different rates, the
product-form does not exist. If they all have the same rate, that rate must be
the reversed rate Ka.

• Sub-models can be solved in a suitable order to reduce the algorithm complex-
ity. This can be done by an analysis of the strong connected components in
the graph of dependencies among the sub-models, where Si depends on Sj if
it there exists a label a ∈ Pi ∩ Aj.

• The solution of each sub-model can be computed by independent computa-
tional units. This improves the algorithm efficiency by exploiting parallelism.

5.4 Model and cooperation encoding

In this section we explain how to encode a problem solvable by our algorithm in a
representation suitable to be used by a computer software. Moreover, we show how
to enhance reusability and modularity of models through an extension of cooperation
semantics.

Let us suppose to haveN model S1, . . . , SN that cooperate as specified in Chapter
3, i.e., some transitions in a model Si force other transitions in a model Sj, i ̸= j.
At a low-level we can describe each model by a set of labelled matrices: Ma

i is the
matrix with label a associated with model Si. Labels may be chosen arbitrarily

5.4. Model and cooperation encoding 51

when a model is defined. However, we always assume that every model has at least
one label called ϵ. We consider, at first, models with a finite number of states, Zi.
Ma

i is a Zi × Zi matrix with non-negative elements that represent the transition
rates between two states of the model. Note that self-loops, i.e., transitions from a
state to itself, are allowed. The infinitesimal generator Qi can be easily computed
as the sum of all the matrices associated with a model, where the diagonal elements
are replaced with the opposite of the sum of the extra-diagonal row elements. If the
stationary distribution π exists (and hereafter we will work under this hypothesis)
then it can be computed as the unique solution of πQ = 0 subject to π1 = 1. From
π we can compute the rates in the reversed process associated with each label using
Equation (3.1). Suppose that Ma

i [α, β] > 0, with 1 ≤ α, β ≤ Zi and 1 ≤ i ≤ N ,
then the reversed rate of this transition, denoted by Ma

i [α, β] is defined as follows:

Ma
i [α, β] =

π(α)

π(β)
Ma

i [α, β]. (5.3)

Let us show how we specify the interaction of two models. According to RCAT
restrictions, we just deal with pairwise interactions, i.e., a transition in a model may
cause a transition for at most another model. The cooperation semantics used in
this chapter (but also in [89]) is very similar to that specified by PEPA (see Section
2.3.3). Consider sub-models Si and Sj and suppose that we desire to express the
fact that a transition labelled with a in Si can occur only if Sj performs a transition
labelled with b, and vice-versa. Specifically, if Si and Sj are in states si, sj such
that they are able to perform a transition labelled with a and b, respectively, that
take the sub-models to state s′i and s′j, then they can move simultaneously to state
s′i and s′j. The rate at which this joint transition occurs is decided by the active
sub-model that can be Si or Sj. We express such a cooperation between Si and Sj,
with Si active, as follows:

Si

y
×

(a+,b−)
Sj,

which means that transitions labelled by a is Si are active with respect to the
cooperation with transitions labelled by b of Sj and that, in the resulting model,
the joint transitions are labelled with y. The fact that the resulting model is still
Markovian should be obvious because the synchronisation inherits the properties
derived for that of PEPA. Note that the major difference is that we can synchronise
different labels and assign a different name to the resulting transitions. This happens
because we would like a modeller to be able to use a library of models whose labels
have a local scope. In this way the library items can be created independently and
instantiated several times in the same model.

Example 5 (Example of cooperation). Suppose we would like to model the triv-
ial tandem queueing network depicted in Figure 5.3 with two identical exponential
queues with finite capacities B. When the first queue is saturated, arrivals are lost.

52 5. Algorithmic Product form detection and solution

When the second queue is saturated at a job completion of the first queue, the cus-
tomer is served again (repetitive service blocking). Customers arrive to the first
queue according to a Poisson process with rate λ. A queue can be described by three

QUEUE 1 QUEUE 2

Figure 5.3: Tandem of two exponential finite capacity queues.

matrices with dimension B ×B:

• Mϵ = 0 that describes the transitions that cannot synchronise (something like
the private part of the model).

• Ma where Ma[α, β] = λ if β = α+ 1 or Ma[α, β] = 0, otherwise. This matrix
describes the transitions corresponding to arrival events.

• Md, where Md[α, β] = µ if β = α−1 or Md[α, β] = 0, otherwise. This matrix
describes the transitions corresponding to job completion events.

Consider two instances of this model, S1 and S2. The tandem network of Figure 5.3
can be described by the model S1×y

(d+,a−) S2.

A pairwise cooperation may involve more than one label. In this case we may
write:

S1

y1×
(a+1 ,b−1)

y2×
(a−2 ,b+2)

S2

to specify that S1 (S2) is active on y1 (y2) and passive on y2 (y1) with transitions
labelled a1 (b1) and a2 (b2), respectively.

The following operator allows us to change all the rates of a matrix labelled by
a: S1{a ← λ} is the sub-model S1 with only matrix Ma modified so that all its
non-zero elements are set to λ.

5.5 Tool

In this section we describe some salient characteristics of the proposed tool. First, we
explain our approach in the specification of the interactions between the sub-models.
Then, we describe the client-server architecture and illustrate its strengths.

5.5. Tool 53

5.5.1 Specifying the interactions

Let us consider again the model depicted by Figure 5.3 with a variation, i.e., after a
job completion at the first station the customer may exit the system with probability
p or go to the second station with probability 1− p, as depicted by Figure 5.4. We

QUEUE 1 QUEUE 2

p

1-p

Figure 5.4: Example of Figure 5.3
model with variated probabilistic
routing.

p

1-p

a b a

b

c

a

b

c

(A) (B) (C)

Figure 5.5: Types of connections be-
tween labels.

note that the CTMCs underlying the first and second queue are different, and we
could not use two instances of the same model anymore. Indeed, in the first queue
the transition corresponding to a job completion from state j to state j − 1 must
be split in two: one synchronising with the arrivals in the second queue with rate
(1 − p)µ1 and one without synchronisation with rate pµ1. We decided that this
splitting of transitions should be done automatically by our tool, so that the library
of sub-models can be defined without any knowledge about the future usage and
connections.

From the modeller point of view, a sub-model is seen just as a black box where
the labels are exported, i.e., a model specification consists of a set of connections
among instances of modules. The simplest possible connection between two labels
is that depicted by Figure 5.5-(A). Note that we use a graphical representation of
the connections which is coherent with the proposed MSI we developed, however
different approaches are possible (such as a PEPA-like syntax). Figure 5.5-(A)
illustrates a label a of a sub-model that interacts with a label b of another sub-
model. The arrow is oriented, meaning that a is active and b is passive. This
specification of synchronisation does not require any modification to the structure
of the active or passive sub-models. Let us now consider Figure 5.5-(B). In this
case the active action a of one sub-model synchronises with passive actions b (with
probability p) or c (with probability 1 − p) of other sub-models. In this case, we
need to alter the structure of the active model. Recall that matrixMa represents the
transitions labelled by a. Then we define Ma′ = pMa and Ma′′ = (1−p)Ma. Hence,
in the active sub-model, matrices Ma′ and Ma′′ replace matrix Ma. Note that this
technique can be applied to an arbitrary number of probabilistic synchronisations
under the obvious constraint that the synchronisation probabilities must sum to a
value that is less or equal to 1. Suppose that the sum of the probabilities p1, . . . , pK
is pt < 1 (see Figure 5.4 for an example). In this case we have Mak = pkM

a for
k = 1, . . . K, and Mϵ (which is always present in a model description and represents

54 5. Algorithmic Product form detection and solution

the transition that cannot synchronise) is replaced by Mϵ+Ma(1− pt). We use the
notation S1×y,p

(a+,b−) S2 to denote that a in S1 is active in the synchronisation with b
in S2, and the synchronisation is called y and occurs with probability p. The latter
case is depicted by Figure 5.5-(C) where two active labels a and b (that can belong
to the same or different sub-models) synchronise with the same passive label c. In
this case we simply replace matrix Mc of the passive model with two matrices Mc′

and Mc′′ identical to the former (we do not need to modify the rates since they are
replaced with the rate of the corresponding active transitions).

Example 6 (Application to the model of Figure 5.4). Let us show how we model
the tandem of exponential queues with finite capacities B depicted by Figure 5.4.
We still consider two identical instances of the same sub-model which is described
in Example 5. The user specifies in some way the interactions. The model corre-
sponding to the second queue does not change, while that corresponding to the first
queue becomes the following:

• Mϵ = pMd that describes the transitions that cannot synchronise

• Ma,

• Md′ = (1− p)Md,

where Ma and Md are the matrices defined in Example 5.

We point out some notes about this approach to the specification of the sub-
model interactions: 1) Its scope is to allow the specification of a model in spite
of the synchronisations it will be involved in. For instance, if we have a model
of a simple exponential queue, we can straightforwardly define a Jackson queueing
network with probabilistic routing by simply instantiating several copies of the same
model. Moreover, connections have a simple and intuitive meaning. 2) When an
active label is split the infinitesimal generator of the sub-model does not change, i.e.,
its stationary distribution does not change. Moreover, if the reversed rates of the
transitions corresponding to active label a are constant in the original model, then
also the transitions corresponding to a split label associated with a have constant
reversed rates. 3) The effects of the replication of passive label matrices on the
algorithmic analysis of the product-form is that the rate associated with the passive
transition is the sum of the (constant) reversed rates of every associated active
transition. 4) Specifying pairwise interactions where the same label is simultaneously
active and passive with respect to two or more synchronisations is not allowed.
This characteristic is inherited from the semantics of the cooperation given in the
theoretical paper which this tool is based on.

5.5.2 Client-server architecture

The tool consists of two parts: the analyser (the server) and the MSI (the client).
The idea is that although we propose a graphical client side that exploits the

5.5. Tool 55

strengths of our modular approach and the specification of the module synchro-
nisation, one could write one’s own MSI in order to make it compatible with the
favourite formalism.

The server opens an independent session for each MSI connected. It provides a
protocol which is used by the MSI to: 1) Create/Import a sub-model, 2) Specify
a synchronisation between two labels of two sub-models, 3) Require the solution of
a model given a precision and a maximum number of iterations. In the first and
second case the server just answers the client if the required operation has been
executed correctly, while the latter one returns the following data: 1) A flag that
specifies if the product-form has been identified, 2) The steady-state probabilities
of each sub-model, 3) The reversed rates of all the active transitions. Note that
knowing the reversed rates of the active transitions means knowing the solution of
the system of traffic equations.

5.5.3 Use cases

In this section we illustrate some examples of case studies. We give a description
of the model which is independent of the MSI that we adopt. We just focus on
two well-known results about product-form, although several other examples may
be easily produced.

Jackson networks. Jackson networks are easy to study because they are char-
acterised by a linear system of traffic equations. However, in our framework, they
require some attention since each sub-model (i.e., each exponential queue) has an
infinite state space. As stated in Section 5.2, in this case we can simply represent the
sub-model using just a pair of adjacent states. Whenever we apply this technique to
reduce the infinite state space of a sub-model we must disable the RCAT structural
check (Condition 1) because some transitions that are present in the real model are
omitted in the finite one. Figure 5.6 shows the truncation of an exponential queue.
If the synchronisations it will be involved in impose a to be passive and d to be
active, we note that Condition 1 of RCAT is satisfied for the infinite model but is
not satisfied for the reduced one (e.g., state n+1 does not have any incoming active
transition or outgoing passive transition). Nevertheless, the algorithm may still be
applied.

Example 7 (Jackson network). Consider the Jackson network depicted in Figure
5.7. A sub-model of an exponential queue consists of three matrices (states are in
the order n and n+ 1):

Mϵ = 0 Ma =

0 λ
0 0

Md =

0 0
µ 0

We also use a single-state sub-model to represent the external Poisson arrivals with
Mϵ = 0 and Ma = [λ]. Let µi denote the service rate of Queue i, 1 ≤ i ≤ 3, and S

56 5. Algorithmic Product form detection and solution

n-1 n n + 1 n + 2

a a a a a

d d d d d

Figure 5.6: Truncation of the birth and
death process underlying an exponen-
tial queue.

QUEUE1 QUEUE2

QUEUE3

λ2

p

q

1− p

1− q

λ2

Figure 5.7: Jackson network of Exam-
ple 7.

the library model for any queue and A for the external arrivals. Then we can write:

Si = S{d← µi} i = 1, 2, 3 At = A{a← λ1 + λ2}

The synchronisations are specified with the following commands to the server:

At

y1,λ1/(λ1+λ2)×
(a+,a−)

S1, At

y2,λ2/(λ1+λ2)×
(a+,a−)

S2, S1

y3,q×
(d+,a−)

S2, S1

y4,1−q×
(d+,a−)

y5,1−p×
(a−,d+)

S3.

G-networks. We can model G-networks in our framework similarly as for Jackson
networks. Note that although the models are different both in specification and in
analysis, our tool treats them uniformly by exploiting the RCAT theoretical result.
The truncation mechanism presented for Jackson queueing centers applies also to
G-queues which consist of four matrices: Mϵ, MA representing the transitions for
positive customer arrivals, Md representing those for job completion and Ma for
negative customer arrivals:

Mϵ = 0, MA =

0 λA

0 0

, Md =

0 0
µ 0

, Ma =

0 0
λa 0

.

Although in the previous examples we have focused on infinite-capacity queueing
systems, finite-capacity ones, such as Akyildiz’s product-form queueing networks
with blocking [1], have a finite state space, so the truncation mechanism is not
needed [15].

5.5.4 MSI implementation example

In this Section we illustrate a possible implementation of the MSI. Recall that the
tool client-server architecture allows for different MSIs according to the modeller’s
needs. We show a general-purpose MSI that is independent of the formalism used by
the modeller. As an example we model the Jackson network depicted by Figure 5.7.
Each sub-model is represented by a circle and arcs represent the synchronisations.

5.6. A Numerical Example 57

Each object, circle or arc, has a name. In the former case it is the sub-model name,
in the latter it has the form y(a, b) that stands for S1×y

(a+,b−) S2, where S1 is the
sub-model from which the arc outgoes from, and S2 is the destination sub-model
(see the screenshot in Figure 5.8). Clicking on a sub-model circle, a window appears

Figure 5.8: Screenshot of the model cor-
responding to the Jackson network of
Figure 5.7.

Figure 5.9: Screenshot of the window
for the synchronisation details.

with its description in matrix-form and the user is allowed to perform changes (add
or remove transitions or change rates). When an arc is set between two sub-models,
the window shown in Figure 5.9 appears. Note that, although one could point
out that a standard tool for the analysis of Jackson networks may present a more
intuitive interface, we would like to remark that this is the same interface we would
use for any stochastic model that can be solved by the algorithm presented in [132].
However, one could also extend the MSI in order to associate a specific symbol to
some sub-models of the library, but this is out of the scope of this presentation.

5.6 A Numerical Example

In this section we show how Algorithm INAP+ presented in Section 5.3 can be used
to solve a heterogeneous model consisting of queueing station of different types.

Consider the example in Figure 5.10, a queueing network with 10 stations,
S1, . . . , S10, where queue marked with letter J,G and C are Jackson queues, G-queues
with negative customers and G-queues with catastrophes, respectively. Customers
arrive from the outside to queue 1 according to a Poisson process with rate λ. Cus-
tomers can move among queues or leave the system according to routing matrices
R+ = [r+i,j] and R− = [r−i,j] for positive customers and triggers, respectively. For
instance r+i,j denotes the probability for a customer to enter station j after a job

58 5. Algorithmic Product form detection and solution

λ
1

2

3

4

5

6

7

8

9

10−
−

−

−

−

−−

−

C

C

C

C

J

J

J

G

G

G

Figure 5.10: Example of a heterogeneous queueing network.

completion at station i as positive customer, while r−i,j denotes the probability for
a customer leaving station i to join station j as a trigger. The effect of triggers
depends on the type of the target station: if it is marked with G then the trigger
removes one customer, while if it is marked with C, the trigger removes all the
customers.

Each queue is modelled by setting the transition corresponding to arrival events
(positive customer or triggers) as passive, and those corresponding to job completion
events as active. The label synchronising a departure from Si with arrival as a
customer to Sj is ai,j. If a movement from Si to Sj may occur both as a positive
customer and as a trigger we use a+i,j and a−i,j, respectively.

Since all the models in the network have been studied in literature, one could
apply RCAT and derive the traffic equation system. Note that this can be done
thanks to the novelty of the modular approach to product-form introduced by RCAT
(otherwise one should prove the product-form as solution of the GBE). Let xi,j be
the rate associated with the passive transitions with label ai,j, and let ρn be the load
factor of station n. Then, after setting the following values for the load factors:

5.6. A Numerical Example 59

ρ1 =
λ+ x2,1 + x4,1 + µ1 + x9,1

2µ1

− 1

2µ1

(λ+ x2,1 + x4,1)

2 + µ2
1 + x2

9,1

+2(λ+ x2,1 + x4,1)x9,1 + 2µ1x9,1 − 2(λ+ x2,1 + x4,1)µ1

 1
2

ρ2 = x1,2/µ2

ρ3 = x1,3/µ3

ρ4 = x1,4/µ4

ρ5 = (x2,5 + x3,5)/(µ5 + x−1,5 + x−8,5)

ρ6 = x3,6/(µ6 + x−2,6)

ρ7 = (x3,7 + x4,7)/(µ7 + x−10,7)

ρ8 =
x2,8 + x5,8 + x+

6,8 + µ8 + x−6,8
2µ8

− 1

2µ8

(x2,8 + x5,8 + x+

6,8)
2 + µ2

8 + x−6,8
2

+2(x2,8 + x5,8 + x+
6,8)x

−
6,8 + 2µ8x

−
6,8 − 2(x2,8 + x5,8 + x+

6,8)µ8

 1
2

ρ9 =
x8,9 + µ9 + x−10,9 −

x2
8,9 + µ2

9 + x−10,9
2
+ 2x8,9x

−
10,9 + 2µ9x

−
10,9 − 2x8,9µ9

 1
2

2µ9

ρ10 =
x+
6,10 + x7,10 + µ10 + x−6,10

2µ10

− 1

2µ10

(x+

6,10 + x7,10)
2 + µ2

10 + x−6,10
2

+2(x+
6,10 + x7,10)x

−
6,10 + 2µ10x

−
6,10 − 2(x+

6,10 + x7,10)µ10

 1
2
,

according to RCAT, the traffic equations are:

xi,j = ρiµir
c
i,j

for every i, j where c ∈ {+,−} and rci,j > 0.
We could try to solve the model, i.e., to find all unknown rates xi,j by feeding

the traffic equations system to a Computer Algebra System (CAS) software, e.g.,
Mathematica. However, in our tests this computation has shown to be unfeasible
even for relatively small models since the system is not linear.

Using our algorithm, the computation of the numerical solutions for the system,
described as a set of cooperating CTMCs, is straightforward. Given the model
description, we set the truncation operator at n states, using the formula, derived
from the condition π(n) ≤ τ :

n =

MAX STATES if ρ ≥ 1

max

MIN STATES,min

MAX STATES,

ln τ − ln(1− ρ)

ln ρ

otherwise,

where MIN STATES and MAX STATES are user-defined constants that determine
the minimum and maximum number of states allowed for model truncation, respec-
tively.

60 5. Algorithmic Product form detection and solution

Given a set of input parameters λ, µi, R
+, R− such that ∀i ∈ {1 . . . 10}, ρi < 1,

i.e., the system is stable, in our tests the algorithm has always converged in less
than 10 iterations for precision ε = 10−5 and τ = 10−5. For example, consider the
following routing matrices:

R+ =

0 0.2 0.3 0.4 0 0 0 0 0 0
0.1 0 0 0 0.2 0 0 0.2 0 0
0 0 0 0 0.3 0.5 0.2 0 0 0
0.3 0 0 0 0 0 0.7 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0.3 0 0.5
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0.2 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

R− =

0 0 0 0 0.1 0 0 0 0 0
0 0 0 0 0 0.4 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.1 0 0.1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.1 0 0 0 0 0
0.1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.2 0 0.05 0

,

where the probability of a customer leaving the system after a service completion
at station i is 1 −10

j=1(r
+
i,j + r−i,j). In this case for values of λ and µi shown in

Table 5.1 we obtained the solutions in 6 iterations. Process sizes and ρ values are
shown in Table 5.2, while computed passive rates are shown in Table 5.3.

In this example we have shown how the INAP+ algorithm can be applied to
an heterogeneous system unsolvable with the INAP algorithm. We also noted that
the symbolic solution of non-linear equations system that arose from the model
is unfeasible. As we previously stated, though, our algorithm is not limited to
queueing models, and could be used, redefining the truncation operator, whenever
there is a way to determine an upper bound for stationary probabilities vector size.
The algorithm has been tested for several models with different types of stations and
network topologies. The results of the tests confirm what is shown in this example.

