
HET-NETs 2010
ISBN 978-83-926054-4-7

pp. 311–324

A tool for the numerical solution of cooperating Markov chains in
product-form

SIMONETTA BALSAMO GIAN-LUCA DEI ROSSI
ANDREA MARIN a

aUniversità Ca’ Foscari di Venezia
Dipartimento di Informatica

via Torino, 155 Mestre
Italy

{balsamo,deirossi,marin}@dsi.unive.it

Abstract:
Performance modelling of complex and heterogeneous systems based on analytical models are

often solved by the analysis of underlying Markovian models. We consider performance models
based on Continuous Time Markov Chains (CTMCs) and their solution, that is the analysis of the
steady-state distribution, to efficiently derive a set of performance indices. This paper presents a
tool that is able to decide whether a set of cooperating CTMCs yields a product-form stationary
distribution. In this case, the tool computes the unnormalised steady-state distribution. The algorithm
underlying the tool has been presented in [10] by exploiting the recent advances in the theory of
product-form models such as the Reversed Compound Agent Theorem (RCAT) [5]. In this paper,
we focus on the peculiarities of the formalism adopted to describe the interacting CTMCs and on the
software design that may have interesting consequences for the performance community.

Keywords: : Product-form, queueing networks, numerical solution of Markov chains

1. Introduction

Markovian models have proved to be a robust and versatile support for the
performance analysis community. Performance modeling of complex heteroge-
neous systems and networks based on analytical model usually describes a system
using a high-level formalism, such as Stochastic Petri Nets (SPNs), Performance
Evaluation Process Algebra (PEPA), queueing systems or networks, from which
its underlying Continuous Time Markov Chain (CTMC) is derived. The desired
performance indices, at steady-state, are computed by the analysis of the model



312

CTMC. This computation is usually a hard task, when not unfeasible, because the
solution of the CTMC usually requires to solve the system of Global Balance Equa-
tions (GBEs) (with a computational complexity of O(Z3), where Z is the number
of states of the model) to derive the stationary probability of each state. Some algo-
rithms that numerically solve the GBEs more efficiently for special cases or using
approximations have been defined.

Product-form models take a different approach. They apply the divide et im-
pera paradigm to efficiently solve complex models. Informally, a model S is
seen as consisting of several interacting sub-models S1, . . . , SN so that m =
(m1, . . . ,mN ) is a state of S and mi is a state of Si. S is in product-form with
respect to S1, . . . , SN if its stationary distribution π(m) satisfies the following
property:

π(m) ∝
N∏
i=1

gi(mi),

where gi is the stationary distribution of sub-model i considered in isolation and
opportunely parametrised. Roughly speaking, from the point of view of a single
sub-model Si, the parametrisation abstracts out the interactions with all the other
sub-models Sj , j 6= i. It should be clear that, since the state space of a sub-model Si
is much smaller than that of S the solution of its GBEs may be computed efficiently.
Note that modularity becomes a key-point both for the analysis and the description
of the model, since it is a good engineering practice to provide modular models of
systems.

Exploiting the product-form solutions requires to address two problems: 1)
Deciding if model S is in product-form with respect to the given sub-models S1,
. . . , SN ; 2) Computing the parametrisation of the sub-models S1, . . . , SN in order
to study them in isolation. Note that we have not listed the solution of the sub-model
CMTCs as a problem because we suppose that the cardinalities of their state spaces
are small enough to directly solve the GBEs. If this is not the case, a product-
form analysis of the sub-models may be hierarchically applied. In literature, the
first problem has been addressed in two ways. The first consists in proving that
a composition of models that yield some high-level characteristics is in product-
form. For instance the BCMP theorem [2] is based on this idea because the authors
specify four type of queueing disciplines with some service properties and prove
that a network of such models has a product-form solution. The second way is more
general, i.e., the properties for the product-form are defined at the CTMC level.
Although this can lead to product-form conditions that are difficult to interpret, this
approach really enhances the compositionality of the models. In this paper, we
often refer to a recent result about product-forms: the Reversed Compound Agent
Theorem (RCAT) [5]. This theorem has been extensively used to prove a large set



313

of product-form results previously known in literature (BCMP product-form [4],
G-networks with various types of triggers [6], just to mention a few). Problem
2 is usually strictly related to Problem 1. In general, the parametrisation of the
sub-models requires the solution of a system of equations that is called system of
traffic equations. For several years the fact that product-form solutions must be
derived from linear systems of traffic equations has been considered true, but the
introduction of G-networks has shown that this is not necessary.

