
Observation-based Fine Grained Access Control for
XML Documents

Raju Halder and Agostino Cortesi

DAIS, Università Ca’ Foscari Venezia, Italy
{halder,cortesi}@unive.it

Abstract. The eXtensible Markup Language (XML) is recognized as a sim-
ple and universal standard for storing and exchanging information on the
web. The risk of unauthorized leakage of this information mandates the
use of access control at various levels of granularity. In this paper, we
extend to the context of XML documents the notion of Observation-based
Fine Grained Access Control (OFGAC) which was originally designed for
the relational databases. In this setting, data are made accessible at vari-
ous levels of abstractions depending on their sensitivity level. Therefore,
unauthorized users are not able to infer the exact content of an attribute or
element containing partial sensitive information, while they are allowed
to get a relaxed view of it, according to their access rights, represented by
a specific property.

Key words: Access Control, XML Documents, Abstract Interpretation

1 Introduction

With more and more information being exchanged, distributed or published
through the web, it is important to ensure that sensitive information is being
accessed by the authorized web-users only. Disclosure of sensitive information
to unauthorized web-users may cause a huge loss to the enterprizes or orga-
nizations. Access control policies and their enforcement [2, 7, 9] emerged as a
most effective solution to ensure safety of the sensitive information in an web
information system. The granularity of traditional access control mechanism for
XML is coarse-grained and can be applied at file or document level only. As a
result, any XML file containing data with both public and private protection re-
quirements will have to be split into two files before applying the access control.
However, the need of more flexible business requirements and security policies
mandates the use of Fine Grained Access Control (FGAC) mechanisms [1, 6, 10,
12, 13] that provide safety of the information in XML documents even at lower
level such as individual element or attribute level.

In traditional FGAC, the notion of sensitivity of web-information is too re-
strictive (either public or private) and impractical in some real systems where
intensional leakage of the information to some extent is allowed with the as-
sumption that observational power of external observers is bounded. Thus, we
need to weaken or downgrading the sensitivity level of web-information, hence,

2 R. Halder, A. Cortesi

consider a weaker attacker model. The weaker attacker model characterizes the
observational characteristics of attackers and can be able to observe specific
properties of the private data.

To cope with this situation, in our previous work [8], we introduced an
Observation-based Fine Grained Access Control (OFGAC) mechanism for Re-
lational Database Management System (RDBMS) based on the Abstract Inter-
pretation framework.

In this paper, we extend this approach to the context of XML documents
aiming at providing accessibility of sensitive information at various levels of
abstractions depending on their sensitivity level. Unauthorized users are not
able to infer the exact content of an attribute or element containing partial sensi-
tive information, while they are allowed to get a relaxed view of it represented
by specific property, according to their access rights. The traditional fine grained
access control can be seen as a special case of the proposed OFGAC framework.

The structure of the paper is as follows: Section 2 provides a motivating ex-
ample. Section 3 recalls some basic ideas about the policy specification for XML
fine grained access control system and the OFGAC framework for RDBMS. In
Section 4, we extend the OFGAC framework to the context of XML documents.
Finally, in Section 5, we draw our conclusions.

2 A Motivating Example

Various proposals in support of fine-grained XML access control have been
introduced in the literature, including View-based [1, 5, 6], Non-deterministic
Finite Automata (NFA)-based [3, 12, 13], RDBMS-based [10, 11, 14] etc.

All the proposals above are binary-based, i.e. an access control has only two
choices: either “allow” or “forbid”, resulting into two extreme views to the XML
information: either “public” or “private”. Sensitive information are visible to
the authorized people only, whereas non-sensitive information are visible to all.
However, there are many application areas where some data on the web are
treated as partially sensitive and a relaxed view of those data is provided to the
users at various levels of sensitivity according to their access rights.

Example 1. Consider an XML document that stores customers’ information of a
bank. Figure 1(a) and 1(b) represent the Document Type Definition (DTD) and
its instance respectively. According to the DTD, the document consists of zero
or more “customer” elements with three different child elements: “PersInfo”,
“AccountInfo”, “CreditCardInfo” for each customer. The “CreditCardInfo” for
a customer is optional, whereas each customer must have at least one bank
account represented by “AccountInfo”. The element “PersInfo” keeps the record
of personal information for the customers.

