Int J Softw Tools Technol Transfer (2004) 6: 1-3 / Digital Object Identifier (DOI) 10.1007/s10009-004-0144-y

Special section on verification, model checking, and abstract

interpretation

Preface by the section editors

Lenore Zuck, Paul Attie, Agostino Cortesi

Published online: 1 July 2004 — © Springer-Verlag 2004

Abstract. The papers in this special section present
a sample of recent approaches to modeling and verifica-
tion of software-based systems. This research was initially
presented at the 4th International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation (VM-
CAI°03). The choice of papers for the issue was based on
their merit as well as on the fact that, as a group, they
represent the main current research areas in the field of
software-based systems.

1 Introduction

The crucial role of rigorous and formal methods in spe-
cification, verification, and analysis of software systems
has long been recognized. The past decade has witnessed
increasing applications of formal methods in the develop-
ment of safety-critical and hardware systems. We expect
this trend to continue as more consumer goods are “soft-
ware embedded”, and expected to conform to high relia-
bility standards.

Formal methods for software can be compared and
evaluated according to the following criteria:

— Degree of automation, with deductive (manual) meth-
ods at one end and fully automatic methods at the
other;

— Methodology used, where currently the leading meth-
ods are model checking and abstract interpretation;

— Degree of abstraction applied, with no abstraction at
one end and finite-state abstraction at the other;

— Ambitiousness of goals, with verification at one end
and synthesis at the other;

— Development stage of applied methods, with static an-
alysis methods at one end and run-time methods at
the other.

Degree of automation: from deductive to automatic

Deductive methods, where one builds a proof from the
ground up using rules of deductive reasoning, are ex-
tremely powerful; yet they constitute an art requiring
considerable expertise and creativity. While new auto-
matic theorem provers allow one to check proofs, con-
struction of the proofs is often an elusive and laborious
task.

In contrast, fully automatic methods, as their name
implies, require no manual intervention. However, they
can only be directly applied to problems that are decid-
able, which rules out infinite-state software systems as
well as many systems that are just too large to handle by
automatic methods. Hardware systems, which are usually
simpler than software systems, are good candidates for
automatic methods.

Some methods are at neither extreme of this di-
chotomy. For example, many of the new theorem provers
allow the user to “suggest” to the system the proof strat-
egy. While such provers are not strictly automatic, they
often do not require the same level of expertise expected
from a user of a closely guided theorem prover.

Formal methods: from model checking
to abstract interpretation

The main formal methods that have been applied to
the verification, analysis, and synthesis of software sys-
tems are model checking and abstract interpretation.
Abstract interpretation is mainly applied to the verifi-
cation of systems with infinite-data domains. Roughly
speaking, a system is abstracted into a smaller sys-
tem such that properties of the abstract system imply
corresponding properties of the concrete system. The
abstraction/refinement is ideally achieved by means of

2 L. Zuck et al.: Preface by the section editors

a Galois connection. Abstract interpretation methods
have been successfully applied to sequential programs
over infinite-data domains.

Model checking constructs a finite-state model of the
system and algorithmically checks whether it is a model
of some specification. When the result is negative, a coun-
terexample is produced that shows where the model vi-
olates the specification. When the result is positive, one
may safely conclude that the verified system is correct.
Model checking has been successfully applied to hardware
systems and to systems with a small number of states and
intricate control structure (e.g., forms of concurrency)
that abstract interpretation techniques cannot easily ac-
commodate.

Of course, a formal method can combine the two. For
example, there is an increasing body of work on systems
that are too large to be handled by model checking and
whose control structure is too complex to be handled
by abstract interpretation. Using abstract interpretation
techniques, one can abstract such a system into a (pos-
sibly intricate-control) finite-data system and analyze the
new systems using model checking.