Contribution. This paper illustrates a tool that given the description of a set
of cooperating CTMCs (i.e., when some transitions in one chain force transitions
in other chains) it decides whether the model is in product-form and, in this case,
computes its stationary distribution. The tool is based on the algorithm presented
in [10] which is briefly resumed in Section 2.. Since the analysis of the product-
form is performed at the CTMC level, it is able to study product-form models that
are originated form different formalisms, such as exponential queueing networks,
G-networks or queueing networks with blocking. To this aim, we observe that it
is important to decouple the analyser and the model specification interface (MSI).
We propose both a Java implementation of the analyser and of a general MSI (note
that multiple specification interfaces may be implemented according to the mod-
eller needs). With this tool, a modeller has a library of product-form models that,
even if they were created using some (possibly high-level) formalism, are stored
as stochastic automata (basically a CTMC with labelled transitions allowing self-
loops or multiple arcs between states). Using the MSI (which acts as a client with
respect to the analyser), the various sub-models can be instantiated and their in-
teractions be specified. The operations that the modeller performs in the MSI are
translated into commands for the server side, i.e., the analyser. The analysis is re-
quested from the MSI, computed by the analyser and displayed by the MSI. We
have also developed a textual interface that will not be presented in this paper to
allow the usage of the analyser from non-graphical clients.

Paper structure. The paper is structured as follows. Section 2. briefly illus-
trates the formalism used to describe the interactive CTMCs, the idea underlying
RCAT and the algorithm presented in [10]. Section 3. gives the details of the soft-
ware implementation. In particular, Section 3.1. presents the naming conventions
which are an important matter to enhance the modularity of the tool, Section 3.2.
the client server architecture, and finally Section 3.3. gives a brief idea of some
use-cases. Section 4. shows an instance of implemented MSI. Some final remarks
conclude the paper in Section 5..



314

2. Theoretical background

In this section we briefly recall some basic definitions and models to keep the
paper self-contained. We present the topics in a way that allows us to simplify the
description of the tool algorithm, features and architecture in what follows.

Let us suppose to have N model S1, . . . , SN that cooperate, i.e., some tran-
sitions in a model Si force other transitions in a model Sj , i 6= j. At a low-level
we can describe each model by a set of labelled matrices: Ma

i is the matrix with
label a associated with model Si. Labels may be chosen arbitrarily when a model is
defined. However, we always assume that every model has at least one label called
ε. We consider, at first, models with a finite number of states, Zi. Ma

i is a Zi × Zi
matrix with non-negative elements that represent the transition rates between two
states of the model. Note that self-loops, i.e., transitions from a state to itself, are
allowed. The infinitesimal generator Qi can be easily computed as the sum of all
the matrices associated with a model, where the diagonal elements are replaced
with the opposite of the sum of the extra-diagonal row elements. If the station-
ary distribution π exists (and hereafter we will work under this hypothesis) then it
can be computed as the unique solution of πQ = 0 subject to π1 = 1. From π
we can compute the rates in the reversed process associated with each label [9, 5]
in a straightforward way. Suppose that Ma

i [α, β] > 0, with 1 ≤ α, β ≤ Zi and
1 ≤ i ≤ N , then the reversed rate of this transition, denoted by Ma

i [α, β] is defined
as follows:

Ma
i [α, β] =

π(α)
π(β)

Ma
i [α, β]. (1)