5.7 Conclusions

In this chapter we have presented two algorithms to detect and solve Markovian
stochastic models in product-form. For models with an infinite state space we spec-

5.7. Conclusions 61

name value
λ 5.0
µ1 4.5
µ2 4.1
µ3 4.2
µ4 4.3
µ5 4.4
µ6 4.5
µ7 4.6
µ8 4.7
µ9 4.9
µ10 5.0

Table 5.1: Parameters

i ρi n
1 0.94826 161
2 0.20816 8
3 0.30480 10
4 0.39695 12
5 0.11279 6
6 0.13221 6
7 0.29459 10
8 0.19497 7
9 0.03679 4
10 0.32479 10

Table 5.2: ρ and n

xi,j value xi,j value
x1,2 0.8534 x4,7 1.1948
x1,3 1.2802 x5,8 0.4963
x1,4 1.7069 x+

6,8 0.1785
x−1,5 0.4267 x−6,8 0.0595
x2,1 0.0853 x+

6,10 0.2975
x2,5 0.1707 x−6,10 0.0595
x−2,6 0.3414 x7,10 1.3551
x2,8 0.2560 x−8,5 0.0916
x3,5 0.3840 x8,9 0.1833
x3,6 0.6401 x−9,1 0.0180
x3,7 0.2560 x−10,7 0.3248
x4,1 0.5121 x−10,9 0.0812

Table 5.3: Results

62 5. Algorithmic Product form detection and solution

ify how a dynamic truncation given an arbitrary precision could be performed. Al-
though those algorithms share the lack of a proof of convergence with many other
iterative procedures defined for performance evaluation purposes, the extensive nu-
merical tests that have been run have not shown any false-negative result. The
number of iterations to converge with a precision of 10−6 has never exceeded 20 in
all our tests.

We have also presented a tool that we have developed, based on the algo-
rithms described above, that has proved to be able to identify and compute several
product-form results based on pairwise synchronisations, such as Jackson networks,
G-networks with or without catastrophes, Akyildiz’s results about product-form
networks with blocking and other formalisms, and a graphical interface that allows
the user to define models and cooperations between them in an easy and convenient
way, ignoring all the technical aspects of the machine representation of the problem.

Our current effort is in developing an extension of the tool in order to reach three
objectives: 1) allow for the specification of models with multiple incoming active
transitions, exploiting the result presented in [133], 2) allow for the specification
of models with multiple outgoing passive transitions with the same label, and 3)
allow for the graphical specification of models with regular but infinite structure,
as those tractable by the algorithm described in paragraph 5.3. For all these three
objectives we already have a testing implementation. The current challenge consists
in designing a graphical formalism capable of expressing truncation operators in an
user-friendly way.

6
Component-wise state space

reduction

6.1 Introduction

As stated before, although compositionality is a key-feature of most of the per-
formance formalisms and allows the modeller to combine several (possibly simple)
components to form a complex architecture, the derivation of performance indices
may be very time and space consuming since the state space cardinality of these
kind of models tends to grow exponentially with the number of system components.

While in the previous chapter we have seen how product-form decomposition
could help to mitigate this problem, here we first focus on aggregation techniques,
in which the state space of components, described in a similar fashion to the one
used in the previous chapter, is reduced according to some equivalence rules. The
differences among our approach, classical lumping and strong equivalence will be
explained thorough the chapter.

Moreover, in Chapter 7, we will show how aggregation and product-form de-
composition techniques are indeed related, as we will introduce a novel concept of
conditional product form, based on the aggregation, according to the rules described
in this chapter, of reversed processes.

6.1.1 Related work

The application of aggregation and lumpability techniques has been proposed to
cope with the solution of models with a large state space, and it has been widely
applied for various formalisms, e.g. exact and approximate aggregation in queueing
networks [18, 46], decomposability and lumpablity for Markov chains [112, 164],
aggregation of stochastic Petri nets [44], stochastic automata or Markovian process
algebras [101, 83], where the references should be considered just as examples of
remarkable work in the corresponding field.

As concerns lumpability, under certain conditions the state space of a Markov
chain can be partitioned into subsets of states, each of which can be seen as a single
state of a smaller Markov chain. The original chain is then said to be lumpable. The

64 6. Component-wise state space reduction

process of lumping states in a Markov chain [112] defines a state space partition
of the Markov chain and a corresponding new lumped process with a reduced state
space. Specifically, consider a continuous-time homogeneous Markov chain (CTMC)
having a state space S with n states and transition rate matrix Q. Let s̃1, . . . , s̃N
be a partition of space S, where usually N << n. The CTMC is lumpable with
respect to the partition if for any subset s̃i and states s, s′ ∈ s̃i,

s′′∈s̃k Q(s, s′′) =

s′′∈s̃k Q(s′, s′′) for 0 ≤ k ≤ N . That is, for any two states in a given subset the
cumulative transition rate to any other partition is equal. Efficient and optimal
algorithms for lumping CTMCs are presented in [2]; here, the symmetries of the
CTMCs underlying complex models are exploited to carry out a reduction of the
state space using different notions of lumping. Conversely, in the approach we
propose in this paper, the lumping is done component-wise and not on the joint
CTMC. It is easy to see that a component-wise lumping implies a lumping of the
underlying CTMC but the opposite is not true. Nevertheless, working at component-
level allows us to deal with smaller state spaces and hence improve the computational
time and space costs.

As concerns aggregation to analyse complex systems, several approaches con-
sider hierarchical decomposition of the model into a set of submodels. Such a
decomposition-aggregation approach defines three steps: 1) partition of the orig-
inal model into a set of sub-models, and analysis of each sub-model in isolation; 2)
definition of a new and smaller aggregated model where each component represents
an aggregated sub-model; 3) analysis of the aggregated model. Exact aggregation
defines the new aggregated model, that can be proved to be equivalent to the original
one, i.e., with the same solution for a set of performance indices, usually the aggre-
gated stationary state distribution. Unfortunately, exact aggregation algorithms on
the Markov chain have a computational complexity that is comparable to that of the
solution of the entire model [62]. However, some exact aggregation methods have
been defined directly in terms of model components at a higher level of abstraction.
Moreover, under special constraints, conditions for exact aggregation have been de-
fined for various classes of Markov models and for product-form models, such as
product-form queueing networks [49, 18]. Several approximate methods based on
decomposition and aggregation, such as those described in [62, 163, 61, 75], have
also been proposed in the literature. Note that step (1) that defines the model state
partition is non-trivial and affects the quality of the analysis results. However, some
criteria and observations depending on the type of system, can help this choice.
Some interesting methods applied to nearly-completely decomposable models were
proposed by Courtois [62] to derive bounded approximation of the steady-state so-
lution of the Markov chain, whose condition is given in terms of model (queueing
network) parameters. Stewart proposed a different bounded aggregation methods
for Markov chains [163], whose error analysis is based on vector and matrix norms.
The bound method by Courtois and Semal [61] has been further applied for solving
Markov chains and to derive bounds on the steady-state solution of quasi-lumpable
Markov chains [75].

6.2. Exact lumpability 65

6.1.2 Contribution

In this chapter, we are interested in studying those formalisms that allow the mod-
eller to describe a system in a modular way. These formalisms can be widely applied
in practice because they conform to good engineering principles. For instance PEPA
or stochastic automata networks [146] represent important examples of formalisms
that yield a high modularity. In [101, 83] the authors present an exact technique to
improve performance evaluation in PEPA models based on a relation called strong
equivalence. The idea is to exploit the intrinsic modular nature of PEPA models.
In [101] the author discusses the relations of the strong equivalence with the previ-
ous results on Markov chain lumping. Following this idea, in considering a model
defined in terms of a set of cooperating components, we aim at applying the no-
tion of lumping at the component level rather than at the CTMC level of the joint
process. As in [101, 83], we focus on stochastic performance models with under-
lying CTMCs. With respect to the cited papers we give a notion of lumpability
which is more general and we present and prove two theorems on lumping in co-
operating stochastic models both for the original model and for the time-reversed
automata. Reversed processes have been known to be related to model decom-
positions especially in case of product-form models (see e.g., [111, 89]). Here, we
show that time-reversed automata can be used also in lumpability. In particular,
we observe that a class of product-form models can be seen as a special case of the
results we present here. This chapter extends the results presented in [12] as follows.
First, we relax the conditions of the theorem on the forward automaton lumping
and give a proof that does not require the underlying assumption of product-form
as that given in [12]. Moreover, the condition of Theorem 3 are more general than
those required by the analogous presented in [12]. Second, we further investigate
the properties of the lumping of reversed automata in case of non-product-forms. In
this context, we prove that under a reversibility assumption on the lumping of the
reversed process, a conditional product-form solution can be defined. As far as we
know, a similar approach is that proposed in [46], called higher order product-forms
as a mean of approximating the steady-state probabilities of a set of cooperating
components. However, here we deal with exact solutions and the conditions are
interpreted in terms of lumping of the cooperating automata. A more similar the-
ory is proposed by Economou in [69] related to Markov modulated processes. The
conditional product-form conditions proposed by Economou may be interpreted in
terms of lumping of cooperating automata as shown by Theorem 4.

In the following parts we will often refer to formalisms described in section 2.4.

6.2 Exact lumpability

In this section we prove Theorem 3 that can be applied to define efficient algo-
rithms for computing the marginal steady-state probability distribution for one of

66 6. Component-wise state space reduction

the cooperating models based on the exact lumping of the forward or reversed pro-
cesses underlying the other component. Observe that, in this context, the concept
of lumpability as introduced in [112] is extended in order to take into account the
synchronising transition types. Roughly speaking, we aim at replacing component
M1 by a smaller one denoted by M̃1 such that the marginal steady-state probability
distribution of M2 in the cooperation M̃1 ⊗ M2 is identical to that of M2 in the
cooperation M1 ⊗M2. In queueing theory, this idea has previously been applied
for defining algorithms for approximate analysis of queueing networks (see, among
others, [101, 94, 45] and the reference therein). However, Theorem 3 and 4 give
sufficient conditions for deriving exact automaton lumping similarly to what is done
in [101, 83].

The following definition plays a pivotal role in what follows and extends the
concept of lumpability in order to deal with synchronising transition types. Note
that, in what follows, without loss of generality, we assume thatM1 is the automaton
to be lumped in the cooperation M1 ⊗M2.

Definition 3 (Exact lumped automata). Given automaton M1, a set of transition
types T , and a partition of the states of M1 into Ñ1 clusters S = {1̃, 2̃, . . . , Ñ1}, we
say that S is an exact lumping for M1 if it is possible to define a set of functions
φ̃ℓ
1 : S × S → R+ such that:

1. ∀s̃1, s̃′1 ∈ S, s̃′1 ̸= s̃1, ∀s1 ∈ s̃1

s′1∈s̃′1
E11(s1, s

′
1) = φ̃1

1(s̃1, s̃
′
1)

2. ∀ℓ > 2,∀s̃1, s̃′1 ∈ S, ∀s1 ∈ s̃1

s′1∈s̃′1
E1ℓ(s1, s

′
1) = φ̃ℓ

1(s̃1, s̃
′
1).

If M1 is lumpable with respect to S, we define the automaton M̃1 with Ñ1 states as
follows:

Ẽ11(s̃1, s̃
′
1) =

φ̃1
1(s̃1, s̃

′
1) if s̃1 ̸= s̃2

0 otherwise

Ẽ12 = I, Ẽ1ℓ(s̃1, s̃
′
1) = φ̃ℓ

1(s̃1, s̃
′
1) t > 2

where λ̃ℓ = λℓ for all ℓ are the rates associated with the transition types in the
cooperation between M̃1 and M2.

As one may expect, if M̃1 is an exact lumped automaton of M1, then the CTMC
underlying M̃1 is an exact lumping of that of M1 in the standard sense of [112]
but the opposite is not true (e.g., consider the different role of synchronising and
non-synchronising transitions).

In what follows we assume that M1, M2 and their cooperation to have ergodic
underlying CTMCs (in the case of the cooperation, the state space is the Cartesian
product of the state spaces of the single components). We refer to this as the
ergodicity assumption.

6.2. Exact lumpability 67

Theorem 3. Given the model defined as M1 ⊗M2, let M̃1 be an exact lumping of
M1 whose clusters are S = {1̃, . . . , Ñ1}. Then, under ergodicity assumptions, the
following relation between the steady-state probabilities π(s1, s2) of M1 ⊗ M2 and
π̃(s̃1, s2) of M̃1 ⊗M2 holds:

∀s̃1 = 1̃, . . . , Ñ1, ∀s2 = 1, . . . , N2, π̃(s̃1, s2) =

s1∈s̃1

π(s1, s2) . (6.1)

Note that Equation (6.1) of Theorem 3 follows from the notion of strong-equivalence
of PEPA agents [101]. However, the following proof is needed since Definition 3 is
more general than that of strong equivalence as discussed in Section 6.2.1.

Proof of Theorem 3. The proof is based on the following idea: for a general
cluster s̃1 of M̃1 we sum the GBE of states (s1, s2) of M1 ⊗M2 thus obtaining an
identity. Then, by substitution of Equation (6.1) in the system of GBE of M̃1⊗M2

deriving this identity and by the uniqueness of the steady-state distribution we prove
the theorem.

The global balance equation for a generic state (s1, s2) of M1 ⊗M2 is:

π(s1, s2)

N1

s′1=1

λ1E11(s1, s
′
1) +

N2
s′2=1

λ2E22(s2, s
′
2)

+
T

ℓ=3

N1
s′1=1

N2
s′2=1

λℓE1ℓ(s1, s
′
1)E2ℓ(s2, s

′
2)

=

N1
s′1=1

π(s′1, s2)λ1E11(s
′
1, s1) +

N2
s′2=1

π(s1, s
′
2)λ2E22(s

′
2, s2)

+
T

ℓ=3

N1
s′1=1

N2
s′2=1

π(s′1, s
′
2)λℓE1ℓ(s

′
1, s1)E2ℓ(s

′
2, s2) . (6.2)

68 6. Component-wise state space reduction

Analogously, the global balance equation for a generic state (s̃1, s2) of M̃1 ⊗M2 is:

π̃(s̃1, s2)

Ñ1

s̃′1=1̃

λ̃1Ẽ11(s̃1, s̃
′
1) +

N2
s′2=1

λ2E22(s2, s
′
2)

+
T

ℓ=3

Ñ1
s̃′1=1̃

N2
s′2=1

λ̃ℓẼ1ℓ(s̃1, s̃
′
1)E2ℓ(s2, s

′
2)

=

Ñ1
s̃′1=1̃

π̃(s̃′1, s2)λ̃1Ẽ11(s̃
′
1, s̃1) +

N2
s′2=1

π̃(s̃1, s
′
2)λ2E22(s

′
2, s2)

+
T

ℓ=3

Ñ1
s̃′1=1̃

N2
s′2=1

π(s̃′1, s
′
2)λ̃ℓẼ1ℓ(s̃

′
1, s̃1)E2ℓ(s

′
2, s2) . (6.3)

Summing both the members of Equation (6.2) over states s1 belonging to s̃1 of M̃1,
we obtain the following identity:

s1∈s̃1

π(s1, s2)

N1

s′1=1

λ1E11(s1, s
′
1) +

N2
s′2=1

λ2E22(s2, s
′
2)

+
T

ℓ=3

N1
s′1=1

N2
s′2=1

λℓE1ℓ(s1, s
′
1)E2ℓ(s2, s

′
2)

=

s1∈s̃1

N1
s′1=1

π(s′1, s2)λ1E11(s
′
1, s1) +

s1∈s̃1

N2
s′2=1

π(s1, s
′
2)λ2E22(s

′
2, s2)

+

s1∈s̃1

T
ℓ=3

N1
s′1=1

N2
s′2=1

π(s′1, s
′
2)λℓE1ℓ(s

′
1, s1)E2ℓ(s

′
2, s2) . (6.4)

We consider the left-hand-side of Equation (6.4), and use the following relations
that follow from the hypothesis of lumpability of M1 into M̃1 and Definition 3:

s1∈s̃1

π(s1, s2)

N1
s′1=1

λ1E11(s1, s
′
1) =

s1∈s̃1

π(s1, s2)

Ñ1
s̃′1=1̃

s′1∈s̃′1

λ1E11(s1, s
′
1)

=

s1∈s̃1

π(s1, s2)

Ñ1

s̃′1=1̃
s̃′1 ̸=s̃1

λ̃1Ẽ11(s̃1, s̃
′
1) +

s1∈s̃1

s′1∈s̃1

π(s1, s2)λ1E11(s1, s
′
1) ,

6.2. Exact lumpability 69

and:

s1∈s̃1

π(s1, s2)
T

ℓ=3

N1
s′1=1

N2
s′2=1

λℓE1ℓ(s1, s
′
1)E2ℓ(s2, s

′
2)

=

s1∈s̃1

π(s1, s2)
T

ℓ=3

N2
s′2=1

E2ℓ(s2, s
′
2)

Ñ1
s̃′1=1̃

s′1∈s̃′1

λℓE1ℓ(s1, s
′
1)

=

s1∈s̃1

π(s1, s2)

T

ℓ=3

N2
s′2=1

E2ℓ(s2, s
′
2)

Ñ1
s̃′1=1̃

λ̃ℓẼ1ℓ(s̃1, s̃
′
1) ,

We analogously transform the terms in right-hand-side of Equation (6.4):

s1∈s̃1

N1
s′1=1

π(s′1, s2)λ1E11(s
′
1, s1) =

s1∈s̃1

Ñ1
s̃′1=1̃

s′1∈s̃′1

π(s′1, s2)λ1E11(s
′
1, s1)

=

Ñ1
s̃′1=1̃

s′1∈s̃′1

π(s′1, s2)

s1∈s̃1

λ1E11(s
′
1, s1)

=

Ñ1
s̃′1=1̃
s̃′1 ̸=s̃1

s′1∈s̃′1

π(s′1, s2)

 λ̃1Ẽ11(s̃
′
1, s̃1) +

s′1∈s̃1

s1∈s̃1

π(s′1, s2)λ1E11(s
′
1, s1) ,

and:

s1∈s̃1

T
ℓ=3

N1
s′1=1

N2
s′2=1

π(s′1, s
′
2)λℓE1ℓ(s

′
1, s1)E2ℓ(s

′
2, s2)

=
T

ℓ=3

Ñ1
s̃′1=1̃

s′1∈s̃′1

N2
s′2=1

π(s′1, s
′
2)E2ℓ(s

′
2, s2)

s1∈s̃1

λℓE1ℓ(s
′
1, s1)

=
T

ℓ=3

Ñ1
s̃1=1̃

N2
s′2=1

s1∈s̃1

π(s̃′1, s
′
2)

E2ℓ(s

′
2, s2)λ̃ℓẼ1ℓ(s̃

′
1, s̃1) .

Noting that trivially:

s1∈s̃1

s′1∈s̃1

π(s1, s2)λ1E11(s1, s
′
1) =

s′1∈s̃1

s1∈s̃1

π(s′1, s2)λ1E11(s
′
1, s1) ,

70 6. Component-wise state space reduction

and that Ẽ11(s̃1, s̃1) = 0 by Definition 3, Equation (6.4) can be rewritten as follows:
s1∈s̃1

π(s1, s2)

Ñ1

s̃′1=1̃

λ̃1Ẽ11(s̃1, s̃
′
1) +

N2
s′2=1

λ2E22(s2, s
′
2)

+
T

ℓ=3

Ñ1
s̃′1=1̃

N2
s′2=1

λ̃ℓẼ1ℓ(s̃1, s̃
′
1)E2ℓ(s2, s

′
2)

=

Ñ1
s̃′1=1̃

s′1∈s̃′1

π(s′1, s2)

 λ̃1Ẽ11(s̃
′
1, s̃1) + +

N2
s′2=1

s1∈s̃1

π(s1, s
′
2)

λ2E22(s

′
2, s2)

+
T

ℓ=3

Ñ1
s̃′1=1̃

N2
s′2=1

s1∈s̃1

π(s̃′1, s̃
′
2)

λ̃ℓẼ1ℓ(s̃

′
1, s̃1)E2ℓ(s

′
2, s2) (6.5)

The theorem is proved by observing that the substitution of π̃(s̃1, s2) in Equa-
tion (6.3) by the expression given in Theorem 3 straightforwardly produces Equa-
tion (6.5) which is an identity.

Corollary 1 states an efficient way of computing the marginal distribution of M2.

Corollary 1. Let M1 and M2 be two automata, and let M̃1 be an exact automa-
ton lumping of M̃1. Then, under ergodicity assumption, the marginal steady-state
probability distribution π2(s2) of M2 is:

π2(s2) =

Ñ1
s̃1=1̃

π̃(s̃1, s2) ,

where π̃(s̃1, s2) is the stationary distribution of M̃1 ⊗M2.