Suppose, according to the access control policy, that employees in the bank’s
customer-care section are not permitted to view the exact content of IBAN and
credit-card numbers of the customers, while they are allowed to view only the
first two digits of IBAN numbers and the last four digits of credit card numbers,

OFGAC for XML Documents 3

Fig. 1: A Document Type Definition (DTD) and its instance

(a) DTD

<?xml version=“1.0”? >
<! DOCTYPE BankCusomers [>
<! ELEMENT BankCusomers(Customer*) >
<! ELEMENT Customer(PersInfo, AccountInfo+, CreditCardInfo?) >
<! ELEMENT PersInfo(Cid, Name, Address, PhoneNo) >
<! ELEMENT Cid (# PCDATA) >
<! ELEMENT Name (# PCDATA) >
<! ELEMENT Address (street, city, country, pin) >
<! ELEMENT street (# PCDATA) >
<! ELEMENT city (# PCDATA) >
<! ELEMENT country (# PCDATA) >
<! ELEMENT pin (# PCDATA) >
<! ELEMENT PhoneNo (# PCDATA) >
<! ELEMENT AccountInfo (IBAN, type, amount) >
<! ELEMENT IBAN (# PCDATA) >
<! ELEMENT type (# PCDATA) >
<! ELEMENT amount (# PCDATA) >
<! ELEMENT CreditCardInfo (CardNo, ExpiryDate, SecretNo) >
<! ELEMENT CardNo (# PCDATA) >
<! ELEMENT ExpiryDate (# PCDATA) >
<! ELEMENT SecretNo (# PCDATA) >
<! ATTLIST Cid IBAN CDATA #REQUIRED]>

(b) XML document

<?xml version=“1.0”? > <AccountInfo>
<BankCusomers> <IBAN> IT10G 02006 02003 000011115996 </IBAN>
<Customer> <type> Savings </type>
<PersInfo> <amount> 50000 </amount>
<Cid> 140062 </Cid> </AccountInfo >
<Name> John Smith </Name> <CreditCardInfo>
<Address> <CardNo> 4023 4581 8419 7835 </CardNo>
<street> Via Pasini 62 </street> <ExpiryDate> 12/15 </ExpiryDate>
<city> Venezia </city> <SecretNo> 165 </SecretNo>
<country> Italy </country> </CreditCardInfo>
<pin> 30175 </pin> </Customer>
</Address> </BankCusomers>
<PhoneNo> +39 3897745774 </PhoneNo>
</PersInfo>

keeping other sensitive digits hidden. For instance, in case of the 12 digits credit
card number “4023 4581 8419 7835” and the IBAN number “IT10G 02006 02003
000011115996”, a customer-care personnel is allowed to see them as “**** ****
**** 7835” and “IT*** ***** ***** ************” respectively, just to facilitate the
searching of credit card number and to redirect the account related issues to the
corresponding country (viz, “IT” stands for “Italy”). In addition, suppose the
policy specifies that the expiry dates and secret numbers of credit cards and the
deposited amounts in the accounts are fully-sensitive and completely hidden to
them.

The traditional FGAC mechanisms are unable to implement this scenario
as the IBAN numbers or credit card numbers are neither private nor public
as a whole. To implement traditional FGAC, the only possibility is to split the

4 R. Halder, A. Cortesi

partial sensitive element into two sub-elements: one with private privilege and
other with public. For example, the credit-card numbers can be split into two
sub-elements: one with first 12 digits which is made private and the other with
last 4 digits which is made public. However, practically this is not feasible in
all cases, as the sensitivity level and the access-privilege of the same element
might be different for different users, and the integrity of data is compromised.
For instance, when an integer data (say, 10) is partially viewed as an interval
(say, [5, 25]), we can not split it.

The Observation-based Fine Grained Access Control (OFGAC) mechanism in
[8] provides a solution of such scenario in case of RDBMS, and is based on
the Abstract Interpretation framework [4]. We will extend this approach to the
context of XML documents, giving rise to partial accessibility of the information
on the web.

3 Observation-based Access Control Policies

In this section, we recall some basic ideas from [4, 6, 8].

Basis of Fine Grained Access Control Policy Specification for XML. Most of the
existing proposals on fine grained access control for XML are based on the
basic policy specification introduced by Damiani et al. [6] that specifies the
access authorization by a 5-tuple of the form 〈Subject, Object, Action, Sign,
Type〉. The “Subject” represents the identifiers or locations of the access re-
quests to be granted or rejected. It is denoted by a 3-tuple 〈UG, IP,SN〉 where
UG, IP and SN are the set of user-groups/user-identifiers, the set of completely-
specified/patterns-of IP addresses and the set of completely-specified/patterns-
of symbolic names respectively. For instance, 〈 Physicians, 159.101.*.*, *.hospi-
tal.com 〉 represents a subject belonging to the group physicians, issuing queries
from the IP address matching with the pattern 159.101.*.* in the domain match-
ing with symbolic name pattern *.hospital.com. The “Object” represents the Uni-
form Resource Identifier (URI) of the elements or attributes in the documents.
The URI is specified by the conditional or unconditional path expressions. The
“Action” is either “read” or “write” or both being authorized or forbidden. The
“Sign” ∈ {+,−} is the sign of authorization. Sign “+” indicates “allow access”,
whereas sign “-” indicates “forbid access”. The “Type” of the access represents
the level of access (DTD level or instance level), whether access is applicable
only to the local element or applicable recursively to all sub-elements, hard or
soft etc. The priority of the type of accesses from highest to lowest are: LDH
(Local Hard Authorization), RDH (Recursive Hard Authorization), L (Local Au-
thorization), R (Recursive Authorization), LD (Local Authorization specified at
DTD level), RD (Recursive Authorization specified at DTD level), LS (Local
Soft Authorization), RS (Recursive Soft Authorization). Since this specification
provides users only two choices in accessing the information: either “allow” or
“forbid”, we call it Binary-based FGAC Policy for XML.