Let us show how we specify the interaction of two models. According to RCAT
restrictions, we just deal with pairwise interactions, i.e., a transition in a model may
cause a transition just for another model. The cooperation semantics used in this
paper (but also in [5]) is very similar to that specified by PEPA, i.e., a Markovian
stochastic process algebra introduced by Hillston in [8]. Consider sub-models Si
and Sj and suppose that we desire to express the fact that a transition labelled with
a in Si can occur only if Sj performs a transition labelled with b, and vice-versa.
Specifically, if Si and Sj are in states si, sj such that they are able to perform a
transition labelled with a and b, respectively, that take the sub-models to state s′i
and s′j , then they can move simultaneously to state s′i and s′j . The rate at which this
joint transition occurs is decided by the active sub-model that can be Si or Sj . We
express such a cooperation between Si and Sj , with Si active, as follows:

Si
y
×

(a+,b−)
Sj ,



315

which means that transitions labelled by a is Si are active with respect to the coop-
eration with transitions labelled by b of Sj and originate a models where the joint
transitions are labelled with y. The fact that the resulting model is still Markovian
should be obvious because the synchronisation inherits the properties derived for
that of PEPA. Note that the major difference is that we can synchronise different
labels and assign a different name to the resulting transitions. This happens be-
cause we would like a modeller to be able to use a library of models whose labels
have a local scope. In this way the library items can be created independently and
instantiated several times in the same model.

Example 1 (Example of cooperation) Suppose we would like to model within the
presented framework the trivial queueing network depicted in Figure 1 where two
identical exponential queues with finite capacities B are composed in tandem.
When the first queue if saturated, arrivals are lost. When the second queue is
saturated at a job completion of the first queue, the customer is served again (repet-
itive service blocking). Customers arrive to the first queue according to a Poisson
process with rate λ. A queue can be described by three matrices with dimension

QUEUE 1 QUEUE 2

Fig. 1. Tandem of two exponential finite capacity queues.

B ×B:

• Mε = 0 that describes the transitions that cannot synchronise (something
like the private part of the model).

• Ma where Ma[α, β] = λ if β = α + 1 or Ma[α, β] = 0, otherwise. This
matrix describes the transitions corresponding to arrival events.

• Md, where Md[α, β] = µ if β = α − 1 or Md[α, β] = 0, otherwise. This
matrix describes the transitions corresponding to job completion events.

Consider two instances of this model, S1 and S2. The tandem network of Figure 1
can be described by the model S1×y(d+,a−)

S2.

A pairwise cooperation may involve more than one label. In this case we may write:

S1

y1×
(a+

1 ,b
−
1 )

y2×
(a−2 ,b

+
2 )

S2



316

to specify that S1 (S2) is active on y1 (y2) and passive on y2 (y1) with transitions
labelled a1 (b1) and a2 (b2), respectively.

The following operator allows us to change all the rates of a matrix labelled
by a: S1{a← λ} is the sub-model S1 with only matrix Ma modified so that all its
non-zero elements are set to λ.

RCAT. Theorem RCAT [5] gives sufficient conditions to decide and derive the
product-form solution of pairwise interactions (possibly involving more than one
label) between two sub-models. Le us consider the following synchronisation:

S = S1

y1×
(a∗1,b

∗
1)
. . .

yT×
(a∗T ,b

∗
T )
S2,

where symbol ∗ stands either for a + or a −. The conditions to apply RCAT are:

1. If at is active (passive) in S1 and bt is passive (active) in S2 then Mat
1 [·, z]

(Mat
1 [z, ·]) has exactly one non-zero element for every 1 ≤ z ≤ Z1, and

M bt
2 [z, ·] (M bt

2 [·, z]) has exactly one non-zero element for every 1 ≤ z ≤
Z2

1.

2. Suppose that for every pair (a+
t , b
−
t ) ((a−t , b

+
t )) we know a value βt (αt) such

that:

S′1 = S1{at ← αt} for all at passive in the cooperation

S′2 = S2{bt ← βt} for all bt passive in the cooperation

and given an active label at (bt) in S1 (S2) all the transitions with that label
have the same reversed rate βt (αt).