The proof immediately follows from Theorem 3.

Example 8 (Exact automaton lumping). We consider the automaton depicted by
Figure 6.1. According to Definition 3 we derive the lumped automaton of Figure 6.2.

6.2.1 Exact lumping and strong equivalence

The reader familiar with process algebra can observe that Definition 3 is closely
related to the definition of strong equivalence between PEPA processes given in
[101]. The author exploits this approach with the same aims that we have here.

6.2. Exact lumpability 71

A1

A2

B

C1

C2

4, β2

1, µ

3, λ

4, ǫ
3

4, δ

4, γ

3, γ4, δ3, α

4, γ

4, 2
3ǫ

1, µ

3, λ

1, µ

4, β

4, β2 1, η

3, 2λ

1, µ

Figure 6.1: Example of automaton with types T = {1, 2, 3, 4}. Arcs are labelled by
their type ℓ and the rate λℓE1ℓ(s1, s

′
1). Self-loops associated with type 2 are omitted

for the sake of clarity.
.

A B C

1, µ

3, λ

3, 2λ

1, 2µ

4, ǫ

4, γ

4, β

4, δ

3, α

Figure 6.2: Lumping of the automaton of Figure 6.1. Arcs are labelled by their type
ℓ and the rate λ̃ℓẼ1ℓ. Self-loops associated with type 2 are omitted for the sake of
clarity.

72 6. Component-wise state space reduction

The difference between Definition 3 and the concept of strong equivalence concerns
the conditions about the non-synchronising transitions, i.e., those that in PEPA
are called τ -actions (in our framework these correspond to transitions with type
t = 1). In fact, Definition 3 distinguishes between non-synchronising (t = 1) and
synchronising (t > 2) transition types, as the former does not need to have constant
outgoing rate from a state of a cluster to other states of the same cluster. Therefore,
we can say that strong equivalence implies lumping in the sense of Definition 3 but
not vice versa, as illustrated in Example 8, where states A1 and A2 are not strong
equivalent because of the transition of type 1 and rate η from state A2 to state A1.
It is worth noting that while our approach deals only with cooperations between
automata, PEPA’s strong equivalence is a congruence which is preserved by all the
process algebra’s combinators.

6.3 Conclusions

In this chapter we have shown a set of conditions for state space aggregation which
are weaker than those required by PEPA strong equivalence [101], but still preserve
their compositionality with respect to synchronisations. In the next chapter we
will further delve into aggregation issues, and we will show some relations between
lumping and product-form theory.

7
Conditional Product-Forms

7.1 Introduction

In Chapter 5 and 6 we have seen two of the main approaches for reducing the
complexity of the solution of cooperating stochastic models, i.e., product forms and
state space aggregations. This chapter proves some interesting relations between
the joint process M1 ⊗M2 and the lumping of the automaton which is the time-
reversed of M1. Using time-reversibility to study the steady-state distribution of a
complex model is not a new result itself (see, e.g., the results on stochastic networks
and product-forms presented in [111, 89]); nevertheless, the results proved here are
novel: indeed, we show how conditional product-form can be interpreted as a lumping
of reversed automata, thus revealing an unexpected link between the results of the
two previous chapters. Note that in [46] higher order product-forms are used only
as a mean of approximating the stationary distribution of the joint process, without
showing when they provide exact results.

The following section introduces some definitions that will be useful in the re-
maining of the chapter.

7.1.1 Feed-forward synchronisations

The main restriction we consider in this work concerns the class of synchronisations
that we admit in our model. Roughly speaking we require the automaton that has
to be lumped to have a marginal steady-state distribution that is independent of
the state of M2 (but obviously not vice-versa).

Definition 4 (Non-blocking synchronisation). We say that type ℓ ∈ T is non-
blocking if for at least one of the cooperating automata M1 and M2 it holds that
Rkℓ(s) = 1 for all s = 1, . . . , Nk. In this case we say that ℓ is active in Mh, with
h ̸= k, and passive in Mk, k, h ∈ {1, 2}.

Informally, we can say that in a non-blocking synchronisation, one of the two
cooperating automata (the active with respect to ℓ) can carry out its activity of
type ℓ independently of the current state of the other automaton. In this case we

74 7. Conditional Product-Forms

can say that the transition rate of active automaton Mh from state sh to s′h is given
by:

qℓ(sh, s
′
h) = λℓEhℓ(sh, s

′
h) .

Note that, by definition, q1(s1, s
′
1) (q2(s2, s

′
2)) denotes the rates of the independent

transitions in M1 (M2). As an instance, if we consider a tandem of two queues, and
let ℓ be the synchronisation between the customer departures from the first queue
and the arrivals at the second, then a sufficient condition for the synchronisation to
be non-blocking is that the second queue has infinite buffer size (see Example 1).

The following definition is needed to avoid cycles among model synchronisation.
In queueing theory this corresponds to the possibility of defining queueing networks
with a feed-forward structure.

Definition 5 (Feed-forward synchronisation). We say that the synchronisation be-
tween M1 and M2 is feed-forward if for all ℓ ∈ T , ℓ ̸= 2, matrices E2ℓ are stochastic.
We call M1 and M2 the active and passive model, respectively.

Remark 1. Observe that in a feed-forward synchronisation with non-blocking syn-
chronisation, the infinitesimal generator underlying M1 is well-defined by:

Q1 =
T
t=1

λtE1t −
T
t=1

λtD1t, (7.1)

Hence, if Q1 is associated with an ergodic CTMC, we can compute the marginal
distribution of M1 in the cooperation.

Theorem 4 relies on the theory of reversed Markov processes as studied in [111]
and successively in [89]. Before stating the second theorem, we briefly review some
results about reversed Markov processes [111]. Given a continuous time stochastic
process X(t) we say that it is stationary if (X(t1), X(t2), . . . , X(tn)) has the same
joint-distribution of (X(t1+τ), X(t2+τ), . . . X(tn+τ)) and we say that it is reversible
if (X(t1), X(t2), . . . , X(tn)) has the same joint-distribution of (X(τ − t1), X(τ −
t2), . . . , X(τ − tn)) for all t1, . . . , tn, τ ∈ R and n ∈ N. It is easy to prove that a
reversible process is also stationary. For a reversible CTMC, the following relation
holds:

π1(s1)q1(s1, s
′
1) = π1(s

′
1)q1(s

′
1, s1),

where π1(s1) is the stationary probability of s1 and s1, s
′
1 two arbitrary states of

the CTMC, and q1(s1, s
′
1) denotes the transition rate from s1 to s′1. Obviously, a

stationary process may be not reversible. In this case, it is still possible to define the
reversed process, but the joint-distribution of (X(t1), X(t2), . . . , X(tn)) is in general
different form that of process (X(τ − t1), X(τ − t2), . . . , X(τ − tn)). Assume that
the forward chain admits the steady-state distribution π1 and has a transition from
state s1 to s′1 with rate q(s1, s

′
1), then it can be proved that the reversed process is

7.2. Conditional product-form and lumping of the reversed automata 75

still a Markov process with the same state space that has a transition from s′1 to s1
whose rate qR1 (s

′
1, s1) is given by:

qR1 (s
′
1, s1) =

π(s1)

π(s′1)
q1(s1, s

′
1). (7.2)

The forward and the reversed CTMCs share the same steady-state probabilities [111].
Observe that from the transition rates of the reversed CTMC we can efficiently
compute the unnormalised steady-state distribution and vice versa. Based on Equa-
tion (7.2) we give the following definition:

Definition 6 (Timed-reversed automata). Given the active automaton M1 syn-
chronising on transition type T with rates λ1, . . . , λT , we define the timed-reversed
automaton MR

1 as follows:

ER
1ℓ(s1, s

′
1) =

π1(s
′
1)

π1(s1)
qℓ(s

′
1, s1)

1

λR
ℓ

ℓ ̸= 2

ER
12 = I

where:

λR
ℓ = max

s1=1,...,N1

 N1
s′1=1

qRℓ (s1, s
′
1)

and

qRℓ (s1, s
′
1) =

π1(s
′
1)

π1(s1)
qℓ(s

′
1, s1) ,

for all 1 ≤ s1, s
′
1 ≤ N1 and ℓ ̸= 2.

Definition 7 (Time-reversible automata). An active automaton M1 is time-reversible
if the following condition holds:

∀ℓ ∈ T , ∀s1, s′1 ∈ [1, N1] , π1(s1)qℓ(s1, s
′
1) = π1(s

′
1)qℓ(s

′
1, s1) .

7.2 Conditional product-form and lumping of the

reversed automata

In this section we present the main theorem showing the relation between the lump-
ing of a reversed automaton and the steady-state distribution of M1 ⊗M2.

Theorem 4 (Conditional product-forms). Given the model M1 ⊗ M2, in a feed-
forward and non-blocking synchronisation. Let MR

1 be the reversed automaton of
M1 and let M̃R

1 be an exact lumping of MR
1 whose clusters are S = {1̃, . . . , Ñ1} and

76 7. Conditional Product-Forms

let M̃R
1 be reversible. Then, under ergodicity assumption, the following Ñ1-order

product-form expression holds:

π(s1, s2) = π̃R
M2|M̃R

1
(s2|s̃1)π1(s1) , (7.3)

where π is the steady-state distribution of M1 ⊗M2 and π̃R that of M̃R
1 ⊗M2, π1

that of M1 and:

π̃R
M2|M̃R

1
(s2|s̃1) =

π̃R(s̃1, s2)

π̃1(s̃1)
,

where, since the stochastic process underlying M̃R
1 is a lumping of that underlying

MR
1 , we have π̃1(s̃1) =

s1∈s̃1 π1(s1).

Proof of Theorem 4. The main line of the proof consists in showing that replacing
π(s1, s2) with the expression (7.3) in the GBE of M1 ⊗M2 gives an identity.

Let us start by writing down the GBE corresponding to state s1 in M1. Remem-
ber that, since by hypothesis we have a non-blocking synchronisation, the marginal
distribution of M1 is independent of the state of M2 in the cooperation of M1⊗M2,
hence:

π1(s1)

 N1
s′1=1

q1(s1, s
′
1) +

T
ℓ=3

N1
s′1=1

qℓ(s1, s
′
1)

=

N1
s′1=1

π1(s
′
1)q1(s

′
1, s1) +

T
ℓ=3

N1
s′1=1

pi1(s
′
1)qℓ(s

′
1, s1) , (7.4)

and the GBE corresponding to state (s̃1, s2) in M̃R
1 ⊗M2:

π̃R(s̃1, s2)

 Ñ1
s̃′1=1̃

q̃R1 (s̃1, s̃
′
1) +

T
ℓ=3

Ñ1
s̃′1=1̃

q̃Rℓ (s̃1, s̃
′
1) +

N2
s′2=1

q2(s2, s
′
2)

=

Ñ1
s̃′1=1̃

π̃R(s̃′1, s2)q̃
R
1 (s̃

′
1, s̃1) +

T
ℓ=3

Ñ1
s̃′1=1̃

N2
s′2=1

π̃R(s̃′1, s
′
2)q̃

R
ℓ (s̃

′
1, s̃1)Eℓ(s

′
2, s2)

+

N2
s′2=1

π̃R(s̃1, s
′
2)q2(s

′
2, s2) . (7.5)

Observe that thanks to the hypothesis of non-blocking synchronisation, the rate

out of state (s̃1, s2) due to a synchronising type ℓ is
Ñ1

s̃′1=1̃
q̃Rℓ (s̃1, s̃

′
1), whereas when

considering the synchronising transition from (s̃′1, s
′
2) to (s̃1, s2) we must multiply the

rate of q̃1(s̃
′
1, s̃1) with the synchronising probability of M2, i.e, Eℓ(s

′
2, s2), according

to the semantics of cooperations. Equations (7.4) and (7.5) uniquely identify the
probability distribution π1(s1) and π̃R(s̃1, s2) and hence are identities. Now, we
prove the following two propositions that allow for some simplifications.

7.2. Conditional product-form and lumping of the reversed automata 77

Proposition 1. The following relation holds:

Ñ1
s̃′1=1̃

q̃R1 (s̃1, s̃
′
1) +

s′1∈s̃1

π1(s
′
1)

π1(s1)
q1(s

′
1, s1) =

N1
s′1=1

π1(s
′
1)

π1(s1)
q1(s

′
1, s1) ,

with s̃1 denoting the class of state s1.

Indeed, we can write:

N1
s′1=1

π1(s
′
1)

π1(s1)
q1(s

′
1, s1) =

Ñ1
s̃′1=1̃
s̃′1 ̸=s̃1

s′1∈s̃′1

qR1 (s1, s
′
1) +

s′1∈s̃1

π1(s
′
1)

π1(s1)
q1(s

′
1, s1)

=

Ñ1
s̃′1=1̃

q̃R1 (s̃1, s̃
′
1) +

s′1∈s̃1

π1(s
′
1)

π1(s1)
q1(s

′
1, s1) ,

by Definitions 6 and 3 (remember that q̃R1 (s̃1, s̃1) = 0 by definition).

Proposition 2. The following relation holds:

T
ℓ=3

Ñ1
s̃1=1̃

q̃Rℓ (s̃1, s̃
′
1) =

T
ℓ=3

N1
s′1=1

π1(s
′
1)

π1(s1)
qℓ(s

′
1, s1) .

Using again Definitions 6 and 3, we can write:

T
ℓ=3

N1
s′1=1

π1(s
′
1)

π1(s1)
qℓ(s

′
1, s1) =

T
ℓ=3

Ñ1
s̃′1=1̃

s1∈s̃1

qRℓ (s1, s
′
1) =

T
ℓ=3

Ñ1
s̃′1=1̃

q̃Rℓ (s̃1, s̃
′
1) .

Using Propositions 1 and 2, we can sum Equation (7.4) divided by π1(s1) and
Equation (7.5) divided by π̃R(s̃1, s2), obtaining the following identity:

N1
s′1=1

q1(s1, s
′
1) +

T
ℓ=3

N1
s′1=1

qℓ(s1, s
′
1) +

N2
s′2=1

q2(s
′
2, s2)

=

Ñ1
s̃′1=1̃

π̃R(s̃′1, s2)

π̃R(s̃1, s2)
q̃R1 (s̃

′
1, s̃1) +

s′1∈s̃1

π1(s
′
1)

π1(s1)
q1(s

′
1, s1)

A

+
T

ℓ=3

Ñ1
s̃′1=1̃

N2
s′2=1

π̃R(s̃′1, s
′
2)

π̃R(s̃1, s2)
q̃Rℓ (s̃

′
1, s̃1)Eℓ(s

′
2, s2)

B

+

N2
s′2=1

π̃R(s̃1, s
′
2)

π̃R(s̃1, s2)
q2(s

′
2, s2)

C

. (7.6)

78 7. Conditional Product-Forms

The proof proceeds by writing the GBE corresponding to a generic state (s1, s2)
of M1⊗M2 and showing that Identity (7.6) is obtained after some algebraic manip-
ulations by substituting the product-form expression of Equation (7.3).

The GBE for state (s1, s2) in M1 ⊗M2 is:

π(s1, s2)

 N1
s′1=1

q1(s1, s
′
1) +

T
ℓ=3

N1
s′1=1

qℓ(s1, s
′
1) +

N2
s′2=1

q2(s2, s
′
2)

=

N1
s′1=1

π(s′1, s2)q1(s
′
1, s1)

D

+

N2
s′2=1

π(s1, s
′
2)q2(s

′
2, s2)

E

+

T
ℓ=3

N1
s′1=1

N2
s′2=1

π(s′1, s2)qℓ(s
′
1, s1)Eℓ(s

′
2, s2)

F

(7.7)

Let us divide the equation by π(s1, s2) and consider only the right-hand side. After
the substitution, block D can be rewritten as:

D

π(s1, s2)
=

Ñ1
s̃′1=1̃
s̃′1 ̸=s̃1

s′1∈s̃′1

π̃R
M2|M̃R

1

(s2|s̃′1)π1(s
′
1)

π̃R
M2|M̃R

1

(s2|s̃1)π1(s1)
q1(s

′
1, s1) +

s′1∈s̃1

π1(s
′
1)

π1(s1)
q1(s

′
1, s1)

=

Ñ1
s̃′1=1̃
s̃′1 ̸=s̃1

s′1∈s̃′1

π̃R
M2|M̃R

1

(s2|s̃′1)
π̃R
M2|M̃R

1

(s2|s̃1)
qR1 (s1, s

′
1) +

s′1∈s̃1

π1(s
′
1)

π1(s1)
q1(s

′
1, s1) by Def. 6

=

Ñ1
s̃′1=1̃
s̃′1 ̸=s̃1

π̃(s̃′1, s2)π̃1(s̃1)

π̃(s̃1, s2)π̃1(s̃′1)
q̃R1 (s̃1, s̃

′
1) +

s′1∈s̃1

π1(s
′
1)

π1(s1)
q1(s

′
1, s1) by Def. 3

=

Ñ1
s̃′1=1̃
s̃′1 ̸=s̃1

π̃(s̃′1, s2)

π̃(s̃1, s2)
q̃R1 (s̃

′
1, s̃1) +

s′1∈s̃1

π1(s
′
1)

π1(s1)
q1(s

′
1, s1) = A ,

where the last manipulation is a consequence of the hypothesis that M̃R
1 is reversible,

and hence π̃1(s̃1)q̃
R
1 (s̃1, s̃

′
1) = π̃1(s̃

′
1)q̃

R
1 (s̃

′
1, s̃1). Let us consider block E:

E

π(s1, s2)
=

N2
s′2=1

π̃R
M2|M̃R

1

(s′2|s̃1)π1(s1)

π̃R
M2|M̃R

1

(s2|s̃1)π1(s1)
q2(s

′
2, s2)

=

N2
s′2=1

π̃R(s̃1, s
′
2)π̃1(s̃1)

π̃R(s̃1, s2)π̃1(s̃1)
q2(s

′
2, s2) = C .

7.2. Conditional product-form and lumping of the reversed automata 79

Finally, we consider block F :

F

π(s1, s2)
=

T
ℓ=3

N2
s′2=1

Eℓ(s
′
2, s2)

Ñ1
s̃′1=1̃

s′1∈s̃′1

π̃R
M2|M̃R

1

(s′2|s̃′1)π1(s
′
1)

π̃R
M2|M̃R

1

(s2|s̃1)π1(s1)
qℓ(s

′
1, s1)

=
T

ℓ=3

N2
s′2=1

Eℓ(s
′
2, s2)

Ñ1
s̃′1=1̃

s′1∈s̃′1

π̃R
M2|M̃R

1

(s′2|s̃′1)
π̃R
M2|M̃R

1

(s2|s̃1)
qRℓ (s1, s

′
1) By Def. 6

=
T

ℓ=3

N2
s′2=1

Eℓ(s
′
2, s2)

Ñ1
s̃′1=1̃

π̃R
M2|M̃R

1

(s′2|s̃′1)
π̃R
M2|M̃R

1

(s2|s̃1)
q̃Rℓ (s̃1, s̃

′
1) By Def. 3

=
T

ℓ=3

N2
s′2=1

Eℓ(s
′
2, s2)

Ñ1
s̃′1=1̃

π̃R(s̃′1, s
′
2)π̃1(s̃1)

π̃R(s̃1, s2)π̃1(s̃′1)
q̃Rℓ (s̃1, s̃

′
1)

=
T

ℓ=3

N2
s′2=1

Eℓ(s
′
2, s2)

Ñ1
s̃′1=1̃

π̃R(s̃′1, s
′
2)

π̃R(s̃1, s2)
q̃Rℓ (s̃

′
1, s̃1) = B ,

where in the last passage we have used the assumption that M̃R
1 is reversible.

Concluding, by substituting the product-form expression (7.3) in Equation (7.7),
we obtain the identity (7.6) and hence (7.3) is the unique normalised solution of
M1 ⊗M2.

Corollary 2. The marginal distribution of M2 may be computed as:

π2(s2) =

Ñ1
s̃1=1̃

π(s̃1, s2) .

Proof of Corollary 2. We have to show that:

Ñ1
s̃1=1̃

π(s̃1, s2) =

N1
s1=1

π(s1, s2) .