OFGAC for XML Documents 5

Galois Connection and Abstract Representation of Databases. In general, data con-
tained in any database are concrete as they belong to concrete domains of inte-
gers, strings, etc, whereas abstract representation of these data are obtained by
replacing concrete values by the elements from abstract domains representing
specific properties of interests. For instance, addresses of the patients in a “Pa-
tient” database can be abstracted by the provinces they belong. Here, province
is the abstract representation of all the exact locations that are covered by that
province. We may distinguish partial abstract database in contrast to fully ab-
stract one, as in the former case only a subset of the data in the database is
abstracted. The values of the attribute x are abstracted by following the Galois
Connection (℘(Dcon

x), αx, γx,Dabs
x), where ℘(Dcon

x) and Dabs
x represent the powerset

of concrete domain of x and the abstract domain of x respectively, whereas αx
and γx represent the corresponding abstraction and concretization functions
(denoted αx : ℘(Dcon

x) → Dabs
x and γx : Dabs

x → ℘(Dcon
x)) respectively. In particu-

lar, partial abstract databases are special case of fully abstract databases where
for some attributes x the abstraction and concretization functions are identity
functions id, and thus, follow the Galois Connection (℘(Dcon

x), id, id, ℘(Dcon
x)).

The Observation-based Fine Grained Access Control policy and its enforcement to
RDBMS. In OFGAC framework [8], users are permitted to view the sensitive in-
formation at various levels of abstractions according to their authorization level.
Highly sensitive information are forbidden completely, while partial-sensitive
and non-sensitive information are disclosed in an intermediate form (repre-
sented by specific properties according to the access control policies) and in its
exact form respectively.

Definition 1 (Observation-based Disclosure Policy). Given a domain of observ-
able properties D, and an abstraction function αD : ℘(val)→ D, an observation-based
disclosure policy op assigned to the observer O is a tagging that assigns each value v
in the database state σ a tag αD(v) ∈ D, meaning that O is allowed to access the value
αD(v) instead of its actual value v.

Given an observation-based disclosure policy “op”, the OFGAC framework for
RDBMS consists of the following steps:

– Transform the concrete database into an (partial) abstract database by pro-
viding an abstract representation of the sensitive data in the database ac-
cording to “op”.

– Convert users’ queries into the corresponding abstract versions and execute
them on the resulting (partial) abstract database.

Observe that the abstraction of foreign/primary key are achieved by using spe-
cial variable (type-2) in order to maintain integrity constraint. Also, the aggre-
gate functions and set operations are treated differently so as to preserve the
soundness.

6 R. Halder, A. Cortesi

4 OFGAC for XML

We are now in position to introduce the notion of access control policy specifica-
tion for XML under OFGAC framework. Then, we apply the OFGAC approach
in two directions: view-based and RDBMS-based.

Observation-based Access Control Policy Specification for XML. It is specified by a
5-tuple of the form 〈Subject, Object, Action, Abstraction, Type〉. The components
“Subject”, “Object”, “Action” and “Type” are defined exactly in the same way as
in case of FGAC policy specification. The component “Abstraction” is defined by
the Galois Connection (℘(Dcon

x), αx, γx,Dabs
x), where℘(Dcon

x) and Dabs
x represent the

powerset of concrete domain of x and the abstract domain of x respectively, and
αx and γx represent the corresponding abstraction and concretization functions.

Since the “Object” represents either XML element or attribute, the following
two cases may arise when “Abstraction” is applied on them:

– The “Object” represents an intermediate element and “Type” is “Recursive”
(denoted by “R”). In this case, the abstraction defined in the rule for an
element is propagated downwards and applied to all its sub-elements and
attributes recursively.

– The “Object” represents an attribute and “Type” is “Local” (denoted by “L”).
In this case, only the attribute value is abstracted by following the Galois
Connection specified in the rule.