If these conditions are satisfied, then the stationary distribution π of S is π ∝ π1π2

(for each positive recurrent state ).
Basically, the first condition says that every state of a model which is passive

(active) with respect to a label must have one outgoing (incoming) transition with
that label. To understand the second condition, suppose that (a+

t , b
−
t ) is a pair in the

synchronisation between S1 and S2. Then, we must determine a rate βt to assign to
all the transitions labelled by bt that is also the constant reversed rate of the active
transitions at in S1. Note that, in general, this task is not easy, and is shown to
be equivalent to the solution of the traffic equations in Jackson networks and G-
networks. The algorithm proposed in [10] aims to give an iterative, numerical and
efficient way to perform this computation.

1Mat
1 [z, ·] represents the z-th row vector of the matrix, and analogously Mat

2 [·, z] represents the
z-th column vector.



317

Although it is out of the scope of this paper discussing the modelling implica-
tions of RCAT conditions, it is worth pointing out that several works in literature
have proved that this result has not only a theoretical relevance but can be actually
used to characterise the product-form solutions for models that may be used for
practical case-studies.

The underlying algorithm. The algorithm that underlies our tool has been pre-
sented in [10]. It takes the matrices that describe models S1, . . . , SN and the syn-
chronisations as input, and computes as output a boolean value which is true if
a product-form has been identified, false otherwise. In case of product-form, the
unnormalised stationary distribution is output. In its simplest formulation (two sub-
models and without optimisations) it can be summarised in the following steps:

1. Generate randomly π1 and π2

2. Compute the reversed rates of the active transitions using Equation (1)

3. Use the mean of the reversed rates for each label to set the rates of the corre-
sponding passive transitions. For instance let a be active for S1 and b passive
for S2. Then let x be the mean of the reversed rates of the non-zero elements
in Ma

1. Mb
2 is updated by setting all the non-zero elements to x

4. Compute π1 and π2 as solution of the GBEs of the underlying CTMCs of
S1 and S2

5. Are the reversed rates of the transitions constant for each active label?

• true ⇒ product-form found and the stationary distribution is π ∝
π1π2 and terminate.

• false and the maximum number of iterations has been reached ⇒
product-form not found and terminate.

• false and the maximum number of iterations has not been reached ⇒
go to step 3

The algorithm is extended in order to include the possibility of multiple pair-
wise synchronisations (as proposed in [7]) and several optimisations: an efficient
way to define an order in the solution of the sub-models (based on Tarjan’s algo-
rithm [12]), a parallel implementation, and a special technique to deal with self-
loops.

3. Tool

In this section we describe some salient characteristics of the proposed tool.
First, we explain our approach in the specification of the interactions between



318

the sub-models. Then, we describe the client-server architecture and illustrate its
strengths.

3.1. Specifying the interactions

In order to better understand the motivations of this section, let us consider
again the model depicted by Figure 1 with a variation, i.e., after a job completion
at the first station the customer may exit the system with probability p or go to the
second station with probability 1 − p, as depicted by Figure 2. We note that the

QUEUE 1 QUEUE 2

p

1-p

Fig. 2: Probabilistic routing in the model of Fig-
ure 1.

p

1-p

a b a
b

c

a

b
c

(A) (B) (C)

Fig. 3. Types of connections between labels.

processes underlying the first and second queue are different, and we could not use
two instances of the same model anymore. Indeed, in the first queue the transition
corresponding to a job completion from state j to state j − 1 must be split in two:
one synchronising with the arrivals in the second queue with rate (1−p)µ1 and one
without synchronisation with rate pµ1. We decided that this splitting of transitions
should be done automatically by our tool, so that the library of sub-models can be
defined without any knowledge about the future usage and connections.