We substitute in the right hand-side of this equation the product-form expres-
sion (7.3) obtaining:

N1
s1=1

π(s1, s2) =

Ñ1
s̃1=1̃

s1∈s̃1

π(s1)π̃
R
M2|M̃R

1
(s2|s̃1) =

Ñ1
s̃1=1̃

π̃M2|M̃R
1
(s2|s̃1)π̃1(s̃1)

=

Ñ1
s̃1=1̃

π(s̃1, s2)

80 7. Conditional Product-Forms

Example 9 (Lumping of the reversed automaton). Let us consider again the au-
tomaton of Figure 6.1 and its lumping depicted in Figure 6.2. Notice that this
latter automaton is reversible. Therefore, if we consider MR

1 to be the automaton
of Figure 6.1 and M̃R

1 that of Figure 6.2, we can apply Theorem 4 provided that
the cooperating automaton M2 is non-blocking and under the ergodicity assumption.
In this context, to obtain the forward automaton corresponding to M̃1 it suffices to
reverse it obtaining the rates shown in Table 7.1. The steady-state probabilities of
M1 (and MR

1) are:

π1(A1) =
2γ(2λ+ µ+ 2η)

(ϵ+ 3γ)(β + 2λ+ 2µ+ 2η)

π1(A2) =
2γ(β + µ)

(ϵ+ 3γ)(β + 2λ+ 2µ+ 2 eta)

π1(B) =
γ

ϵ+ 3γ

π1(C1) =
ϵ(3δ + 4γ)

3(α + δ + 2γ)(ϵ+ eγ)

π1(C1) =
ϵ(3α + 2γ)

3(α + δ + 2γ)(ϵ+ eγ)

and those of M̃R
1 are:

π̃1(A) =
2γ

3γ + ϵ
, π̃1(B) =

γ

3γ + ϵ
, π̃1(C) =

ϵ

3γ + ϵ
,

where A = {A1, A2} and C = {C1, C2}. Therefore, for any automaton M2 such
that all the matrices M2ℓ, with ℓ ̸= 2, are stochastic, we have that:

π(s1, s2) = π1(s1)
π̃(s̃1, s2)

π̃1(s̃1)
.

7.2.1 Theoretical considerations about Theorem 3 and 4

In this section we have presented two theorems about lumping in cooperating stochas-
tic models. We already pointed out the connections between Theorem 3 and the
notion of strong equivalence (and its consequences) presented in [101]. Now, we
compare Theorem 4 with other relatively recent results that appeared in literature,
in particular for what concerns the analysis of product-form stochastic models. A
model is in product-form if the joint stationary distribution of an ergodic joint state
can be expressed in terms of the product of the marginal distributions of its compo-
nents considered in isolation and opportunely parametrised. A very general theory
about product-form models has been developed in [89] where the author, based on

7.2. Conditional product-form and lumping of the reversed automata 81

Action Type ℓ Incoming state Outgoing state λℓE1ℓ

1 B A1
2µ(2λ+µ+2η)
(β+2λ+2µ+2η

1 A1 A2
η(β+µ)

2λ+µ+2η

1 B A2
2µ(β+µ)

(β+2λ+2µ+2η)

1 A1 B µ(β+2λ+2µ+2η
2(2λ+µ+2η)

1 A2 B µ(β+2λ+2µ+2η)
2(β+µ)

3 B A1
2λ(2λ+µ+2η)
β+2λ+2µ+2η

3 B A2
2λ(β+µ)

β+2λ+2µ+2η

3 A1 B 2λ(β+2λ+2µ+2η)
2(2λ+µ+2η)

3 C2 C1
α(3δ+4γ)
3α+2γ

3 C1 C2
γ(3α+2γ)
(3δ+4γ)

4 A1 A1 β/2

4 A2 A1
β(2λ+µ+2η)

2(β+µ)

4 A2 A2 β

4 C1 B γ(α+δ+2γ)
(3δ+4γ)

4 C2 B 2γ(α+δ+2γ)
(3α+2γ)

4 B C1
ϵ(3δ+4γ)

3(α+delta+2γ)

4 C1 C1 δ

4 B C2
ϵ(3α+2γ)
3(α+δ+2γ)

4 C1 C2
δ(3α+2γ)
(3δ+4γ)

Table 7.1: Rates of the reversed automaton corresponding to the automaton of
Figure 6.1.

82 7. Conditional Product-Forms

process algebra analysis, gives sufficient conditions for the cooperation of two mod-
els to be in product-form (Reversed Compound Agent Theorem -RCAT-). If we
reformulate those conditions in terms on cooperating stochastic automata, we have:

C1 If transition t > 2 is passive with respect to Mk, then each state of Mk has
exactly one outgoing transition of type t (and its weight is 1);

C2 If transition t > 2 is active with respect to Mk, then each state of Mk has
exactly one incoming transition of type t;

C3 Let t > 2 be an active type with respect toMk, then the reversed rate associated
with each transition of type t in Mk is the same.

Observe that Conditions C2 and C3 imply that the timed-reversed automaton MR
1

associated with M1 admits a lumping of one single state as illustrated by the fol-
lowing example. From this we observe that when Theorem 4 is applied and an
automaton can be lumped into a single state, then we can also say that the joint
steady-state probability is given by the product of the marginal distributions of the
single automata.

Example 10 (G-network analysis). G-networks [78] are very powerful and versa-
tile class of models developed in queueing theory and they can be efficiently studied
because they yield a product-form stationary distribution. Let us consider the model
of Figurearrive at Q1 and Q2 according to independent Poisson processes with rates
λ1 and λ2, respectively. Service time is exponentially distributed with mean µ−11 and
µ−12 for Q1 and Q2, respectively. At a service completion epoch at Q1, the customer
can move to Q2 as an ordinary customer with probability p+12, while it can enter
Q2 as a negative customer with probability p−12. The effect of a negative customer
arrival at Q2 is to delete a positive one if the queue is non-empty (otherwise the
negative customer simply vanishes). In [89] it is shown that the reversed rates of
the transitions with types 3 and 4 in Q1 are constant and equal to λ1p

+
12 and λ1p

−
12,

respectively. According to RCAT we can obtain the marginal distribution of Q2 by
setting the rates of transitions with type 3 to λ1p

+
12 and those of transitions with type

4 to λ1p
−
12. Analogously, the application of Theorem 4 leads to a lumping of MR

1

consisting of one single state with two self-loops: one with type 3 and rate λ1p
+
12 and

the other with type 4 and rate λ1p
−
12.

Does the product-form property yield in case of a lumping to a single state apply-
ing Theorem 3? The answer is negative as shown by the following counterexample.

Example 11. This example is intentionally very simple in order to spot the differ-
ence between performing a lumping in the forward process or in the reversed. We
consider two exponential queues with synchronised arrivals modelled by a Poisson
process with rate λ as shown in Figure 7.2. Service rates are µ1 and µ2. In this case
we can apply Theorem 3, and queue Q1 is lumped into a model M̃1 with a single

7.2. Conditional product-form and lumping of the reversed automata 83

-

Q1 Q2

Q1

Q2

λ1

λ2

µ1 µ2

1, λ11, λ11, λ1

3, µ1p
+
123, µ1p

+
123, µ1p

+
12

4, µ1p
−
124, µ1p

−
124, µ1p

−
12

3, 13, 13, 1

2, λ22, λ22, λ2

2, µ22, µ22, µ24, 1

4, 14, 14, 1

0

0

1

1

2

2

Figure 7.1: Graphical representation of a G-network and the corresponding model
using automata.

Q1

Q2

Q1

Q2

λ

µ1

µ2

3, λ3, λ3, λ

1, µ11, µ11, µ1

3, 13, 13, 1

2, µ22, µ22, µ2

0

0

1

1

2

2

Figure 7.2: Exponential queues with synchronised arrivals and their representation
by stochastic automata.

84 7. Conditional Product-Forms

state with one self-loop with type 3 and rate λ. Observe that although the marginal
distribution obtained for Q2 by the analysis of M̃1⊗Q2 is trivially correct, the model
is not in product-form since the stationary probability is different from the product
of the marginal distributions of Q1 and Q2 (although they can be derived without the
derivation of the joint state space).

7.3 Conclusions

In this and in the previous chapter we have addressed the problem of lumping
stochastic automaton. We have shown a result on lumping both for forward-time
automaton and reversed-time. In the latter case we show a connection between
the expression of the joint steady-state probabilities and conditional product-forms.
Component-wise lumping may generate a joint model with a higher number of states
than that obtained by the optimal lumping applied straightforwardly on the joint
CTMC [2]. However, the former approach never requires to define the whole joint
model and hence in many case may tackle the state space explosion problem. Al-
gorithmically, the problem of lumping Markov chains, PEPA models, queueing net-
works and stochastic Petri nets has been widely addressed. Here, we mention the
important algorithm based on a notion of isomorphism among PEPA components
presented in [83]. The isomorphism relation is stricter than the strong equivalence
(which is itself stricter than the conditions of Definition 3) and hence, as the same
authors point out, the resulting lumping may be suboptimal. However, the algo-
rithm is very efficient, already implemented in the PEPA Workbench [81] and the
results it provides may be straightforwardly used to apply Theorem 3. The same
algorithm may still be applied once the time-reversed automaton has been derived
and hence apply Theorem 4.

For what concerns future developments, we are currently working on proving
that some stochastic models which arise from practical applications exhibits the
kind of conditional product-form that we have introduced in this chapter.

8
Approximate aggregation techniques

8.1 Introduction

As we have seen in the previous chapter, component-wise states space aggregation
can lead to more efficient solutions of cooperating stochastic models. However, it
is not always the case that a model exhibits a lumpable structure. Moreover, even
when this is the case, finding the right clustering, i.e., a partition of the state space,
in order to apply the aforementioned results is not a trivial task.

In this context we mentioned the algorithm presented in [83], which is based on
a notion of isomorphism among PEPA components. The isomorphism relation is
stricter than the strong equivalence (which is itself stricter than the conditions of
Definition 3) and hence, as the same authors point out, the resulting lumping may
be not optimal. However, the algorithm is very efficient, already implemented in the
PEPA Workbench [81] and the results it provides may be straightforwardly used to
apply Theorem 3. The same algorithm may still be applied once the time-reversed
automaton has been derived and hence apply Theorem 4. Note that the problem of
time-reversing PEPA agents has already been widely addressed in [89].

In this chapter we aim at exploiting the results stated in chapters 6 and 7 to
define an algorithm hat computes an approximation of the stationary distribution
of the passive model M2 in the cooperation M1 ⊗M2

8.2 Evaluation of the quality of clusters

In this section we address the problem of measuring how close an arbitrary state
partition is to an exact lumping as given in Definition 3. Let M1 be the active model
and T the transition type set with the convention that t = 1 (t = 2) denotes the
type of the transitions that M1 (M2) can carry out independently of M2 (M1), and
t > 2 denotes the type for the synchronised transitions in which M1 is active. Given
an arbitrary partition W (note that we reserve S for denoting partitions that are
also lumpings), we measure the coefficient of variation of the outgoing fluxes ϕt

1(s1)
of the states in s̃1. In the following definitions we assume the empty cluster (that
would lead to a 0/0 in the definition) to have error 0.

86 8. Approximate aggregation techniques

Definition 8 (ϵ-error). Given model M1 and a partition of states W = {1̃, . . . , Ñ1},
for all s̃1 ∈ W and t > 2, we define:

ϕ
t

1(s̃1) =

s1∈s̃1

π1(s1)ϕ
t
1(s1)

1

s1∈s̃1 π1(s1)

ϵt(s̃1) = 1− exp

−

s1∈s̃1

π1(s1)(ϕt
1(s1)− ϕ

t

1(s̃1))
2

s∈s̃1 π1(s1)

 .

Observe that 0 ≤ ϵt(s̃1) < 1 and if automaton M̃1 is an exact lumping of M1,
then ∀t > 2, ∀s̃1 = 1, . . . , Ñ1 we have that ϵt(s̃1) = 0. We use the minimisation
of error ϵ to perform a first rough clustering of the states of M1 as described in
Section 8.3. The following definition gives a more accurate measure of the error of
a partition.

Definition 9 (δ-error). Given model M1 and a partition of states W = {1̃, . . . , Ñ1},
for all s̃1, s̃

′
1 ∈ W, we define:

φt
1(s̃1, s̃

′
1) =

0 s̃1 = s̃′1 ∧ t = 1
(

s1∈s̃1
π1(s1)φt

1(s1,s̃
′
1))

s1∈s̃1
π1(s1)

otherwise

σt(s̃1, s̃

′
1)
2

=

s1∈s̃1

π1(s1)(φ
t
1(s1, s̃

′
1)− φt

1(s̃1, s̃
′
1))

2
s∈s̃1 π1(s)

(8.1)

δt(s̃1, s̃
′
1) = 1− e−σ(s̃1,s̃

′
1)

where function φt
1 has been defined in Definition 3.

Similarly to ϵt, also for error δt we have that 0 ≤ δt(s̃1, s̃2) < 1.

8.3 Algorithm definition

In this section we propose an algorithm to approximate the marginal distributions of
cooperating stochastic automata. Informally, the algorithm exploits the heuristics
defined for solving clustering problems in order to obtain an automaton M≃

1 , which
is close to an exact lumping of M1, where we use the δ- and ϵ-errors to measure the
goodness of the approximation of M≃

1 . In what follows we focus our attention on
clusteringM1, but the same discussion is obviously valid forMR

1 . An ideal algorithm
based on the theory we developed should work as illustrated in Table 8.1. The idea
is that the analyst specifies the models and a pair of tolerance constants, ϵ ≥ 0, and
δ ≥ 0 and the algorithm uses the best approximated lumping (i.e., that with the
smallest number of clusters) for which each synchronising transition type satisfies the

8.3. Algorithm definition 87

conditions stated in Steps 1 and 3 to compute the marginal steady-state distribution
of the components. The algorithm surely terminates because when the number of
clusters of the partition is equal to the number of states of M1, we have an exact
lumping. Obviously, if one desires to specify the number of clusters of M≃

1 rather

• Input: automata M1, M2, T , tolerances ϵ ≥ 0, δ ≥ 0

• Output: marginal distribution π1 of M1; approximated marginal distri-
bution of M2

1. Find the minimum Ñ ′1 such that there exists a partition W = {1̃, . . . , Ñ ′1}
of the states of M1 such that ∀t ∈ T , t > 2 and ∀s̃1 ∈ W ϵ(s̃1) ≤ ϵ

2. Let W ′ ←W

3. Check if partitionW ′ is such that ∀t ∈ T , ∀s̃1, s̃2 ∈ W , s̃1 ̸= s̃2, δ
t(s̃1, s̃

′
1) ≤

δ. If this is true then return the marginal distribution of M1 and the
approximated of M2 by computing the marginal distribution of M̃1 ⊗M2

and terminate.

4. Otherwise, refine partition W to obtain Wnew such that the number of
clusters ofWnew is greater than the number of clusters inW ′. W ′ ←Wnew.
Repeat from Step 3

Table 8.1: Ideal algorithm for computing the approximated marginal distributions
of cooperating automata.

than the tolerance criteria, the algorithm can be simplified. The following definition
specifies how we derive an approximate lumped automaton given a partition of its
states W .

Definition 10 (Approx. lumped automata). Given active automaton M1, a set
of transition types T , and a partition of the states of M1 into Ñ1 clusters W =
{1̃, 2̃, . . . , Ñ1}, then we define the automaton M≃

1 as follows:

Ẽ11(s̃1, s̃
′
1) =

φ1
1(s̃1, s̃

′
1)λ̃
−1
1 if s̃1 ̸= s̃2

0 otherwise
Ẽ12 = I, Ẽ1t(s̃1, s̃1) = φt

1(s̃1, s̃
′
1)λ
−1
t t > 2

where λ̃t = maxs̃1=1,...,Ñ1

Ñ1

s̃′1=1 φ
t
1(s̃1, s̃

′
1)

are the rates associated with the tran-

sition types in the cooperation between M≃
1 and M2.

The algorithm is called ideal because the problem of performing an optimal
clustering is known to be NP-hard and hence a sub-optimal solution is usually com-
puted using some heuristics [176]. We now consider the main steps of the algorithm

88 8. Approximate aggregation techniques

of Table 8.1 and discuss how they can be implemented in practice. Note that the
choice of an algorithm often depends on the characteristics of the dataset that one
is studying. Since we consider general automata, we decided to propose at least two
different solutions for each of the problems proposed by the algorithm of Table 8.1,
i.e., implementing Step 1 and Step 4.

The initial clustering based on ϵ-error

The initial clustering can be implemented with various algorithms. The similarity
measure between two states s1 and s′1 can be the Euclidean distance between the
vectors (ϕ3

1(s1), . . . , ϕ
T
1 (s1)) and (ϕ3

1(s
′
1), . . . , ϕ

T
1 (s
′)). In case of hierarchical cluster-

ing a divisive (top-down) approach can be adopted and the algorithm stops when
the condition of ϵ-error stated in Step 1 is satisfied. Another approach, which is
used in the example we propose in Section 8.4, is to use K-means. K-means is a
fast algorithm for clustering whose drawback consists in the need of specifying a-
priori the desired number of clusters K. Therefore, this is usually the good choice
if some intuition can drive the analyst in choosing an initial value for K. If the
constraints on ϵ cannot be satisfied by the choice of K, then K-means must be run
again specifying a number of clusters K ′ > K.

Refining the clustering obtained in Step 1

We consider the problem of refining the clustering obtained in Step 1 in order to
satisfy the conditions required by the tolerance constant δ. Note that often the
partitions obtained from the first step are sufficient to obtain good approximations
in real models such as queues (as shown by the Example of Section 8.4). Let W =
{s̃1, . . . , s̃n} be the clustering obtained by the first phase of the algorithm and we
want to obtain W ′ = {p̃1, . . . , p̃m} with m > n such that W ′ is a refinement of W .
Note that K-means cannot be straightforwardly applied to cluster the states because
the distance measures among the states depend on the cluster themselves.

Spectral analysis Spectral analysis is applied to stochastic matrices P, therefore
we must discretise the CTMC underlying automatonM1. LetQ1 be the infinitesimal
generator of M1, then, following [165], let ∆t = max(|Q(i, i)|), where Q(i, i) are the
diagonal elements of Q. Then, we have P = Q∆t + I. Now observe that an exact
lumping for P is also an exact lumping for Q, and a good approximation for P
is also a good approximation for Q. However, recall that an exact lumping of
CTMC corresponding to Q is a necessary condition for satisfying Definition 3 but
not sufficient. This method has been introduced by Jacobi in [108] for identifying
approximated lumpings in Markov chains. The algoritm relies on the property that a
Markov chain admits an exact lumping with K states if and only if there are exactly
K right eigenvectors of P with elements that are constant over the aggregates (see
[108] and the references therein), thus it definesR = P⊤P−P−P⊤+I and computes

8.4. Example 89

its eigenvalues. Then, it obtains the eigenvectors ui corresponding to the K smallest
eigenvalues. Finally, the algorithm associates a vector vj with each state j of the
process that is defined as vj = (uj(1), . . . , uj(K)). The last step consists in running
K-Means to obtain K clusters. Note that the original algorithm uses the Euclidean
distance between vectors to perform the clustering, however we need to obtain a
partition W ′ that is a refinement of W . Therefore, we define the distance function
d as:

d(vi,vj) =

||vi − vj||2 if i, j ∈ s̃1 for some ——s1 ∈ W
⊤ otherwise

.

Iterative algorithm This algorithm is an adaptation to our framework of the
class of clustering algorithms described in [120]. We briefly describe the original
version as illustrated in [108]. Let Z be a N1 × K matrix whose element are in
{0, 1} and each row has exactly one non-zero element and K ≤ N1. Let P̃ be a
K ×K matrix. Then, if we can find a matrix Z such that PZ = ZP̃, P̃ denotes the
transition matrix of a lumped process. Elements Z(s1, s̃1) of Z are 1 if s1 ∈ s̃1, 0
otherwise, with 1 ≤ s1 ≤ N1 and 1 ≤ s̃1 ≤ K. The approximate lumping is obtained
by iteratively assigning a random state s1 to cluster s̃′1, where s̃′1 is chosen as the
cluster that minimises the local error measure ||(PZ)(s1, ∗) − P≃(s̃1, ∗)||2, where
P≃ is a candidate partition and P≃(s, ∗) denotes row s of the matrix. Obviously,
the algorithm can converge to a local minimum. For a comparison between this
approach and the spectral decomposition see [120, 108].

8.4 Example

In this section we consider an example consisting of a model in which the active
automaton is not exactly lumpable, and, by applying the approach described above,
we show how state aggregation of an automaton can both drastically reduce the state
space cardinality and provide a good approximation of the marginal steady-state
probabilities of the passive automaton. Consider the queueing network represented
in Figure 8.1 where the stations Q1 and Q2 have a finite capacity C1 and C2 and
customers arrives at Q1 and Q2 according to homogeneous Poisson processes of
parameter λ1 and λ2, respectively. The behaviour of the customers arriving at the
first queue can be described by a function γ : {0, . . . , C1} → [0, λ1] that given n1,
i.e., the number of customers already present in Q1, gives the rate of customers
skipping the first queue, while the rate of the customers that regularly enqueue in
the first station is given by λ1 − γ(n1), where function γ is defined as follows:

90 8. Approximate aggregation techniques

Q1 Q2

µ1 µ2

p

1− pλ1

λ2

γ(n1)

Figure 8.1: Example model.