Degree of abstraction: from none
to finite-state abstraction

The high complexity, or undecidability, of run-time prop-
erties of programs yields the need for every analysis
technique to face the tradeoff between accuracy and ef-
ficiency. Accuracy of the analysis can be tuned accord-
ing to different degrees of abstraction. Very rarely an
exhaustive approach (leading to exactness) can be ap-
plied, namely, when the set of possible executions is
somehow bounded. In general, both in abstract inter-
pretation and in model checking and related techniques,
a suitable abstract representation of concrete execu-
tion states has to be designed that preserves correctness
(in terms of overapproximation) and termination of the
analysis.

Goals: from testing to synthesis

The most popular use of formal mehods is testing: given
a software module, identify a set of tests such that, if
the system passes all tests in the set, we can be reason-
ably sure the system is correct. Ideally, one would like to
obtain verification: given a software module and a prop-
erty, formally show that all executions of the module
satisfy the property. Model checking and abstract inter-
pretation are both analytic debugging methods. If they
succeed in verifying a property, one can conclude that an
abstract model of the system satisfies (possibly an ab-
stract model of) the property. If they fail, one must check
whether it is the abstraction that creates a ‘false negative’
or the concrete program. Synthetic methods, on the other
hand, derive a program from its specifications. There

are several ways to obtain the derivation, e.g., stepwise-
refinement starts with a high-level operational specifica-
tion and gradually refines it into an implementation.

Refinement is usually accomplished using two main
paradigms, preorders and equivalences. In preorder-based
refinement, an inclusion preorder is defined based on
behaviors, and an implementation is considered correct
if its behaviors are included in those of the specifica-
tion. The behavioral inclusion is usually established by
using a simulation relation. The overall methodology,
then, is to start with a high-level operational specifica-
tion and construct a sequence of intermediate system
descriptions such that the behavior of each description
is included in the behavior of the previous one. Grad-
ually, implementation details are added in, so that the
last description constitutes a suitable implementation.
Such implementation details can deal with nonfunctional
properties, e.g., distribution, fault-tolerance, perform-
ance, etc.

In equivalence-based refinement, algebraic reasoning is
used to replace a component of the current system with
another one that has equivalent behavior (w.r.t. a defined
notion of equivalent behavior) but that is more detailed,
i.e., closer to an implementation.

When applied: from static to run time

Traditionally, verification is static — a software system
is given in full detail and possibly abstracted, and some
properties are analyzed/verified. When systems are suf-
ficiently complex, static methods may often fail to deal
with them efficiently. For systems that are not safety
critical, where detection of errors shortly before or even
when they occur still allows for some actions that will
avoid catastrophic consequences, run-time verification of-
fers an attractive alternative: rather than proving the sys-
tem is correct, monitor it when it is running and notify
of any detected errors. The main weakness of run-time
methods is that only a restricted class of properties can be
monitored.

There are, of course, hybrid approaches, e.g., trans-
lation validation, where instead of verifying an optimiz-
ing compiler each of its executions is verified against its
specifications.

The papers

The papers chosen for this special issue all present new
research in the application of formal methods to specific
problem domains. The five papers here represent verifi-
cation, synthesis, and a combination of model checking,
abstract interpretation, and static and run-time verifi-
cation. The application domains are just as broad and
include compilers, telecommunication protocols, security
protocols, distributed systems, and timed systems. Pre-
liminary versions of the papers were presented at the

L. Zuck et al.: Preface by the section editors 3

Fourth Conference on Verification, Model Checking, and
Abstract Interpretation held at New York University in
January 2003 [1].

Based on the criteria described above, the papers can
be described by the following table.

degree AI/MC Abstraction Goals Stage

1 Full MC Full T/Syn S and RT

2 Some Al Tunable Vv Between S and RT
3 Full MC Some A\ S
4 Semi TP (Simulation) V S
5 Full MC Full Perfor. S

In the table, MC stands for model checking, AT for ab-
stract interpretation, TP for theorem proving, T for test-
ing, V for verification, Syn for synthesis, S for static an-
alysis, and RT for run time. For example, the first paper
describes a fully automatic method, using model checking
and full abstraction, for testing at both the static analysis
and run-time stages. The fourth paper uses abstraction
by simulation, and the goal of the fifth paper is perform-
ance enhancement.