From the modeller point of view, a sub-model is seen just as a black box where
the labels are exported, i.e., a model specification consists of a set of connections
about instances of modules. The simplest possible connection between two labels is
that depicted by Figure 3-(A). Note that in this Figure we use a graphical represen-
tation of the connections which is coherent with the MSI that we developed, how-
ever different approaches are possible (such as a PEPA-like syntax). Figure 3-(A)
illustrates a label a of a sub-model that interacts with a label b of another sub-model.
The arrow is oriented, meaning that a is active and b is passive. This specification
of synchronisation does not require any modification to the structure of the active
or passive sub-models. Let us now consider Figure 3-(B). In this case the active
action a of one sub-model synchronises with passive actions b (with probability p)
or c (with probability 1 − p) of other sub-models. In this case, we need to alter
the structure of the active model. Recall that matrix Ma represents the transitions
labelled by a. Then we define Ma′ = pMa and Ma′′ = (1− p)Ma. Hence, in the
active sub-model, matrices Ma′ and Ma′′ replace matrix Ma. Note that this tech-



319

nique can be applied to an arbitrary number of probabilistic synchronisations under
the obvious constraint that the synchronisation probabilities must sum to a value
which is less or equal to 1. Suppose that the sum of the probabilities p1, . . . , pK
is pt < 1 (see Figure 2 for an example). In this case we have Mak

= pkMa for
k = 1, . . .K, and Mε (which is always present in a model description an represents
the transition that cannot synchronise) is replaced by Mε+Ma(1−pt). We use the
notation S1×y,p(a+,b−)

S2 to denote that a in S1 is active in the synchronisation with
b in S2, and the synchronisation is called y and occurs with probability p. The latter
case is depicted by Figure 3-(C) where two active labels a and b (that can belong
to the same or different sub-models) synchronise with the same passive label c. In
this case we simply replace matrix Mc of the passive model with two matrices Mc′

and Mc′′ identical to the former (we do not need to modify the rates since they are
replaced with the rate of the corresponding active transitions).

Example 2 (Application to the model of Figure 2) Let us show how we model
the tandem of exponential queues with finite capacities B depicted by Figure 2.
We still consider two identical instances of the same sub-model which is described
in Example 1. The user specifies in some way the interactions. The model corre-
sponding to the second queue does not change, while that corresponding to the first
queue becomes the following:

• Mε = pMd that describes the transitions that cannot synchronise

• Ma,

• Md′ = (1− p)Md,

where Ma and Md are the matrices defined in Example 1.

It may be worth pointing out some notes about this approach to the specifi-
cation of the sub-model interactions: 1) Its scope is to allow the specification of a
model despite to the synchronisations it will be involved in. For instance, if we have
a model of a simple exponential queue, we can straightforwardly define a Jackson
queueing network with probabilistic routing by simply instantiating several copies
of the same model. Moreover, connections have a simple and intuitive meaning.
2) When an active label is split the infinitesimal generator of the sub-model does
not change, i.e., its stationary distribution does not change. Moreover, if the revered
rates of the transitions corresponding to active label a are constant in the original
model, then also the transitions corresponding to a split label associated with a have
constant reversed rates. 3) The effects of the replication of passive label matrices
on the algorithmic analysis of the product-form is that the rate associated with the
passive transition is the sum of the (constant) reversed rates of every associated



320

active transition. 4) Specifying pairwise interactions where the same label is si-
multaneously active and passive with respect to two or more synchronisations is
not allowed. This characteristic is inherited from the semantics of the cooperation
given in the theoretical paper which this tool is based on.

3.2. Client-server architecture

The tool consists of two parts: the analyser (the server) and the MSI (the
client). The idea is that although we propose a graphical client side that exploits the
strengths of our modular approach and the specification of the module synchronisa-
tion, one could write his own MSI in order to make it compatible with the favourite
formalism.

The server opens an independent session for each MSI connected. It provides
a character interface which is used by the MSI to: 1) Create/Import a sub-model,
2) Specify a synchronisation between two labels of two sub-models, 3) Require the
solution of a model given a precision and a maximum number of iterations. In the
first and second case the server just answers the client if the required operation has
been executed correctly, while the latter one returns the following data: 1) A flag
that specifies if the product-form has been identified, 2) The steady-state probabili-
ties of each sub-model, 3) The reversed rates of all the active transitions. Note that
knowing the reversed rates of the active transitions means knowing the solution of
the system of traffic equations. In [10] it is proved that when the algorithm analyses
a Jackson queueing network, the iterations are equivalent to the Jacobi scheme for
the solution of the model linear system of traffic equations. Similarly, when it is
applied to a G-network it is equivalent to iterative scheme proposed by Gelenbe et
al. for the solution of the non-linear system of traffic equations [3].