γ(n1) =

0 if n1 ≤

C1

2

λ1

2
if

C1

2

< n1 < C1

λ1 if n1 = C1

When Q2 is full, customers are lost. Figure 8.2 shows the component-wise stochastic
processes underlying the described system, where P1 and P2 are the stochastic au-
tomata for Q1 and Q2, respectively and state h is the first one where γ assumes the
value λ1/2. We shall apply the techniques and algorithms proposed in Section 8.3
to this example and we present a comparison of our results with those obtained
by other methods. The parameters are C1 = 20, C2 = 20, λ1 = 6, λ2 = 1, µ1 =
4, µ2 = 4, p = 0.7. Using an implementation of the ideal algorithm of Table 8.1
on the process P1 and enforcing the use of K clusters, one should get a partition
L = {L1, . . . , LK}, where each Li is a subset of the states of P1. Using our im-
plementation with ϵ = 10−13 and δ = 0.95 as tolerances, as we were interested
in evaluating a coarse-grained approximated lumping, we obtained 4 clusters, i.e.,
L1 = {0}, L2 = {1, . . . , 10}, L3 = {11, . . . , 19} and L4 = {20}. Notice that the
resulting clustering is not an exact lumping, thus Theorem 3 does not hold. We can
however use this clustering to compute an approximation of the marginal steady-
state probabilities of the process P2, reducing drastically the state space of the joint
process. Using the same technique, we partitioned the reversed process P1R of P1,
obtaining L1 = {0, . . . , 10}, L2 = {11, 12}, L3 = {13, . . . , 19} and L4 = {20}, which
is not an exact lumping, thus Theorem 4 cannot be applied.

In order to evaluate the results of our technique, we compared them with the
solution obtained with other ones, namely we obtained the marginal steady state
probabilities of P2 using the following methods:

8.4. Example 91

P1

P2

1,λ11,λ1 1,λ1/21,λ1/2

3,λ1/23,λ1/2

3,λ1

1,pµ11,pµ11,pµ11,pµ1

3,(1 − p)µ13,(1 − p)µ13,(1 − p)µ13,(1 − p)µ1

0

0

1

1 h C1 − 1

C2 − 1

C1

C2k 3,1

3,13,13,13,1

2,λ2 2,λ2 2,λ2 2,λ2

2,µ22,µ22,µ22,µ2

Figure 8.2: Automata of the example model.

1. The computation of the joint probabilities between the approximate lumping
L of P1 and the process P2. [FW-Lump]

2. The computation of the joint probabilities between the approximate lumping
L of the of the reversed process P1R and the process P2. [RV-Lump]

3. The Approximated Product Form of order 4 introduced in [46]. [APF]

4. The Fixed Point Approximation [140]. [FPA]

5. The exact computation of the joint probabilities between P1 and P2. [Exact]

In order to compare the quality of the distributions obtained by the analysed meth-
ods, we used the Kullback-Leibler divergence between the exact marginal probability
distribution of P2 and these approximations, computed as:

DKL(P ||Q) =

i

P (i) log
P (i)

Q(i)
,

where P is the exact probability distribution and Q is the estimated one. Table 8.2
reports the Kullback-Leibler divergence, the average number of customers E[N] and
its relative error for Q2. While all the methods offer a reasonable approximation
on average performance indices, the error can be remarkable on their steady-state
distribution. Although we cannot consider these numerical results a complete study
of the relative merit of the various methods, it is possible to point out some differ-
ences among them. In particular, in this case, the results given by the approximate
lumping of the reversed process are more accurate than those obtained using the

92 8. Approximate aggregation techniques

FW-Lump RV-Lump APF FPA Exact

KL div. 0.0065 0.0045 0.0451 0.0112 0
E[N] 11.62 11.55 9.990 11.80 11.33

Rel. err. 0.0259 0.0200 0.1178 0.0424 0

Table 8.2: Comparison between approximation methods.

forward process. This is because grouping states by the sum of outgoing rates of
synchronising transition types leads to 4 sets in the forward process, and to 3 sets
in the reversed one. This allows the algorithm to refine one more time one of the
clusters by an enforced split in 4 components.

8.5 Conclusions

In this chapter we have proposed a methodology for approximating the marginal
distributions in the cooperations of two stochastic processes through approximated
lumping using results from Theorems 3 and 4. The main contribution relies in the
evaluation of lumping quality through ϵ and δ-error, and in the possibility to choose
the better lumping between the one on the forward and on the one on reversed
process. The advantages of this approach lie on the fact that it is done on single
cooperating automata and that, under some assumptions, it can lead to better
approximations with respect to other popular techniques, as shown in section 8.4.
Future research directions include the application of our methodology to real case
studies with large state spaces and the investigation on the relations between error
metrics and clustering algorithm.

III
Case studies and applications

9
Exploiting product forms solution

techniques in multiformalism
modelling

9.1 Introduction

Computer based systems that daily serve most human activities are characterized
by an increasing level of complexity, a term that can be interpreted in different
ways. Complexity can be found in the concurrent requirements these systems have
to satisfy while functioning (e.g. for critical systems, that have temporal, safety,
dependability and performance constraints), from the number of their different ar-
ticulations, or from their extension. Furthermore, complexity can be the result of
a substanding logic of design by composition of existing subsystems. In all these
cases, designers face the challenge by exploiting models to define or understand the
system’s characteristics.

Multiformalism modelling techniques allow to choose the most suitable formal-
ism to consider different aspects or parts of the overall system, thus providing a more
manageable and understandable model. These techniques support a modular ap-
proach, in which components are designed separately. However, a component-based
approach does not imply an efficient model solution.

As we have seen in Part II, while standard model analysis techniques suffer from
the so-called state space explosion problem, in some cases it is possible to exploit the
compositional definition of the system in order to find efficient solution methods.

In this chapter, based on a work we published in [22], we show how the product-
form solution theory and techniques described in 5 easily couple with multiformalism
compositional modelling techniques, to obtain a modelling and analysis framework
that offers modelling flexibility and efficient solutions. The contribution is based on
the design and implementation of an extensible modelling and solution framework,
supported by a tool solving multiformalism Markovian models with a threefold so-
lution mechanism. The tool automatically verifies and performs a product-form
solution. If this is not available it provides a state space based analytical solution
or a simulation as final backup tool. The research extends the SIMTHESys frame-

96 9. Exploiting product forms solution techniques in multiformalism modelling

work and the tool for product-form solutions, presented in Chapter 5 , in order to
encompass product form models that satisfy the ERCAT [91] and MARCAT [92]
theorems. To date, it appears there is no other similar, tool-supported approach in
the current literature.

A review on existing multi-formalism tools and approaches can be found in Chap-
ter 4

9.2 From multiformalism models to product-form

solutions

The approach proposed in this chapter leverages the existing modularity in mul-
tiformalism models and the possibilities of the SIMTHESys [106] framework to
exploit Markov chains product-form solutions detection in a multiformalism solu-
tion process. The SIMTHESys framework supports the design and development
of user-defined formalisms, for which a proper (multi)formalism solver is automat-
ically generated. The framework defines a formalisms design technique, based on
metamodelling and on a mechanism to specify the structural and dynamic charac-
teristics of every element of a formalism [25, 24, 23]. Solver generation is based on
the analysis of the formalism description and on a set of basic solving engines. In
this chapter, the Markov chain solving engines (analytical and simulative) are used,
together with a new solving engine that benefits from the INAP algorithm and the
MARCAT Theorem.

The set of specifications that a (multi)formalism should satisfy to apply MAR-
CAT to the model will be presented by developing proper high level formalisms,
whose specifications are inspired by Plateau’s SAN [146]. We introduce a new for-
malism family, that is a set of features that a formalism should have in order to
allow models expressed using it to be solved using the product-form computational
engine. The set of features that characterize this family of formalisms is inspired
by the features available in Continuous Time Stochastic Automata Networks with
Master/Slave synchronisations [63]. This new formalism family will be called La-
belled Exponential Events Formalisms. Formalisms belonging to this family can be
conveniently thought as Labelled Exponential Automata.

The approach is implemented by using SIMTHESysER, the SIMTHESys frame-
work solver generation tool, and the tool described in chapter 5, extended in order
to check the requirements of the MARCAT theorem. Within this approach, the
proposed formalism family allows the SIMTHESys framework to generate product-
form solution based optimized solvers and the tool to support high level formalisms,
extending its application field to more complex models. Moreover, a further result of
the integration of the two tools is the enrichment of the benefits of MARCAT with
the automatic verification of its hypotheses by using SIMTHESysER state space
generation logic. This provides a tool that allows the identification of a greater

9.2. From multiformalism models to product-form solutions 97

number of known product-forms without the need of checking them one by one.
The main limit of the approach is that it is only applicable to models that

cooperate pairwise. As a consequence more complex product-forms such as those
based on instantaneous signal propagation [79] are not considered. When product-
forms are not applicable, models are solved by the generated solver using the general
analytic approach or by simulation.

9.2.1 Deciding and computing the product-form solution

In this section we outline the main steps that are performed to decide if a model
admits a MARCAT based product-form solution and, in case of positive answer, to
compute it.

A model belonging to the Labelled Exponential Events Formalism considered in
this work can be considered as a tuple (C,L), where C = {c1 . . . cN} is the set of
sub-model components, and L = {l1 . . . lK} is a set of labels. Sub-models can be
defined in any formalism that belongs to the considered family. In particular, each
sub-model component ci is characterized by a set of variables Vi = {vi,1 . . . vi,ni

} that
define its state, and a set of events Ei = {ei,1 . . . ei,mi

} that governs the transition
from one state to another. Each state Si is uniquely identified by the value of its
variables: if two states have the same values for all the variables of the model, they
are the same state. The information contained in a state Si is capable of completely
defining the possible events ei ∈ Ei that can cause a state change, and their temporal
behaviour. Events that triggers a change of state can occur either locally after an
exponentially distributed time, or globally due to a synchronization. Exponential
events ei are characterized by a rate λ(ei,Si) → R+: as soon as the system enters
state Si, event ei will occur after an exponentially distributed random amount of
time, with rate λ(ei,Si). If more than one event can occur in the same state Si,
then race policy is used to choose between the two. Synchronization is performed
following a Master/Slave paradigm over a label. Active events have an exponential
time associated and a label: µ(ei,Si) → R+ × L. Passive events have only a label
associated with them: γ(ei,Si) → L. When an Active event is available in a state,
it is triggered after the corresponding exponentially distributed random amount of
time. During the execution of an Active event, the associated label lj is generated.
Passive events are instead immediately executed as soon as the corresponding label
lj is generated by an active event in another sub-model: this allows synchronization
among the sub-models. All the events moves the system into another state, by
appropriately changing the values of the variables that defines the states of the
various sub-models involved by the events (that is, of the considered sub-model for
local events, or of the sub-models where the Active and Passive events belong), that
is S ′i = f(ei,Si) ∀si ∈ S.

In order to keep the chapter self-contained we briefly present MARCAT in case
of a pair of cooperating models P ≡ c1 and Q ≡ c2 (in this case the theorem is
usually known as ERCAT). Henceforth we denote by P ⊗ Q as the joint model.

98 9. Exploiting product forms solution techniques in multiformalism modelling

Assume that for each label a we know a positive real value xa, and let P ′ (Q′) be the
process P (Q) in which all the passive transitions labelled by a ∈ PP (a ∈ PQ) take
xa as a rate. Clearly, P ′ and Q′ are now independent and, if the underlying CTMCs
are ergodic (or have an ergodic subset of states) we can compute their steady-state
distributions πP ′ and πQ′ . According to MARCAT, a product-form solution exists
if for each ergodic state of (p, q) of P ⊗Q we have that its steady-state probability
π(p, q) is: π(p, q) ∝ πP ′(p)πQ′(q), where the direct proportionality symbol is an
equality if the ergodic states of P ⊗ Q are the Cartesian product of the ergodic
states of P ′ and Q′. The following sets play a pivotal role in the application of
MARCAT, we recall that (p, q) is an ergodic state of P ⊗Q:

1. P(p,q)→ is the set of passive labels outgoing from (p, q)

2. A(p,q)→ is the set of active labels outgoing from (p, q)

3. P(p,q)← is the set of passive labels entering into (p, q)

4. A(p,q)← is the set of active labels entering into (p, q)

MARCAT gives a purely algorithmic way to decide the existence of a product-form
solution in the cooperation of two processes, and in case of existence it states its
expression.

Theorem 5 (MARCAT [92]). Let P and Q be two cooperating processes on set of
labels L and assume that the following conditions are satisfied:

• For each label a ∈ AP (a ∈ AQ), xa is the reversed rate of all the transitions
labelled by a in P ′ (Q′);

• For each joint state (p, q) the following rate equation holds:
a∈P(p,q)→

xa −

a∈A(p,q)←

xa

=

a∈(P(p,q)←∖A(p,q)←)

βa(p, q)−

a∈(A(p,q)→∖P(p,q)→)

αa(p, q) (9.1)

where αa(p, q) is the rate of the transition outgoing from state (p, q) labelled by

a while β
(p,q)

a is the reversed rate of the transition entering into (p, q) labelled
by a;

then for each ergodic state (p, q) of the joint process the following relation holds:
π(p, q) ∝ πP ′(p)πQ′(q)

In practice, the application of MARCAT requires to address the following prob-
lems:

9.2. From multiformalism models to product-form solutions 99

• Determining the values xa for each synchronising label;

• Checking Equation (9.1) for each ergodic state of the joint model. In particular
the computation of the values βa requires the knowledge of the steady-state
distribution of the component in which a is passive;

Here, the first problem is solved by applying INAP+, assuming that a product-
form exists and we check Equation (9.1) a posteriori. INAP+ output contains both
the value of the reversed rates and the steady-state distribution of each component in
isolation. This information is therefore used to verify MARCAT rate condition (9.1)
within a given numerical precision.

9.2.2 The formalisms

SIMTHESys is a flexible tool that allows for the definition of various modelling
formalisms according to the users’ needs and expertise. Here, we present only the
two formalisms that are used in the case-study of Section 9.3. The first is a variant of
open, finite capacity, blocking, repetitive services queueing networks, as already seen;
the second is a variant of stochastic Petri nets: both the formalisms are enriched
by including elements that implement the given specification. The elements of both
formalisms are in Fig. 9.1.

For what concerns queueing networks, besides the queue element, characterized
by its capacity, its length and its service rate, the queueing network formalism has
six other node elements: the source element generates requests and is characterized
by its rate; the active source element generates requests at its rate and exports
a label; the passive source element generates requests at a rate depending on the
bound label; the sink element consumes requests; the active sink element consumes
requests and exports a label; the passive sink element consumes requests depending
on the bound label. The formalism also has the arc element (that routes requests
between sources, queues and sinks), the test arc element (that checks a condition
over a node element to enable another node element) and the inhibitor arc element
(that inhibits a node element according to the state of another node element).

The state of the sub-models is simply defined by the occupancy of the queues.
The local events are used to account for ends of service in a queue, and for an arrival
to the system. Active events are used to consider departures from the system from
sinks that have an associated label (active sinks), and arrivals to the system coming
from an active source. Passive events are used to model both passive arrivals and
passive departures: the former corresponds to arrivals in the system triggered by
the firing of an active transition belonging to a different sub-model. The latter to
customer immediately leaving a system due to an interrupt coming from a different
source. Moreover, queues, sources and sinks can be blocked when the total queue
length of neighbour stations (but always in the same sub-mode) become larger or
smaller than a given trheshold thanks to Test and Inhibitor Arcs.

100 9. Exploiting product forms solution techniques in multiformalism modelling

Transition

Passive
Transition

Active
Transition

Place

Arc

Test Arc

Inhibitor Arc

SPN Primitives

Arc

Test Arc

Inhibitor Arc

QN Primitives

Queue

S

P

A

Sink

Passive
Departure

Active
Departure

S

P

A

Source

Passive
Source

Active
Source

Figure 9.1: Formalisms elements

9.3. Case study 101

The queueing network semantic is implemented in this way. First enabled events
are determined by looking at the size of the queue of the various stations. All Source
and Active Source primitives always generate an event (a local event for the former,
and an active event for the latter). Passive Sources generate passive events. Queue
primitives generate events if the corresponding queue has at least one customer. The
event is local if the destination of the queue is another queue or a Sink, it is active
if the destination is an Active Departure, and passive for Passive Departures.

The stochastic Petri nets formalism has four node elements: the Place element,
characterized by its marking; the Transition element, characterized by its rate; the
Active Transition element, characterized by its rate and the label it exports; the
Passive Transition element, the rate of which depends on the bound label. The
formalism has arc elements analogously to the queueing network formalism. Active
Transitions behave exactly has standard SPNs timed transition, but they also ex-
pose a label when they fire. Passive Transitions instead, are completely governed
by the active events happening in other sub-models. Petri Nets are implemented by
generating an event for each enabled transition. In particular, the type of the event
generated corresponds to the type of transition: local events for standard Transi-
tions, active events for Active Transitions and passive events for Passive Transitions.

Note that in our approach labels, active and passive events, are used to pro-
vide a formalism independent cooperation scheme that allows the synchronization
among sub-models, specified using different modelling languages. The sub-models
are connected using cooperation arcs in the enclosing main model. Each coopera-
tion arc has associated a set of labels and it is directed from a source sub-model to
a destination sub-model: whenever an active events, with the corresponding label,
happens in the source sub-model, it triggers enabled passive events, associated with
the same label, in the destination sub-model.

9.3 Case study

In this section we introduce an example that is analysed with the proposed tool.
Notice that the system has been chosen to spot the original features of the technique
described in this chapter.

A data stream processing system for the detection and monitoring of seismic
phenomena is structured in two main subsystem: a pre-processing subsystem and
a critical detection subsystem. The first is composed of two stages, each of which
processes batches with a temporally variable computation, whose duration is expo-
nentially distributed. Both the stages receive different jobs to be processed, with an
exponentially distributed rate. In addition, the second receives part of the output
batches of the first and some of the jobs processed by the second are sent back to
be processed by the first, while the others constitute the output of the subsystem.
Each of the stages can buffer a number of timestamped jobs. A stage that is not
allowed to dispatch a job to the next one has to reprocess the data, to account for

102 9. Exploiting product forms solution techniques in multiformalism modelling

the time elapsed.

The second subsystem processes the output jobs of the first one, together with
additional jobs that are sent to it. To protect this critical subsystem, a protection
mechanism can shut it temporarily off when the number of jobs is greater than a
fixed threshold and an overload condition is detected. In such cases, the arrival of
new jobs is blocked and losses occur. The protection mechanism is supplied by a
proper subsystem.

9.3.1 Overall model description

A high-level, conceptual model of the system is given in Fig. 9.2. The first subsystem
can be described by a two nodes queueing network with finite capacity and repetitive
service blocking of the type studied in [16]. The second subsystem can be described
by a finite capacity queue controlled by an ON/OFF switching element when the
number of jobs in the queue is not less than the threshold value m. In the figure,
λ1, λ2 and λ3 denote the job arrival rates; B1, B2 and B3 are the capacity of the
queues; µ1, µ2 and µ3 are the job service rates; p is the probability of forwarding a
processed job from the first to the second queue; q is the probability of forwarding
a processed batch from the second to the first queue; n is the number of jobs in the
third queue; γ represents the trigger by which ON/OFF blocks forwarding from the
first to the second subsystem, given that n ≥ m.

p

1-p q

1-q

Blocks

λ1 λ2 λ3

On/Off

µ1 µ2 µ3

B1 B2 B3

n
n<m

γ

Figure 9.2: Overall model description

9.3. Case study 103

S

P

S

A

λ1

(1-p)µ1

B1

qµ2

a b

Figure 9.3: Submodel QN1

9.3.2 Model specification

The first subsystem is modelled by a queueing network with finite capacity and
repetitive service blocking. With reference to Fig. 9.2, the first stage is described by
submodel QN1 in Fig. 9.3. The source with rate λ1 represents the external arrivals,
the active source with rate qµ2 and exporting label a represents the jobs arriving
from the second stage (µ2 is the second stage’s service rate and q the probability that
a job enters the first stage after being served at the second). The sink represents
the jobs that leave the system, the passive departure importing label b represents
the jobs available for entering the second stage, and the queue with capacity B1 and
rate (1−p)µ1 represents the processing unit. The queue rate expression results from
the fact that the only rate that can be defined here is the rate of departures by the
sink, because the rate of departures for the second stage depends on the behaviour
of the second stage (see [16]).

The second stage is described by submodel QN2 in fig. 9.4. Similarly as seen for
the first stage, the source with rate λ2 represents the external arrivals, the active
source with rate pµ1 and exporting label b represents the jobs arriving from the
first stage, the sink represents the jobs that leave the system, the passive departure
importing label a represents the jobs available for the first stage, and the queue with

104 9. Exploiting product forms solution techniques in multiformalism modelling

S

P

S

A

λ2

(1-q)µ2

B2

pµ1

b a

S

γ

P

c

m

Figure 9.4: Submodel QN2

9.3. Case study 105

capacity B2 and rate (1− q)µ2 represents the processing unit. Moreover, the second
stage also has a source with rate γ, enabled by the queue by the test arc that checks
if it contains less than m pending requests, and a passive departure, that imports
the label c.