Below is a short summary of the papers.

The first paper, “Behavior-based Model Construc-
tion” by Hardi Hungar and Bernhard Steffen, presents
a technique for constructing a model of a system by ob-
serving behaviors of its implementation. The framework
combines in a novel way machine learning, abstract inter-
pretation, verification, testing, and model checking. The
work is motivated by large-scale telecommunication ap-
plications that are not amenable to existing verification
techniques. The paper focuses on the machine-learning
aspect of the proposed process that provides an abstrac-
tion of the system and outlines the use of other techniques
such as testing and model checking to enhance the learn-
ing process. The resulting combination is very promising
from both practical and theoretical standpoints.

The second paper, “Certification of Compiler As-
sembly Code by Invariant Translation” by Xavier Rival,
presents an abstract-interpretation-based method for au-
tomatically verifying that assembly code generated by
a compiler preserves invariant (safety) properties of the
source code. The approach is based on translation vali-
dation, where, rather than verifying a translator, which
is often an attainable task, one verifies the correctness
of each translation. The paper proposes to use static an-
alysis tools to generate invariants for the source code
and translate them into candidate invariants using de-
bugging information generated during compilation. The
candidate invariants are then checked against the com-
piled code, and when they match, one may conclude
that the source code and the compiled code display simi-
lar (abstract) behaviors. The approach was tested on
a prototype implementation, and the description of the

methodology is accompanied by a rich yet easy-to-follow
running example.

The third paper, “A Logical Encoding of the 7-calculus:
Model Checking Mobile Processes Using Tabled Reso-
lution” by Ping Yang, C.R. Ramakrishnan, and Scott
Smolka, describes MMC — a m-calculus-based model
checker for mobile systems that uses the XSB tabled logic
programming engine to directly embed several formal
systems (e.g., the m- and spi-calculi and the modal u-
calculus) as logic programs. The paper shows that these
logic programs correctly implement the existing formal
systems and that some attacks on security protocols can
be found. The performance of the proposed system on
some synthetic benchmarks improves upon that of the
Mobility Workbench, the first automated analysis tool for
the m-calculus.

The fourth paper, “Using Simulated Execution in Ver-
ifying Distributed Algorithms” by Toh Ne Win, Michael
Ernst, Stephen Garland, Dilsun Kirli, and Nancy Lynch,
explores the use of simulation as a precursor and aid to
formal verification. Distributed algorithms are expressed
as I/O automata (IOA) and can be simulated using the
IOA environment together with the Daikon invariant de-
tection tool. When a distributed algorithm is simulated,
Daikon outputs a set of guessed candidate invariants.
These can then be verified to be actual invariants, for ex-
ample using the connection between IOA and the Larch
Prover. Finally, given a candidate forward simulation re-
lation from an implementation to a specification, the IOA
toolset can help in checking the validity of the forward
simulation by means of “paired execution”: it generates
an execution of the implementation together with a cor-
responding execution of the specification. The user can
then inspect these executions and detect problems with
the forward simulation.

The fifth paper, “Efficient verification of timed auto-
mata with BDD-like data structures” by Farn Wang,
investigates the design of data structures based on BDDs
for the efficient model checking of timed automata. It
proposes a new structure, the clock-restriction diagram,
which has been implemented in the author’s real-time
model checker. The paper presents extensive experimen-
tal data on several benchmarks that compare clock-
restriction diagrams with other popular data structures
for timed automata. The performance figures show that
clock-restriction diagrams provide performance benefits
in many cases.

References

1. Zuck LD, Attie PC, Cortesi PD, Mukhopadhyay S (eds)
(2003) Proceedings of the 4th international conference on veri-
fication, model checking, and abstract interpretation (VM CAI
2003), New York. Lecture notes in computer science, vol 2575.
Springer, Berlin Heidelberg New York