3.3. Use cases

In this section we illustrate some examples of case studies. We give a de-
scription of the model which is independent of the MSI that will be adopted. We
just focus our attention on three well-known results about product-form that have
been widely used in the communication networks performance evaluation analysis,
although several other instances may be easily produced.

Jackson networks. Jackson networks are easy to study because they are char-
acterised by a linear system of traffic equations. However, in our framework, they
require some attention since each sub-model (i.e., each exponential queue) has an
infinite state space. In many cases in which the sub-model is known to have a geo-
metric steady-state distribution and the transitions between states n and n + 1 are
the same for all n ≥ 0, we can simply represent the sub-model using just a pair of



321

adjacent states [10]. We apply this technique to reduce the infinite state space of a
sub-model we must disable the RCAT structural check (Condition 1) because some
transitions that are present in the real model, are omitted in the finite one. Figure 4
shows the truncation of an exponential queue. If the synchronisations it will be
involved in impose a to be passive and d to be active, we note that Condition 1
of RCAT is satisfied for the infinite model but is not satisfied for the reduced one
(e.g., state n + 1 does not have any incoming active transition or outgoing passive
transition). Nevertheless, the algorithm may still be applied, so the structural check
for this model must be disabled.

n-1 n n+1 n+2

a a a a a

d d d d d

Fig. 4: Truncation of the birth and death process
underlying an exponential queue.

QUEUE1 QUEUE2

QUEUE3

λ2

p

q

1− p

1− q

λ2

Fig. 5. Jackson network of Example 3.

Example 3 (Jackson network) Consider the Jackson network depicted by Figure
5. A sub-model of an exponential queue consists of three matrices (states are in the
order n and n+ 1):

Mε = 0 Ma =
[

0 λ
0 0

]
Md =

[
0 0
µ 0

]
We also use a single-state sub-model to represent the external Poisson arrivals with
Mε = 0 and Ma = [λ]. Supposing the service rates for Queue 1, 2 and 3 are µ1,
µ2 and µ3, let S be the library model for the queue and A that for the external
arrivals, then we have:

Si = S{d← µi} i = 1, 2, 3 At = A{a← λ1 + λ2}

The synchronisations are specified with the following commands to the server:

At
y1,λ1/(λ1+λ2)

×
(a+,a−)

S1, At
y2,λ2/(λ1+λ2)

×
(a+,a−)

S2, S1

y3,q×
(d+,a−)

S2, S1

y4,1−q×
(d+,a−)

y5,1−p×
(a−,d+)

S3.

G-networks. G-networks can be modelled in our frameworks in an analogous
way of that presented for Jackson networks. Note that although the models are



322

different both in the specification and in the analysis, our tool treats them uniformly
by exploiting the RCAT theoretical result. The truncation mechanism presented
for Jackson queueing centers is applied also for G-queues which consist of three
matrices: the epsilon, A representing the transitions for positive customer arrivals,
d representing the transitions for the job completion and, finally, a representing the
transitions for the negative customer arrivals:

Mε = 0, MA =
[

0 λA
0 0

]
, Md =

[
0 0
µ 0

]
, Ma =

[
0 0
λa 0

]
.

Finite capacities queueing networks with blocking. Akyildiz’s product-form
queueing networks with blocking [1] can be analysed by this tool. Finite capacity
queues have a finite state space so the truncation mechanism is not needed. In order
to reproduce Akyldiz’s results on the reversible routing it suffices to synchronise a
departure label of a queue with an arrival label of another queue considering the
former passive and the latter active.