The second subsystem is modelled by two stochastic Petri net submodels. The
third queue in Fig. 9.2 is described by submodel SPN1 in Fig. 9.5. The active
transition with rate λ3 and exporting label d0 represents the external arrivals, and
is enabled if the left place (initially marked with B3 tokens to represent the finite
capacity) is marked and if the right place (marked by the same active transition and
representing a request under processing) is not marked. The active transition with
rate λ′3 and exporting label d1 represents the external arrivals when the length of the
queue is at least m, marks the right place, and is enabled if the left place is marked
and if the right place has at least m tokens (thus the queue length is at least m);
the passive transition importing label c represents arrivals from the first subsystem,
and is enabled when the left place is enabled and the right place is marked with less
than m tokens (thus the queue length is less than m); the active transition with rate
µ3 and exporting label e0 represents the processing of a request when the length
of the queue is less than m + 1. The active transition with rate µ′3 and exporting
label e1 represents the processing of a request when the length of the queue is at
least m+1. The passive transition importing labels c, g and h authorizes incoming
requests from the first subsystem and the ON/OFF mechanism when the length of
the queue is at least m.

The ON/OFF submodel is described by two places, representing the ON (left)
and the OFF (right) conditions. The active transitions with rate δ and exporting
label h and with rate ϵ and exporting label g respectively represent the switch off
and the switch on; the passive transition importing labels d0, d1, e0 and e1 enables
the interactions with the previous submodel when the left place is marked.

Fig. 9.6 shows how submodels are connected by the bridge model. In particular,
each submodel is drawn as a rectangle, and cooperation between models is denoted
by arcs. Arrows are directed from submodels performing active transitions, to sub-
models subject to passive events. Active event labels are written in boldface near
an OUT keyword, while passive event labels in italic near an IN keyword.

9.3.3 Model analysis and results

The output produced by SIMTHESysER for the model considered in this example is
shown in Fig. 9.7 and is expressed in terms of Labelled Exponential Automata where
symbol ⊤ denotes passive transitions. Notice that a brute-force analysis relying on
the solution of the system of global balance equation could be unfeasible. Indeed,
although finite, the cardinality of the state space grows as O(B1B2B3), where Bi is
the capacity of the i-th queue. Assuming for simplicity that Bi = B, the standard
solution of the global balance equation system with a Gauss elimination equivalent
method has a time complexity of O(B9) which could quickly become punitive also

106 9. Exploiting product forms solution techniques in multiformalism modelling

λ3

d0

d1

e0

e1

c

B3

h

g
cm m

m

m+1

m+1

m+1

m

λ’3

µ3

µ’3

(a) SPN1

δ

h

ε

g

d0

d1

e0

e1

(b) SPN2

Figure 9.5: SPN submodels

9.3. Case study 107

QN1 QN2 SPN1 SPN2

IN

OUT OUT

IN

OUT

a

b

ca c h, g

d0,d1,e0,e1d0,d1,e0,e1

OUT OUT

IN IN

b

IN

g, h

Figure 9.6: Submodels composition

for the numerical stability of the involved algorithms. Simulation could be another
approach for estimating the model’s performance measures. However, we should
note that the precision of the simulation estimates strongly depends on the model’s
parameters. In fact, some events are likely to be rare such as the saturation of the
queues or the blocking mechanism implemented for the system protection. As a
consequence, time expensive simulations could be required and the validation of the
estimates play an important role.

Applying product-form analysis to this model is not trivial. Indeed, none of
submodels involved in the cooperation is quasi-reversible, and therefore the triv-
iality of the derivation of the steady-state distribution is avoided. The queueing
network with feedback consisting of models QN1 and QN2 does not admit a Jack-
son’s product-form since the stations have finite capacity. Nevertheless, their rate-
dependent product-form relies on the analysis carried out in [16]. The output process
of QN2 feeds SPN1; this process combined with the external arrivals at SPN1 sat-
isfies RCAT condition. Finally, the process that regulates the interaction between
the blocking protection mechanism (SPN2) and SPN1 belongs to the Boucherie’s
product-form model class [39]. The combination of these types of product-forms
have a non-trivial solution given by the following proposition.

Proposition 3. The case-study model has a product-form solution if the following
rate-conditions are satisfied:

(1− p)qλ2 = (1− q)pλ1 (9.2)

γ =
λ1(1− q)(λ2 + pµ1)

λ1(1− q) + (1− p)qµ1

(9.3)

Proof. It can be algebraically proved that the set of equations (9.1) are satisfied
if and only if Condition (9.2) and (9.3) are satisfied.

The product-form analytical solution of the case-study model depends on the
choice of some rates as illustrated by Proposition 3. Although this is somehow
disappointing from a modelling point of view, the importance is not only theoretical.
For instance, a product-form parameterisation of the model could be applied to
validate the simulation results, or in case the rate conditions are not satisfied, an
approximated analysis could be carried out.

108 9. Exploiting product forms solution techniques in multiformalism modelling

QN1

QN2

SPN1

SPN2

a, µ2qa, µ2q

λ1λ1

µ1(1− p)µ1(1− p)

b,⊤b,⊤
b, µ1pb, µ1p

λ2λ2

c, µ2(1 − q)c, µ2(1 − q)

a,⊤a,⊤

c, γ

d0, λ3d0, λ3d0, λ3d0, λ3

c,⊤c,⊤c,⊤c,⊤

e0, µ3e0, µ3e0, µ3e0, µ3

c, g, h,⊤c, g, h,⊤c, g, h,⊤
g, ǫ

h, δ

d0, d1, e0, e1,⊤

0

0

0

1

1

1 B1

B2

B3

OFF ON

m m+ 1

Figure 9.7: Labelled Exponential Automata produced by SIMTHESysER

9.4. Conclusions and future work 109

INAP numerically solve the model in isolation and then checks Condition 9.1)
for each ergodic joint state computed by SIMTHESys. The time complexity for
the model solution in isolation is proportional to the cube of each queue capacity,
therefore if B1 = B2 = B3 = B we have O(kB3), where k is the number of iterations
required to converge withing a certain precision. In our experiments, we observed
k ≤ 9 for all the parameterisation we tried. Due to the sparsity of the transitions in
the joint state, Condition 9.1 can be checked in constant time for each joint-state,
therefore leading to a total time complexity of O(B3). We can conclude that in
this case the product-form analysis reduces the time complexity of the solution from
O(B9) to O(B3).

9.4 Conclusions and future work

In this chapter we have presented a technique to identify product form solutions in a
multiformalism framework. The check for the existence and the computation of the
solution is performed during the generation of the state space of the submodels that
composes the main model under study. State space is generated using behaviours
that are associated with formalism specification. This provides a greater flexibility
and allows the application of product form solutions to new formalism without the
development of new tools.

Future work will include the study of more complex synchronization mechanisms,
and the use of the product forms solutions to approximate real solution when the
necessary conditions are not respected.

110 9. Exploiting product forms solution techniques in multiformalism modelling

10
Modelling retrial-upon-conflict

systems with product-form stochastic
Petri nets

10.1 Introduction

In section 2.2 we have recalled some notions about stochastic Petri nets, and we
have noted that their underlying stochastic process is a Continuous Time Markov
Chain (CTMC).

However, it can be shown that the cardinality of the model’s state space can grow
more than exponentially with the structure of the model, i.e., the number of places
and transitions and hence the whole generation is time and space consuming. Even
worse, the numerical algorithms for deriving the steady-state performance indices
become numerically unstable and prohibitive in terms of computation time. In order
to overcome this problem, known as state space explosion, a range of techniques
has been proposed, from state space reduction through aggregation (lumping) to
approximation techniques.

As we already considered for other formalisms, product-form theory takes an-
other approach: applying a divide et impera paradigm, SPNs can be efficiently solved
through the analysis of their components (i.e., the places) in isolation. Product-
form SPNs were first introduced in [126], and then generalised in [39, 95, 56]. More
recently, new theoretical developments have been proposed connected to system
biology [130]. We base our chapter on the methodology and results developed
in [17, 131], in which a general approach to design and recognise product-form
stochastic Petri nets, based on the Reversed Compound Agent Theorem (RCAT) [89]
and its extensions [91, 92], is described. The analysis of the class of SPNs proposed
in [95, 56] relies on a so called rank theorem that imposes a strict condition of the
transition rates which is quite hard to interpret from the modelling point of view.
In [17, 131] the authors show that that class of product-form SPNs (extended to
open nets) can be analysed in terms of decomposition into simpler structures and
hence the rate condition can be interpreted locally rather than on the whole SPN.

The aim of this chapter, based on a work we published in [14], is to analyse

112 10. Modelling retrial-upon-conflict systems with product-form SPNs

a class of SPNs that is useful to model systems in which concurrent activities can
lead to conflicts, requiring a recovery phase before a new execution of the same
activities is retried. Instances of this kind of systems are quite frequent in the
real world, for example in computer networks, databases and operating systems.
We provide a formal model for these systems in terms of SPNs and show that
they belong to the class studied in [17, 131]. Moreover, we prove two interesting
properties for such a class of SPNs: first, their product-form does not require any
condition on the transition rates and, second, the joint state space is the Cartesian
product of the states that are reachable by each of the model’s places. The former
property enhances the applicability of the proposed model, while the latter allows
us to derive the normalised stationary distributing in a straightforward way for
open models. The model that we proposed can be combined with other quasi-
reversible components maintaining the product-form property of the joint steady-
state distribution (see, e.g., [26, 128, 78]).

For the theoretical background needed to understand this chapter, we refer to
Section 2.2.

10.2 The conflict model

Consider a SPN consisting of a set of interconnecting building blocks: a main build-
ing block (MBB) with l places (from here onward MBB(L)) and a certain number
of conflict building blocks (CBB).

As previously stated, the building block MBB(L) has a set L of l places L =
{P1, . . . , Pl}. For each place Pi, there are both an incoming transition Ti with rate
λPi

and an outgoing transition T ′i with rate µPi
. Examples of the main building

block with 2 or 3 places, respectively, are given in Figures 10.1 and 10.2. For each
subset C of two or more places, C ⊆ L, |C| ≥ 2, we define an incoming transition
TC with rate λC and an outgoing transition T ′C with rate µC . For each of those pairs
of transitions, there is a conflict building block defined as follows: an arc connects
transition T ′C to the place PC , which is in turn connected to transition TC . Notice
that the firing semantics of transitions TC , with |C| ≥ 2, can be single server or
infinite servers [134]. A conflict building block in isolation is shown in Figure 10.3,
while a complete model for l = 2 is depicted in Figure 10.4.

If |C| = k, there are

l
k

of such CBBs, and thus the total number of CBBs isl

k=2

l
k

= 2l− l− 1. The total number of places in the model is then |P| = 2l− 1,

and the total number of transitions is |T | = 2|P| = 2l+1 − 2.

Example 12 (Conflict model for 2 classes). Let us consider the SPN model de-
picted by Figure 10.4. Customers arrive at P1 and P2 according to independent
homogeneous Poisson processes modelled by T1 and T2, respectively. Successful cus-
tomers’ services are modelled by transitions T ′1 and T ′2. Transition T ′1,2 models the
conflict events, and is enabled only when both P1 and P2 are non-empty. After a

10.2. The conflict model 113

P1 P2

T1 T2T1,2

T ′
1 T ′

2T ′
1,2

Figure 10.1: The main building block with 2 places

conflict event a token is removed from each of the places P1 and P2 and one is
put into P1,2 to represent the recovery phase. Transition T1,2 models the recovery
time. This model is in product-form because the arrivals modelled by transitions T1

and T2 can be replaced by the output process of other product-form models (such as
BCMP queues [26], G-queues [78] or MSCCC [128]) and, conversely, the firing of
transitions T ′1 and T ′2 can be used to model the arrival process at other product-form
models.

The following proposition shows that conflict model is in product-form according
to Theorem 1.

Proposition 4 (Product-form of the conflict model). The conflict model consists
of building blocks satisfying the structural conditions of Theorem 1. Moreover, in
stability, it yields without any rate-constraint the following product-form solution:

π(m) =

C∈2L\∅

gC(mC)

114 10. Modelling retrial-upon-conflict systems with product-form SPNs

P1 P2 P3

T1 T2 T3T1,2

T1,3

T2,3

T1,2,3

T ′
1 T ′

2 T ′
3T ′

1,2

T ′
1,3

T ′
2,3

T ′
1,2,3

Figure 10.2: The main building block with 3 places

10.2. The conflict model 115

PC

TC

T ′
C

Figure 10.3: The conflict building block

116 10. Modelling retrial-upon-conflict systems with product-form SPNs

P1 P2 P1,2

T1 T2T1,2

T ′
1 T ′

2T ′
1,2

Figure 10.4: A complete model for l = 2

where mC is the component of the joint state associated with place PC and

gC(mC) =
(1− λP

µP
)(λP

µP
)mP if C = {P}

(1− µC

λC

P∈C

λP

µP
)(µC

λC

P∈C

λP

µP
)mC if |C| ≥ 2 and TC is single server

(µC

λC

P∈C

λP

µP
)mC exp (−µC

λC

P∈C

λP

µP
) 1
mC !

if |C| ≥ 2 and TC is ⊤ servers

Proof. First, we prove that the rate conditions of Theorem 1 are always satisfied.
Basically, we must show that:

ρC =

i∈C

ρi ,

for any choice of λC and µC , with C ∈ 2L \ ∅. Indeed, the building blocks PC

behave like a M/M/1 or M/M/⊤ queues and hence it is well-known that they are
unconditionally in product-form. Observe that, transition TC fires only when PC

has at least one token, therefore its throughput is not λC but its reversed rate λC

(according to RCAT terminology). Therefore, in order to satisfy Conditions (2.1) we
must have λC = µC

i∈C λi/µi. Let us now consider the rate equation corresponding

to the reversed rate (throughput) of transition T ′C . Using Lemma 1, we immediately
derive that its throughput, i.e., the arrival rate perceived by PC , is λC . Observe
that, analogously to what happens in closed queueing networks, the flows of tokens
due to the firing of TC and T ′C with C ≥ 2 give the identity λC = λC and hence

10.2. The conflict model 117

any non-trivial solution can be taken and, here we take: λC =

i∈C(λi/µi)µC [17].
However, differently form closed queueing networks, the conflict model’s state space
is such that each of its places can have from 0 to ⊤ tokens, and the joint state space
is the Cartesian product of the state spaces of each of its components. Therefore,
the normalisation can be carried out by normalising the stationary distribution of
each place considered in isolation.

For the stability conditions, the following proposition holds:

Proposition 5. The conflict model is stable if the following conditions hold:

∀i ∈ {1, . . . , l} λi < µi, (10.1)

for the places of the main building block, while for the places of conflict building
blocks PC whose corresponding TC is single server, we have that

∀C ⊆ L µC = µC

Pi∈C

ρPi
< λC, (10.2)

where µC identifies the throughput (reversed rate) of transition T ′C.

Proof. The proof relies on deriving the necessary and sufficient conditions required
for normalising the stationary probabilities of Proposition 4.

Notice that Condition (10.2) can be rewritten as

∀C ⊆ L µC

Pi∈C λPi
Pi∈C µPi

< λC (10.3)

If all the transitions TC have a single server semantics, we can compute the
average number of customers in the system as

E[N] =
l

i=1

ρPi

1− ρPi

+

C⊆L,|C|≥2

|C| ρC
1− ρC

(10.4)

Now we consider the case where all the transitions TC , with |C| ≥ 2 have an
infinite server semantics, i.e. they can be seen as delay stations [134]. In this case
the average number of customers for each place PC becomes ρC , and thus the average
number of customer for the whole system is

E[N] =
l

i=1

ρPi

1− ρPi

+

C⊆L,|C|≥2

|C|ρC (10.5)

In both cases, the average response time of the system is given by Little’s law,
i.e., under their respective stability conditions:

E[R] =
E[N]l
i=1 λi

(10.6)

118 10. Modelling retrial-upon-conflict systems with product-form SPNs

10.3 Applications

In this section we present two applications of the class of stochastic Petri nets that
we just described. Notice that, in order to model those systems, we have to make
some assumptions in their probabilistic behaviour. An analysis on the robustness of
assumptions with respect to the performance indices can be found in [127].

10.3.1 A computer network with collisions

We want to model a computer network in which there is a set L of l transmitting
stations L = {s1, . . . , sl}. Packets become ready to be sent from each station si
according to an homogeneous Poisson distribution with parameter λi. The global
rate at which packets arrive to the system is thus λ =

l
i=1 λi. The time that a

packet takes to ben transmitted from each station si is exponentially distributed
with parameter µ∗i . The channel, by itself, is capable of transmitting with a global
rate of M =

l
i=1 µ

∗
i . During the transmission of a packet, a collision, i.e., the

simultaneous transmission of more than one packet using the same physical medium,
can occur, thus making the transmission ineffective. A collision can occur between
any combination of k stations, 2 ≤ k ≤ L, with probability pk(L). After a collision
between the transmissions of a subset of stations C ⊆ L, |C| ≥ 2, an exponentially-
distributed recovery time, with parameter µC is performed. After that time, a new
transmission is retried.

We can abstract the previously described system as a conflict model (Section
10.2), in which, since there is no queueing for recovery phases, the conflict building
blocks have an infinite-server firing semantics.

If we assume that µsi = µ1, λsi = λ1, ∀si ∈ L and that λC = λ|C| and µC = µ|C|,
∀C ⊆ L, |C| ≥ 2, i.e., all the transitions representing collisions between the same
number of stations have the same rate, we can simplify Equation (10.4) as

E[N] = l
ρ1

1− ρ1
+

l
k=2

l

k

kρk (10.7)

We now have to make further assumptions on the behaviour of the system in order
to parametrise the model and thus compute the numerical value of the interested
performance indices.

Let q ∈ [0, 1] be the probability that a certain station is transmitting on the
channel. Here we assume that q can be computed as:

q =
λ1

M
, (10.8)

such that q2 represents the probability of a collision between two nodes. We define
pC(L), i.e., the probability of having a collision between a specific set C of k stations
in a system with L stations, as

pC(L) = qk(1− q)L−k (10.9)

10.3. Applications 119

Parameter Name Value
M 108/(800 · 8) ≈ 15625
λC 108/512 ≈ 195313

Table 10.1: Parameter values for the example of Section 10.3.1

and, since, for any given station, there are

L−1
k−1

possible collision sets of k station,

the probability pk(L) of having a collision among k, having chosen one of the station,
is

pk(L) =

L− 1

k − 1

qk(1− q)L−k (10.10)

Thus, the probability p of not having any collision for a chosen station is

p = 1−
L

k=2

L− 1

k − 1

qk(1− q)L−k (10.11)

We can now compute the various service rates µC , C ⊂ L, |C| = k ≥ 2 as

µk = µ∗qk(1− q)L−k (10.12)

and for µ1

µ1 = µ∗

1−

L
k=2

L− 1

k − 1

qk(1− q)L−k

(10.13)

A numerical example

Consider an Ethernet-like network having a shared channel with a bandwidth of
100Mbps. We assume that the time to send a frame is exponentially distributed,
with an expected value that is the time to send 800 bytes at full speed, and that, on
average, the backoff time is the same as the one required for transmitting 512 bits.
We can model the network as described in Section 10.3.1, having a set of parameters
given in Table 10.1,

Fixed a value for L, i.e., the number of transmitting stations, we set the other
parameters according to Equations (10.8), (10.12) and (10.13), while µ∗1 = ML−1

In Figure 10.5 we see the behaviour of the average response time, i.e., the average
time a packet has to spend to be successfully transmitted, as the value of λ increases,
with three different numbers of stations L. We can see that, the response time
increases both as the arrival rate increases, due to queueing, and as the number of
stations increases, due to collisions.

In Figure 10.6 we can see how, given a fixed arrival rate at each station, λ1 = 300,
the average response time increases with the number of transmitting stations, due
to the increased number of collisions.