4. MSI implementation example

In this Section we illustrate a possible implementation of the MSI. Recall that
the tool client-server architecture allows for different MSIs according to the mod-
eller’s needs. We show a general-purpose MSI that is independent of the formalism
used by the modeller. As an example we model the Jackson network depicted by
Figure 5. Each sub-model is represented by a coloured circle and arcs represent the
synchronisations. Each object, circle or arc, has a name. In the former case it is the
sub-model name, in the latter it has the form y(a, b) that stands for S1×y(a+,b−)

S2,
where S1 is the sub-model from which the arc outgoes from, and S2 is the destina-
tion sub-model. A screen-shot is shown in Figure 6. By clicking on a sub-model
circle a window appears with its description in matrix-form and the user is allowed
to perform changes (add or remove transitions or change rates). When a arc is set
between two sub-model the window shown in Figure 7 appears (the required pa-
rameters should be clear). Note that, although one could point out that a standard
tool for the analysis of Jackson networks may present a more intuitive interface, we
would like to remark that this is the same interface we would use for any stochastic
model that can be solved by the algorithm presented in [10]. However, one could
also decide to extend the MSI in order to be able to associate a specific symbol to
some sub-models of the library, but this is out of the scope of this presentation.



323

Fig. 6: Screen-shot of the model corresponding to
the Jackson network of Figure 5.

Fig. 7: Screen-shot of the window for the synchro-
nisation details.

5. Final remarks

We have presented a tool that we are developing for the analysis of product-
form models. It exploits some new results that appeared in product-form model
theory and the algorithm presented in [10]. It has proved to be able to identify
and compute several product-form results based on pairwise synchronisations, such
as Jackson networks, G-networks, Akyildiz’s results about product-form networks
with blocking and other that have been described in [10]. Current research has three
objectives: 1) allow for the specification of models with multiple incoming active
transitions, exploiting the result presented in [11], 2) allow for the specification of
models with multiple outgoing passive transitions, and 3) allow for the specification
of models with regular but infinite structure. The last goal seems to be the hardest
one. Indeed, an approximation is needed to truncate the model and we would like
it to be decided dynamically in order to produce results which are correct within a
specified bound.

References

[1] I. F. Akyildiz. Exact analysis of queueing networks with rejection blocking.
In H. G. Perros and T. Atliok, editors, Proc. of the 1st Internat. Workshop on
Queueing Networks with Blocking, pages 19–29, North-Holland, Amsterdam,
1989.



324

[2] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed,
and mixed networks of queues with different classes of customers. J. ACM,
22(2):248–260, 1975.

[3] E. Gelenbe. Product form networks with negative and positive customers.
Journal of Applied Prob., 28(3):656–663, 1991.

[4] P. G. Harrison. Reversed processes, product forms, non-product forms and a
new proof of the BCMP theorem. In Int. Conf. on the Numerical Solution of
Markov Chains (NSMC 2003), Urbana IL, USA, September 2-5 2003, pages
289–304, September 2003.

[5] P. G. Harrison. Turning back time in Markovian process algebra. Theoretical
Computer Science, 290(3):1947–1986, January 2003.

[6] P. G. Harrison. Compositional reversed Markov processes, with applications
to G-networks. Perform. Eval., Elsevier, 57(3):379–408, 2004.

[7] P. G. Harrison and T. T. Lee. Separable equilibrium state probabilities via
time reversal in markovian process algebra. Theoretical Computer Science,
346(1):161–182, 2005.

[8] J. Hillston. A Compositional Approach to Performance Modelling. PhD the-
sis, Department of Computer Science, University of Edimburgh, 1994.

[9] F. Kelly. Reversibility and stochastic networks. Wiley, New York, 1979.

[10] A. Marin and S. Rota Bulò. A general algorithm to compute the steady-state
solution of product-form cooperating Markov chains. In Proc. of MASCOTS
2009, pages 515–524, London, UK, September 2009.

[11] A. Marin and M. G. Vigliotti. A general result for deriving product-form
solutions of markovian models. In Proc. of First Joint WOSP/SIPEW Int.
Conf. on Perf. Eng., San Josè, CA, USA, To appear.

[12] R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. on Com-
puting, 1(2):146–160, 1972.