120 10. Modelling retrial-upon-conflict systems with product-form SPNs

0 5000 10000 15000
0

0.005

0.01

0.015

0.02

0.025

Packet Arrival Rate to the whole system, λ

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
,

E
[R

]

L = 10

L = 20

L = 30

Figure 10.5: Average response time as a function of packet arrival rate, with different
number of stations

10.3. Applications 121

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of stations L

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
,

E
[R

]

Figure 10.6: Average response time as a function of the number of stations

122 10. Modelling retrial-upon-conflict systems with product-form SPNs

10.3.2 A transactional database system

Consider a database system in which there is a set L of l processors L = {s1, . . . , sl}.
The transaction requests to be processed arrive to the processor si according to an
homogeneous Poisson distribution with parameter λi. The time that a transaction
takes to be processed by si is exponentially distributed with parameter µ∗i . During
the execution of a transaction, a conflict, i.e., a concurrent access to the same data
in which at least one of the access is a write operation, can occur, thus requiring a
strategy to resolve the conflict. A collision can occur between any combination of
k stations, 2 ≤ k ≤ L, with probability pk(L). In order to implement this strategy,
after a conflict occurs between the transactions running on a subset of processors
C ⊆ L, |C| ≥ 2, an exponentially-distributed recovery time, with parameter µC

is performed. If the same set of processors is engaged in the resolution of another
conflict, the resolution requests are enqueued. After the conflict is recovered, the
transaction is retried.

As for the example of Section 10.3.1, we can model the described system as a
conflict model. However, in this case, since recovery requests are enqueued, the
conflict building blocks have the ordinary firing semantics of SPNs.

As for the previous example, we can assume that µsi = µ1, λsi = λ1, ∀si ∈ L
and that λC = λ|C| and µC = µ|C|, ∀C ⊆ L, |C| ≥ 2, i.e., transitions of conflict
building blocks representing recoveries between the same number of processors have
the same rate. Thus we can simplify Equation (10.4) as

E[N] =
l

k=1

L

k

k

ρk
1− ρk

(10.14)

Moreover, we observe that the same arguments made for the collision probabili-
ties could be made for transaction conflicts, assuming that the collision probabilities,
here, mean the probability of having a conflicting transaction between k processors.
Thus, Equations 10.12 and 10.13 still hold. However, here the choice of a suitable
parameter q is free.

A numerical example

Consider a database system like the one described in Section 10.3.2, in which each
processor is capable of serving, on average, 100 transactions per second and the
system can recover 10 transactions per second. The parameters are shown in Table
10.2, where q is chosen arbitrarily.

Figure 10.7 shows the average response time as a functions of the arrival rate of
transactions to each processor.

Moreover, in systems where q is constant, from Equations (10.1) and (10.13)
we directly obtain the maximum admissible arrival rate to each processor λ1 as a
function of q, µ and L. Figure 10.8 shows a numerical example for µ1 = 1.

10.3. Applications 123

Parameter Name Value
µ1 100
λC 10
q 10−2

Table 10.2: Parameter values for the example of Section 10.3.2

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Transaction requests to each processor, λ
i

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
,

E
[R

]

L = 10

L = 20

L = 30

Figure 10.7: Average response time as a function of the arrival rate of transactions,
with different number of processors

124 10. Modelling retrial-upon-conflict systems with product-form SPNs

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of processors L

M
a

x
im

u
m

 a
d

m
is

s
ib

le
 λ

i

q = 0.1

q = 0.3

q = 0.5

Figure 10.8: Maximum arrival rate to each processor as a function of the number of
processors, with different conflict probabilities

10.4. Conclusions 125

10.4 Conclusions

In this chapter we have proposed a conflict model for the analysis of systems with
retrial-upon-conflict strategies. The salient features of the conflict models are:

• It is formally defined in terms of stochastic Petri nets.

• The stationary distribution can be computed efficiently because the conflict
model is product-form. Moreover, it can be composed with other models
that are in product-form by RCAT or that have been proved to be quasi-
reversible, including the BCMP stations [26], the G-queues [78] and other
more sophisticated queueing stations [128].

• We have shown that, differently from other SPNs, the conflict model is uncon-
ditionally in product-form. In many other cases, when dealing with product-
form SPNs, rate conditions arise (see [95, 56, 130, 17, 131]).

We have shown the application of the conflict model to study some realistic systems
and have given some numerical results which show examples on how those models
behave under some conditions.

Future Works We plan to extend our work in order to consider also closed net-
works with conflict models, i.e., systems where the total number of customers remain
constant. In these cases the problem of the computation of the normalising constant
must be addressed. The well-known algorithms for the direct computation of the
normalising constant (e.g., the convolution [48, 56]) or for the computation of the
average performance indices [151, 160] should be considered. Moreover, the problem
of parametrising the model according to the behaviour of the system, especially due
to the combinatorial nature of these model, should be studied in depth.

126 10. Modelling retrial-upon-conflict systems with product-form SPNs

Conclusions

In this thesis we presented some of the results that was obtained during my 3 years
as a Ph.D. student. In particular, we focused only on the works that were related
to the efficient solution of stochastic models for which a cooperation semantics is
defined.

The publications whose content was partially included in this thesis were [15, 9,
12, 11, 7, 13, 22, 14].

As stated in the Preface, some other publications were not included in the thesis,
since they were not directly related to the solution methods of cooperating stochastic
models, namely [8, 10, 66, 67, 77, 65].

C.1 Contributions

After an introduction to the background notions needed to understand the thesis
(Part I), we moved to consider the main theoretical and practical contributions of
the thesis (Part II), which are in distinct, but related, fields.

Chapter 5 deals with automated product form detection and solution of models
described as a set of cooperating components, which can possibly have an infinite
state space. In this context we proposed an algorithm able to perform both tasks,
and a tool, equipped with a graphical user interface, that allows users to design and
analyse such models.

Chapter 6 deals with a different approach to the efficient solution of cooperating
stochastic models, i.e., state space aggregation (lumping). We proposed a set of
sufficient conditions under which such aggregation can be done component-wise
such that the composition of aggregated models is, indeed, an aggregation of the
composition of the original ones.

Chapter 7 puts, through the introduction of the concept of conditional product
form, the content of Chapters 5 and 6 in relation. We proved that finding a reversible
aggregation of the reversed process of one of a pair of components simplifies the
computation of the steady state probability distribution of the joint model.

Finally, in Chapter 8 we presented some approximation techniques for models
that cannot be exactly aggregated according to the results of the previous chapters.

C.2 Impact and Future Works

The theoretical results and the techniques presented in Part II can be applied to
a variety of problems. In Part III we presented some applicative results obtained

128 Conclusions

using the aforementioned methods, in particular regarding models expressed using
multiple formalisms (Chapter 9) and stochastic Petri Nets (Chapter 10).

As concern future works, we are working on multiple fields, such as on general
convergence proofs for the algorithm of Chapter 5, and on practical approximate
aggregation algorithm for the method proposed in Chapter 8. A current work is
ongoing on finding practical examples of models exhibiting a conditional product-
form (Chapter 7).

Bibliography

[1] I. F. Akyildiz. Exact product form solution for queueing networks with block-
ing. IEEE Trans. on Comp., C-36-1:122–125, 1987.

[2] S. Baarir, M. Beccuti, C. Dutheillet, G. Franceschinis, and S. Haddad. Lump-
ing partially symmetrical stochastic models. Perf. Eval., 68(1):21 – 44, 2011.

[3] F. Baccelli, W.A. Massey, and D. Towsley. Acyclic fork-join queueing net-
works. J. ACM, 36(3):615–642, 1989.

[4] Jos CM Baeten and W Peter Weijland. Process algebra, volume 18 of Cam-
bridge tracts in theoretical computer science. Cambridge University Press,
1990.

[5] G. Balbo, S. C. Bruell, and M. Sereno. On the relations between BCMP
Queueing Networks and Product Form Solution Stochastic Petri Nets. Proc.
of 10th Int. Workshop on Petri Nets and Performance Models, 2003., pages
103–112, 2003.

[6] S. Balsamo, V. De Nitto Persone’, and R. Onvural. Analysis of Queueing
Networks with Blocking. Kluwer Academic Publishers, 2001.

[7] S. Balsamo, G. Dei Rossi, and A. Marin. Efficient solutions for cooperating
automata based on forward and reversed lumping. Technical Report DAIS-
2012-6, Dip. di Scienze Ambientali, Informatica e Statistica, Università Ca’
Foscari Venezia.

[8] S. Balsamo, G. Dei Rossi, and A. Marin. Applying BCMP multi-class queueing
networks for the performance evaluation of hierarchical and modular software
systems. In Proc. of Int. Conf. ESM 2010, pages 206–213, Hasselt, BE, 2010.
Eurosis.

[9] S. Balsamo, G. Dei Rossi, and A. Marin. A numerical algorithm for the solution
of product-form models with infinite state spaces. In Proc. of EPEW 2010:
Comp. Perf. Eng., pages 191–206, Bertinoro, Italy, 2010. LNCS 6342/2010.

[10] S. Balsamo, G. Dei Rossi, and A. Marin. Optimisation of virtual machine
garbage collection policies. In LNCS 6751/2011, proc. Int. Conf. ASMTA,
pages 70–84, Venice, IT, 2011. Springer.

[11] S. Balsamo, G. Dei Rossi, and A. Marin. Cooperating stochastic automata:
approximate lumping an reversed process. In Comp. and Inf. Sciences III,
ISCIS, pages 131–141, Paris, FR, 2012. Springer.

130 Bibliography

[12] S. Balsamo, G. Dei Rossi, and A. Marin. Lumping and reversed processes
in cooperating automata. In LNCS 7314, Proc. of Int. Conf. ASMTA, pages
212–226, Grenoble, FR, 2012. Springer.

[13] S. Balsamo, G. Dei Rossi, and A. Marin. A survey on multi-formalism perfor-
mance evaluation tools. In Proc. of Int. Conf. ESM, pages 15–23, Essen, DE,
2012. Eurosis.

[14] S. Balsamo, G. Dei Rossi, and A. Marin. Modelling retrial-upon-conflict sys-
tems with product-form stochastic petri nets. In LNCS 7984, Proc. of Int.
Conf. ASMTA, pages 52–66, Gent, BE, 2013. Springer.

[15] S. Balsamo, G Dei Rossi, and A. Marin. A tool for the numerical solution
of cooperating Markov chains in product-form. In Proc. Of Int. Conf. HET-
NETs, pages 311–324, Zakopane, PL, January, 2010.

[16] S. Balsamo, P. G. Harrison, and A. Marin. A unifying approach to product-
forms in networks with finite capacity constraints. In Vishal Misra, Paul
Barford, and Mark S. Squillante, editors, Proc. of the 2010 ACM SIGMET-
RICS Int. Conf. on Measurement and Modeling of Computer Systems, pages
25–36, New York, NY, USA, 14-18 June 2010.

[17] S. Balsamo, P. G. Harrison, and A. Marin. Methodological construction of
product-form stochastic Petri nets for performance evaluation. Journal of
Systems and Software, 85(7):1520–1539, 2012.

[18] S. Balsamo and G. Iazeolla. An extension of Norton’s theorem for queueing
networks. IEEE Trans. on Software Eng., SE-8:298–305, 1982.

[19] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-based perfor-
mance prediction in software development: a survey. IEEE Trans. on Software
Eng., 30(5):295–310, May 2004.

[20] S. Balsamo and A. Marin. Queueing Networks in Formal methods for perfor-
mance evaluation, chapter 2, pages 34–82. M. Bernardo and J. Hillston (Eds),
LNCS, Springer, 2007.

[21] Simonetta Balsamo and Andrea Marin. Performance engineering with
product-form models: efficient solutions and applications. In Proc. of the
second joint WOSP/SIPEW international conference on Performance Eng.,
ICPE ’11, pages 437–448, New York, NY, USA, 2011. ACM.

[22] E. Barbierato, G. Dei Rossi, M. Gribaudo, M. Iacono, and A. Marin. Exploit-
ing product form solution techniques in multiformalism modeling. In ENTCS,
Proc. of Int. Workshop PASM, page to appear, London, UK, 2012. Elsevier.

Bibliography 131

[23] E. Barbierato, M. Gribaudo, and M. Iacono. Exploiting multiformalism models
for testing and performance evaluation in SIMTHESys. In Proceedings of the
5th International ICST Conference on Performance Evaluation Methodologies
and Tools, VALUETOOLS ’11, pages 121–130. ICST), 2011.

[24] E. Barbierato, M. Gribaudo, M. Iacono, and S. Marrone. Performability mod-
eling of exceptions-aware systems in multiformalism tools. In Proceedings of
the 18th international conference on Analytical and stochastic modeling tech-
niques and applications, ASMTA’11, pages 257–272. Springer, 2011.

[25] Enrico Barbierato, Marco Gribaudo, and Mauro Iacono. Defining formalisms
for performance evaluation with SIMTHESys. Electron. Notes Theor. Comput.
Sci., 275:37–51, September 2011.

[26] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed,
and mixed networks of queues with different classes of customers. J. ACM,
22(2):248–260, 1975.

[27] F. Bause. Queueing Petri nets: A formalism for the combined qualitative and
quantitative analysis of systems. In Proc. of 5th Int. Workshop on Petri Nets
and Performance Models, pages 14–23, Toulouse (France), 1993.

[28] F. Bause, P. Kemper, and P. Kritzinger. Abstract Petri net notation. Petri
Net Newsletter, (49):9–27, Oct 1995.

[29] Falko Bause, Peter Buchholz, and Peter Kemper. A toolbox for functional and
quantitative analysis of deds. In Computer Performance Evaluation, volume
1469 of LNCS, pages 356–359. Springer, 1998.

[30] M. Bernardo, L. Donatiello, and R. Gorrieri. Modelling and Analyzing Con-
current Systems with MPA. In Proc. of 2nd Process Algebra and Performance
Modelling Workshop, pages 175–189, 1994.

[31] M. Bernardo, R. Gorrieri, and M. A. Zamboni. A tutorial on EMPA: A
theory of concurrent processes with nondeterminism, priorities, probabilities
and time. Theoretical Computer Science, 202:1–54, 1998.

[32] M. Bernardo and J. Hillston. Formal Methods for Performance Evaluation,
volume 4486. Springer, 2007.

[33] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. Jmt: performance
engineering tools for system modeling. SIGMETRICS Performance Evaluation
Review, 36(4):10–15, 2009.

[34] DA Bini, B. Meini, S. Steffé, and B. Van Houdt. Structured Markov chains
solver: software tools. In Proc. of the 2006 workshop on tools for solving
structured Markov chains, page 14. ACM, 2006.

132 Bibliography

[35] Henrik Bohnenkamp, Holger Hermanns, and Joost-Pieter Katoen. Motor:
the modest tool environment. In Proc. of the 13th international conference
on Tools and algorithms for the construction and analysis of systems, LNCS,
pages 500–504. Springer, 2007.

[36] P. Bonet, C. Llado, R. Puijaner, and W. Knottenbelt. Pipe v2.5.: a Petri net
tool for performance modelling. In Proc. of 23rd Latin American Conference
on Informatics, San Jose, Costa Rica, October, 2007.

[37] Pere Bonet, Catalina M Lladó, Ramon Puijaner, and William J Knottenbelt.
Pipe v2. 5: A petri net tool for performance modelling. In Proc. 23rd Latin
American Conference on Informatics (CLEI 2007), 2007.

[38] R. Boucherie and N. M. van Dijk. Product-form queueing networks with state
dependent multiple job transitions. Advances in Applied Prob., 23:152–187,
1991.

[39] R. J. Boucherie. A characterisation of independence for competing Markov
chains with applications to stochastic Petri nets. IEEE Trans. on Software
Eng., 20(7):536–544, 1994.

[40] J. T. Bradley and W. J. Knottenbelt. The ipc/HYDRA tool chain for the
analysis of pepa models. In Proc. of the 1st Int. Conf. on the Quantitative
Evaluation of Systems (QEST), volume 4, pages 334–335, 2004.

[41] J.T. Bradley, N.J. Dingle, S.T. Gilmore, and W.J. Knottenbelt. Derivation of
passage-time densities in PEPA models using ipc: the imperial PEPA com-
piler. In Modeling, Analysis and Simulation of Computer Telecommunications
Systems, 2003. MASCOTS 2003. 11th IEEE/ACM International Symposium
on, pages 344–351. IEEE, 2003.

[42] S. C. Bruell and G. Balbo. Computational Algorithms for Closed Queueing
Networks. The Computer Science Library. Elsevier North Holland, 1980.

[43] Giacomo Bucci, Luigi Sassoli, and Enrico Vicario. Correctness verification
and performance analysis of real-time systems using stochastic preemptive
time petri nets. Tran. on Soft. Eng., 31(11):913–927, 2005.

[44] P. Buchholz. Adaptive decomposition and approximation for the analysis of
stochastic Petri nets. Perf. Eval., 56:23–52, 2004.

[45] P. Buchholz. Bounding stationary results of tandem networks with MAP
input and MAP service time distributions. In Proc. of ACM SIGMET-
RICS/PERFORMANCE, pages 191–202, Saint Malo, FR, 2006.

[46] P. Buchholz. Product form approximations for communicating Markov pro-
cesses. Perf. Eval., 67(9):797 – 815, 2010. Special Issue: QEST 2008.

Bibliography 133

[47] P. Buchholz and P. Kemper. Numerical analysis techniques in the apnn tool-
box. In Workshop on Formal Methods in Performance Evaluation and Appli-
cations, pages 1–6, 1999.

[48] J. P. Buzen. Computational algorithms for closed queueing networks with
exponential servers. Commun. ACM, 16(9):527–531, 1973.

[49] K. M. Chandy, U. Herzog, and L. Woo. Parametric analysis of queueing
networks. IBM Journal of Res. and Dev., 1(1):36–42, 1975.

[50] X. Chao. A queueing network model with catastrophes and product form
solution. Op. Res. Letters, 18(2):75–79, 1995.

[51] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. Greatspn 1.7: Graph-
ical editor and analyzer for timed and stochastic petri nets. Perform. Eval.,
Elsevier, 24:47–68, 1995.

[52] G. Ciardo, R.L. Jones, AS Miner, and RI Siminiceanu. Logic and stochastic
modeling with smart. Performance Evaluation, 63(6):578–608, 2006.

[53] G. Ciardo and A. Miner. Storage alternatives for large structured state spaces.
In LNCS 1245, Computer Performance Evaluation Modelling Techniques and
Tools, pages 44–57. Springer, 1997.

[54] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J.M. Doyle, W.H.
Sanders, and P. Webster. The mobius modeling tool. In Proc. of the 9th Int.
Workshop on Petri Nets and Performance Models, pages 241–250. IEEE, 2001.

[55] G. Clark and W.H. Sanders. Implementing a stochastic process algebra within
the möbius modeling framework. In Proc. of the Joint International Work-
shop on Process Algebra and Probabilistic Methods, Performance Modeling and
Verification, pages 200–216. Springer, 2001.

[56] J. L. Coleman, W. Henderson, and P. G. Taylor. Product form equilibrium
distributions and a convolution algorithm for Stochastic Petri nets. Perf.
Eval., 26(3):159–180, 1996.

[57] Y. Colombani and S. Heipcke. Mosel: An extensible environment for modeling
and programming solutions. In Proc. of CP-AI-OR, volume 2, pages 277–290,
2002.

[58] A. E. Conway, E. de Souza e Silva, and S. S. Lavenberg. Mean Value Anal-
ysis by chain of product form queueing networks. IEEE Trans. on Comp.,
38(3):432–442, 1989.

134 Bibliography

[59] A. E. Conway and N. D. Georganas. Recal - a new efficient algorithm for the
exact analysis of multiple-chain closed queuing networks. J. ACM, 33(4):768–
791, 1986.

[60] A. E. Conway and N. D. Georganas. Queueing Networks - Exact Computa-
tional Algorithms: A unified Theory Based on Decomposition and Aggregation.
The MIT Press, Cambridge, MA, 1989.

[61] P.-J. Courtois and P Semal. Bounds for the positive eigenvectors of nonnega-
tive matrices and for their approximations by decomposition. J. of the ACM,
31(4):804–825, 1984.

[62] P.J. Courtois. Decomposability. Academic Press, New York, 1977.

[63] Thu Ha Dao Thi and J. M. Fourneau. Stochastic automata networks with
master/slave synchronization: Product form and tensor. In Proceedings of the
16th International Conference on Analytical and Stochastic Modeling Tech-
niques and Applications, ASMTA ’09, pages 279–293, Berlin, Heidelberg, 2009.
Springer.

[64] E. de Souza e Silva and S. S. Lavenberg. Calculating joint queue-length dis-
tributions in product-form queuing networks. J. ACM, 36(1):194–207, 1989.

[65] G. Dei Rossi, L. Gallina, and S. Rossi. Performance analysis and formal
verification of cognitive wireless networks. In Proc. of EPEW 2013: Comp.
Perf. Eng., page to appear. LNCS, Springer, 20103.

[66] G. Dei Rossi and A. Marin. A queueing model with batch arrivals for studying
the impact of fragmentation in wireless protocols. In proc. Int. Conf. IFIP
Wireless Days, Niagara Falls, CA, 2011. IEEE.

[67] G. Dei Rossi, A. Marin, M. Rosati, and S. Balsamo. A simulation package for
an energy-aware comparison of arq protocols. In Proc. of Int. Conf. ISC 2011,
pages 18–25, Venice, IT, 2011. Eurosis.

[68] Nicholas J Dingle, William J Knottenbelt, and Tamas Suto. Pipe2: a tool for
the performance evaluation of generalised stochastic petri nets. ACM SIG-
METRICS Performance Evaluation Review, 36(4):34–39, 2009.

[69] A. Economou. Generalized product-form stationary distributions for Markov
chains in random environment with queueing application. Adv. in Appl. Prob.,
37:185–211, 2005.

[70] Agner K. Erlang. The Theory of Probabilities and Telephone Conversations.
Nyt Tidsskrift for Matematik, 20(B):33–39, 1909.

Bibliography 135

[71] J. Esparza and M. Nielsen. Decidability Issues for Petri Nets - a Survey. Bul-
letin of the European Association for Theoretical Computer Science, 52:245–
262, 1994.

[72] J. M. Fourneau, B. Plateau, and W. J. Stewart. Product form for stochastic
automata networks. In Proc. of ValueTools ’07, pages 1–10, Brussels, Belgium,
2007. ICST.

[73] J.M. Fourneau, L. Kloul, and F. Quessette. Multiclass G-networks with jumps
back to zero. In Proc. of MASCOTS ’95, pages 28–32, Durham, NC, USA,
March 1995.

[74] J.M. Fourneau and F. Quessette. Computing the steady-state distribution
of G-networks with synchronized partial flushing. In Proc. of ISCIS, 21th
International Symposium, pages 887–896, Istanbul, Turkey, 2006.

[75] G. Franceschinis and Richard R. Muntz. Bounds for quasi-lumpable markov
chains. Elsevier Perf. Eval., 20(1-3):223–243, 1994.

[76] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi. Enhanced
modeling and solution of layered queueing networks. Software Engineering,
IEEE Transactions on, 35(2):148–161, 2009.

[77] L. Gallina, G. Dei Rossi, A. Marin, and S. Rossi. Evaluating resistance to
jamming and casual interception in mobile wireless networks. In Proc. if Int.
Conf. MSWIM, pages 151–158, Paphos, CY, 2012. ACM.

[78] E. Gelenbe. Product form networks with negative and positive customers. J.
of Appl. Prob., 28(3):656–663, 1991.

[79] E. Gelenbe. G-networks with triggered customer movement. J. of Appl. Prob.,
30:742–748, 1993.

[80] E. Gelenbe and I. Mitrani. Analysis and Synthesis of Computer Systems.
Academic Press, New York, 1980.

[81] S. Gilmore and J. Hillston. The PEPAWorkbench: A tool to support a process
algebra based approach to performance modelling. In Proc. of Seventh Int.
Conf. on Modelling Techniques and Tools for Comp. Perf. Eval., LNCS 794,
pages 353–368, Vienna, 1994. Springer.

[82] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a
Process Algebra-based Approach to Performance Modelling. In Proc. of the
Seventh International Conference on Modelling Techniques and Tools for Com-
puter Performance Evaluation, number 794 in LNCS, pages 353–368, Vienna,
May 1994. Springer.

136 Bibliography

[83] S. Gilmore, J. Hillston, and M. Ribaudo. An Efficient Algorithm for Aggre-
gating PEPA Models. IEEE Trans. on Software Eng., 27(5):449–464, 2001.

[84] W. J. Gordon and G. F. Newell. Cyclic queueing networks with exponential
servers. Operations Research, 15(2):254–265, 1967.

[85] W. J. Gordon and G. F. Newell. Cyclic queueing networks with restricted
length queues. Operations Research, 15(2):266–277, 1967.

[86] M. Gribaudo, D. Codetta-Raiteri, and G. Franceschinis. Draw-net, a cus-
tomizable multi-formalism, multi-solution tool for the quantitative evaluation
of systems. In Quantitative Evaluation of Systems, 2005. Second International
Conference on the, pages 257–258. IEEE, 2005.

[87] P. Harrison and J. Hillston. Exploiting quasi-reversible structures in Marko-
vian process algebra models. The Computer Journal, 38(7):510–520, 1995.

[88] P. G. Harrison. Reversed processes, product forms, non-product forms and a
new proof of the BCMP theorem. In Int. Conf. on the Numerical Solution of
Markov Chains (NSMC 2003), Urbana IL, USA, September 2-5 2003, pages
289–304, September 2003.

[89] P. G. Harrison. Turning back time in Markovian process algebra. Theoretical
Computer Science, 290(3):1947–1986, 2003.

[90] P. G. Harrison. Compositional reversed Markov processes, with applications
to G-networks. Perf. Eval., Elsevier, 57(3):379–408, 2004.

[91] P. G. Harrison. Reversed processes, product forms and a non-product form.
Linear Algebra and Its Applications, 386:359–381, July 2004.

[92] P. G. Harrison and T. T. Lee. Separable equilibrium state probabilities via
time reversal in Markovian process algebra. Theoretical Computer Science,
346(1):161–182, 2005.

[93] Peter G. Harrison and Ben Strulo. SPADES - a Process Algebra for Discrete
Event Simulation. Journal of Logic and Computation, 10(1):3–42, January
2000.

[94] A. Heindl. Decomposition of general queueing networks with mmpp inputs
and customer losses. Perf. Eval., 51(1-4):117–136, 2003.

[95] W. Henderson, D. Lucic, and P. G. Taylor. A net level performance analysis
of Stochastic Petri Nets. J. Austral. Math. Soc. Ser. B, 31:176–187, 1989.

[96] W. Henderson and P. Taylor. Product form in networks of queues with batch
arrivals and batch services. Queueing Systems, 6:71–88, 1990.

Bibliography 137

[97] W. Henderson and P. Taylor. Some new results on queueing networks with
batch movements. J. of Applied Prob., 28:409–421, 1990.

[98] H. Hermanns, U. Herzog, and J. P. Katoen. Process algebra for performance
evaluation. Theor. Comput. Sci., 274(1-2):43–87, 2002.

[99] H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic process algebras:
between LOTOS and Markov chains. Comp. Netw. and ISDN Syst, 30:901–
924, 1998.

[100] Holger Hermanns. Interactive Markov chains: and the quest for quantified
quality. Springer-Verlag, 2002.

[101] J. Hillston. A Compositional Approach to Performance Modelling. PhD thesis,
Department of Computer Science, University of Edinburgh, 1994.

[102] J. Hillston and N. Thomas. Product form solution for a class of PEPA models.
Perf. Eval., 35(3–4):171–192, 1999.

[103] C. Hirel, B. Tuffin, and K. Trivedi. SPNP: Stochastic Petri Nets. version
6.0. Computer Performance Evaluation Modelling Techniques and Tools, pages
354–357, 2000.

[104] C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[105] K. P. Hoyme, S. C. Bruell, P. V. Afshari, and R. Y. Kain. A tree-structured
Mean Value Analysis algorithm. ACM Trans. Comp. Syst., 4(2):178–185,
1986.

[106] M. Iacono, E. Barbierato, and M. Gribaudo. The simthesys multiformalism
modeling framework. Computer & Mathematics with Applications, 2012.

[107] J. R. Jackson. Jobshop-like queueing systems. Management Science, 10:131–
142, 1963.

[108] M. N. Jacobi. A robust spectral method for finding lumpings and meta stable
states of non-reversible Markov chains. Elect. Trans. on Num. An., 37:296–
306, 2010.

[109] A.M. Johnson Jr and M. Malek. Survey of software tools for evaluating re-
liability, availability, and serviceability. ACM Computing Surveys (CSUR),
20(4):227–269, 1988.

[110] K. Kant. Introduction to Computer System Performance Evaluation. McGraw-
Hill, 1992.

[111] F. Kelly. Reversibility and stochastic networks. Wiley, New York, 1979.

138 Bibliography

[112] John G. Kemeny and J. Laurie Snell. Finite Markov Chains, chapter II. D.
Van Nostrand Company, inc., 1960.

[113] John G. Kemeny and J. Laurie Snell. Finite Markov Chains. Springer, second
edition, 1976.

[114] M. Kirschnick. The performance evaluation and prediction system for queueing
networks (PEPSY-QNS). Technical Report TR-14-18-94, June 1994.

[115] L. Kleinrock. Queueing Systems, volume 1 (Theory). John Wiley and Sons,
1975.

[116] Leonard Kleinrock. Message delay in communication nets with storage. PhD
thesis, Massachusetts Institute of Technology, 1963.

[117] W. J. Knottenbelt. Generalised Markovian Analysis of Timed Transition Sys-
tems. Master’s thesis, Department of Computer Science, University of Cape
Town, May 1996.

[118] Samuel Kounev and Christofer Dutz. QPME - A Performance Modeling Tool
Based on Queueing Petri Nets. ACM SIGMETRICS Performance Evalua-
tion Review, Special Issue on Tools for Computer Performance Modeling and
Reliability Analysis, January 2009.

[119] M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of prob-
abilistic real-time systems. In Computer Aided Verification, pages 585–591.
Springer, 2011.

[120] S. Lafon and A. Lee. Diffusion maps and coarse-graining: A unified framework
for dimensionality reduction, graph partitioning, and data set parametrization.
IEEE Trans. on Pattern Anal. and Mach. Intell., 28:1393–1403, 2006.

[121] S. S. Lam. Queueing networks with capacity constraints. IBM Journal of Res.
and Dev., 21(4):370–378, 1977.

[122] S. S. Lam. Dynamic scaling and growth behavior of queuing network normal-
ization constants. J. ACM, 29(2):492–513, 1982.

[123] S. S. Lam and Y. L. Lien. A tree-convolution algorithm for the solution of
queueing networks. Commun. ACM, 26(3):203–215, 1983.

[124] S. S. Lavenberg. Computer Performance Modeling Handbook. Academic Press,
New York, 1983.

[125] A. M. Law andW. D. Kelton. Simulation modeling and analysis. McGraw-Hill,
3rd edition, 2000.

Bibliography 139

[126] A. A. Lazar and T. G. Robertazzi. Markovian Petri Net Protocols with Prod-
uct Form Solution. Perf. Eval., 12(1):67–77, 1991.

[127] E. D. Lazowska, J. L. Zahorjan, G. S. Graham, and K. C. Sevcick. Quantitative
system performance: computer system analysis using queueing network models.
Prentice Hall, Englewood Cliffs, NJ, 1984.

[128] J. Y. Le Boudec. A BCMP extension to multiserver stations with concurrent
classes of customers. In SIGMETRICS ’86/PERFORMANCE ’86: Proc. of
the 1986 ACM SIGMETRICS Int. Conf. on Computer performance modelling,
measurement and evaluation, pages 78–91, New York, NY, 1986. ACM Press.

[129] C. Lindemann. Stochastic modeling using dspnexpress. In Petri Nets and
Performance Models, 1995., Proc. of the Sixth International Workshop on,
pages 208–209. IEEE, 1995.

[130] J. Mairesse and H.-T. Nguyen. Deficiency Zero Petri Nets and Product Form.
In Proc. of the 30th Int. Conf. on App. and Theory of Petri Nets, PETRI
NETS ’09, pages 103–122, Paris, France, 2009. Springer-Verlag.

[131] A. Marin, S. Balsamo, and P. G. Harrison. Analysis of stochastic Petri nets
with signals. Perform. Eval., 69(11):551–572, 2012.

[132] A. Marin and S. Rota Bulò. A general algorithm to compute the steady-state
solution of product-form cooperating Markov chains. In Proc. of MASCOTS
2009, pages 515–524, London, UK, September 2009.

[133] A. Marin and M. G. Vigliotti. A general result for deriving product-form
solutions of markovian models. In Proc. of First Joint WOSP/SIPEW Int.
Conf. on Perf. Eng., pages 165–176, San Josè, CA, USA, 2010. ACM.

[134] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with generalized stochastic Petri nets. Wiley, 1995.

[135] Moreno Marzolla. The qnetworks toolbox: A software package for queue-
ing networks analysis. In Khalid Al-Begain, Dieter Fiems, and William J.
Knottenbelt, editors, Analytical and Stochastic Modeling Techniques and Ap-
plications, 17th International Conference, ASMTA 2010, Cardiff, UK, Proc.,
volume 6148 of LNCS, pages 102–116. Springer, 2010.

[136] John F. Meyer, A. Movaghar, and William H. Sanders. Stochastic activity
networks: Structure, behavior, and application. In International Workshop
on Timed Petri Nets, pages 106–115, Washington, DC, USA, 1985. IEEE
Computer Society.

[137] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

140 Bibliography

[138] Robin Milner. Communicating and mobile systems: the pi calculus. Cambridge
university press, 1999.

[139] A. Miner and G. Ciardo. Efficient reachability set generation and storage using
decision diagrams. In LNCS 1639, Application and Theory of Petri Nets 1999,
pages 691–691. Springer, 1999.

[140] Andrew S. Miner, Gianfranco Ciardo, and Susanna Donatelli. Using the exact
state space of a markov model to compute approximate stationary measures.
In Proc. of ACM SIGMETRICS, pages 207–216, New York, NY, USA, 2000.
ACM.

[141] M. K. Molloy. Performance analysis using stochastic petri nets. IEEE Trans.
on Comput., 31(9):913–917, 1982.

[142] T. Murata. Petri nets: Properties, analysis and applications. Proc. of the
IEEE, 77(4):541–580, 1989.

[143] R. Nelson. The mathematics of product-form queueing networks. ACM Com-
puting Survey, 25(3):339–369, 1993.

[144] J. F. Pérez, J. Van Velthoven, and B. Van Houdt. Q-mam: a tool for solving
infinite queues using matrix-analytic methods. In Proc. of the 3rd Int. Conf.
on Performance Evaluation Methodologies and Tools, ValueTools ’08, pages
16:1–16:9, Brussels, Belgium, 2008. ICST.

[145] D. C. Petriu, J. E. Neilson, C. M. Woodside, and S. Majumdar. Software
bottlenecking in client-server systems and rendezvous networks. IEEE Trans.
on Software Eng., 21(9):776–782, 1995.

[146] B. Plateau. On the stochastic structure of parallelism and synchroniza-
tion models for distributed algorithms. SIGMETRICS Perform. Eval. Rev.,
13(2):147–154, 1985.

[147] R.J. Pooley. The integrated modelling support environment. In Proc. of the
5th International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, pages 1–16, 1991.

[148] C. PRIAMI. Stochastic π-calculus. Computer journal, 38(7):578–589, 1995.

[149] M. Raiser. Mean Value Analysis and Convolution method for queue-dependent
servers in closed queueing networks. Perform. Eval. Elsevier, 1(1):7–18, 1981.

[150] S. Ramani and K. Trivedi. Srept: software reliability estimation and prediction
tool. Computer Performance Evaluation. Modelling Techniques and Tools,
pages 358–361, 2000.

Bibliography 141

[151] M. Resiser and S. S. Lavenberg. Mean Value Analysis of closed multichain
queueing network. J. ACM, 27(2):313–320, 1980.

[152] J.A. Rolia and K.C. Sevcick. The methods of layers. IEEE Trans. on Software
Eng., 21(8):682–688, 1995.

[153] S. M. Ross. Stochastic Processes. John Wiley & Sons, 2nd edition, 1996.

[154] Sheldon M. Ross. Introduction to Probability Models. Academic Press, ninth
edition, 2006.

[155] Ramin Sadre and Boudewijn Haverkort. Fifiqueues: Fixed-point analysis of
queueing networks with finite-buffer stations. In Boudewijn Haverkort, Hen-
rik Bohnenkamp, and Connie Smith, editors, Computer Performance Evalua-
tion Modelling Techniques and Tools, volume 1786 of LNCS, pages 324–327.
Springer, 2000.

[156] R. Sahner, K. Trivedi, and A. Puliafito. Performance and Reliability Analy-
sis of Computer Systems - An Example-Based Approach Using the SHARPE
Software Package. Kluwer Academic Publishers, Boston, M.A., 1996.

[157] C. H. Sauer. Computational algorithms for state-dependent queueing net-
works. ACM Trans. Comp. Syst., 1(1):67–92, 1983.

[158] C. H. Sauer and K. M. Chandy. Computer Systems performance modeling.
Prentice-Hall, Englewood Cliffs, 1981.

[159] M. Sereno. Towards a product form solution for stochastic process algebras.
The Computer Journal, 38(7):622–632, December 1995.

[160] M. Sereno and G. Balbo. Mean Value Analysis of stochastic Petri nets. Per-
form. Eval. Elsevier, 29(1):35–62, 1997.

[161] C. Smith and L. Williams. Software performance engineering. UML for Real,
pages 343–365, 2004.

[162] C.U. Smith and L.G. Williams. Performance and scalability of distributed
software architectures: An spe approach. Parallel and Distributed Computing
Practices, 3(4), 2002.

[163] G.W Stewart. Computable error bounds for aggregated Markov chains. J. of
the ACM, 30(2):271–285, 1983.

[164] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, UK, 1994.

[165] W. J. Stewart. Probability, Markov Chains, Queues, and Simulation. Prince-
ton University Press, UK, 2009.

142 Bibliography

[166] R. Suri. Robustness of queuing network formulas. J. ACM, 30(3):564–594,
1983.

[167] H. M. Taylor and S. Karlin. An Introduction To Stochastic Modeling. Academic
Press, 3rd edition, 1998.

[168] D. Towsley. Queuing network models with state-dependent routing. J. ACM,
27(2):323–337, 1980.

[169] M. Tribastone, A. Duguid, and S. Gilmore. The PEPA eclipse plugin. ACM
SIGMETRICS Performance Evaluation Review, 36(4):28–33, 2009.

[170] K. S. Trivedi. Probability and statistics with reliability, queuing and computer
science applications. Wiley-Interscience, second edition, 2002.

[171] K.S. Trivedi and R. Sahner. Sharpe at the age of twenty two. ACM SIGMET-
RICS Performance Evaluation Review, 36(4):52–57, 2009.

[172] S. Tucci and C. Sauer. The tree MVA algorithm. Perform. Eval. Elsevier,
(5(3)):187–196, August 1985.

[173] N. van Dijk. Queueing networks and product forms. John Wiley, 1993.

[174] M. Veran and D. Potier. Qnap2: A portable environment for queueing system
modelling. In Proc. of the International Conference on Modelling Techniques
and Tools for Performance Analysis, pages 5–24, 1984.

[175] C.M. Woodside, J. Neilson, S. Petriu, and S. Mjumdar. The stochastic ren-
dezvous network model for performance of synchronous client-server-like dis-
tributed software. IEEE Transaction on Computer, 44:20–34, 1995.

[176] Rui Xu and II Wunsch, D. Survey of clustering algorithms. IEEE Trans. on
Neural Networks, 16(3):645 –678, 2005.

[177] A. Zimmermann, J. Freiheit, R. German, and G. Hommel. Petri net modelling
and performability evaluation with timenet 3.0. In TOOLS ’00: Proc. of the
11th Int. Conf. on Computer Performance Evaluation: Modelling Techniques
and Tools, pages 188–202, London, UK, 2000. Springer-Verlag.

	Preface
	Introduction
	I An introduction to stochastic modelling
	Stochastic models
	Introduction
	Markovian models

	Formalisms and cooperation semantics
	Queueing Networks
	Stochastic Petri nets
	Stochastic Petri nets
	Building blocks

	Markovian Process Algebra
	Classical process algebras
	Process algebras extensions
	Performance Evaluation Process Algebra

	Stochastic Automata

	Product Forms
	Tools
	Introduction
	Software Analysis
	A model example
	Software Comparison
	Conclusion

	II Contributions
	Algorithmic Product form detection and solution
	Introduction
	The INAP Algorithm
	INAP for models with infinite state spaces
	The algorithm input
	Main idea of the algorithm
	Formal definition of INAP+
	Convergence, termination, complexity and optimisations

	Model and cooperation encoding
	Tool
	Specifying the interactions
	Client-server architecture
	Use cases
	MSI implementation example

	A Numerical Example
	Conclusions

	Component-wise state space reduction
	Introduction
	Related work
	Contribution

	Exact lumpability
	Exact lumping and strong equivalence

	Conclusions

	Conditional Product-Forms
	Introduction
	Feed-forward synchronisations

	Conditional product-form and lumping of the reversed automata
	Theoretical considerations about Theorem 3 and 4

	Conclusions

	Approximate aggregation techniques
	Introduction
	Evaluation of the quality of clusters
	Algorithm definition
	Example
	Conclusions

	III Case studies and applications
	Exploiting product forms solution techniques in multiformalism modelling
	Introduction
	From multiformalism models to product-form solutions
	Deciding and computing the product-form solution
	The formalisms

	Case study
	Overall model description
	Model specification
	Model analysis and results

	Conclusions and future work

	Modelling retrial-upon-conflict systems with product-form stochastic Petri nets
	Introduction
	The conflict model
	Applications
	A computer network with collisions
	A transactional database system

	Conclusions

	Conclusions
	Contributions
	Impact and Future Works

	Bibliography