Table 1: Observation-based Access Control Policy Specification for XML code
Rule Subject Object Action Abstraction Type
R1 customer-care, 159.56.*.*,

*.Unicredit.it
/BankCustomers/ Cus-
tomer/ PersInfo

read (℘(Dcon
x), id, id, ℘(Dcon

x)) R

R2 customer-care, 159.56.*.*,
*.Unicredit.it

/BankCustomers/ Cus-
tomer/ AccountInfo/
IBAN

read (℘(Dcon
iban), αiban, γiban, Dabs

iban) L

R3 customer-care, 159.56.*.*,
*.Unicredit.it

/BankCustomers/ Cus-
tomer/ AccountInfo/
type

read (℘(Dcon
type), id, id, ℘(Dcon

type)) L

R4 customer-care, 159.56.*.*,
*.Unicredit.it

/BankCustomers/ Cus-
tomer/ AccountInfo/
amount

read (℘(Dcon
amount), α>, γ>, {>}) L

R5 customer-care, 159.56.*.*,
*.Unicredit.it

/BankCustomers/ Cus-
tomer/ CreditCardInfo/
CardNo

read (℘(Dcon
CardNo), αCardNo, γCardNo, Dabs

CardNo) L

R6 customer-care, 159.56.*.*,
*.Unicredit.it

/BankCustomers/ Cus-
tomer/ CreditCardInfo/
ExpiryDate

read (℘(Dcon
ExDate), α>, γ>, {>}) L

R7 customer-care, 159.56.*.*,
*.Unicredit.it

/BankCustomers/ Cus-
tomer/ CreditCardInfo/
SecretNo

read (℘(Dcon
SecNo), α>, γ>, {>}) L

Example 2. Consider the XML code in Figure 1. The observation-based access
control policy under OFGAC framework can be specified as shown in Table 1,

OFGAC for XML Documents 7

where the abstraction functions are defined as follows:

αCardNo({di : i ∈ [1 . . . 16]}) = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ d13d14d15d16

α>(X) = >

where X is a set of concrete values and > is the top most element of the corre-
sponding abstract lattice. The functions αiban, γiban, γCardNo, γ> are also defined in
this way depending on the corresponding domains. Observe that the identity
function id is used to provide the public accessibility of non-sensitive informa-
tion, whereas the functions α> and γ> are used to provide private accessibility
of highly sensitive information by abstracting them with top most element > of
the corresponding abstract lattice.

Given a binary-based access control policy p and an observation-based access
control policy op in XML format, the FGAC and OFGAC can be implemented
in two ways:

– By applying p or op directly to the XML documents (view-based) or by
rewriting users’ XML queries by pruning the unauthorized part in it (NFA-
based).

– By taking the support of RDBMS, where the XML documents and the XML
policies (p or op) are first mapped into the underlying relational databases
and the policy SQL respectively, and then the users’ XML queries are
mapped into equivalent SQL queries and evaluated on those relational
databases by satisfying the policy SQL.

Figure 2 depicts a pictorial representation of these approaches. Observe that the
application of FGAC w.r.t. p results into a binary-based access control system
that yields two extreme views to the information: either “allow” or “forbid”,
whereas the application of OFGAC w.r.t. op, on the other hand, results into a
tunable access control system where partial view of the information at various
levels of abstractions is provided.

Fig. 2: Pictorial Representation of FGAC Vs. OFGAC

RDBMS

XML

Mapping

Tunable Access

Control

Binary (0/1)

Access Control

OFGACRD(op)

OFGACXML(op)

FGACXML(p)

FGACRD(p)

Flattening

8 R. Halder, A. Cortesi

View-based OFGAC for XML. Consider the XML code in Figure 1 and the asso-
ciated observation-based access control policy specification depicted in Table 1.
We know that in view-based approaches for each subject interacting with the
system, separate views are generated with respect to the access rules associated
with the subject [6]. Therefore, in our example, the XML view corresponding to
the users belonging to “customer-care” section of the bank is depicted in Figure
3.

Fig. 3: View generated for the employees in bank’s customer-care section

<?xml version=“1.0”? > <AccountInfo>
<BankCusomers> <IBAN> IT*** ***** ***** ************ </IBAN>
<Customer> <type> Savings </type>
<PersInfo> <amount> > </amount>
<Cid> 140062 </Cid> </AccountInfo >
<Name> John Smith </Name> <CreditCardInfo>
<Address> <CardNo> **** **** **** 7835 </CardNo>
<street> Via Pasini 62 </street> <ExpiryDate> > </ExpiryDate>
<city> Venezia </city> <SecretNo> > </SecretNo>
<country> Italy </country> </CreditCardInfo>
<pin> 30175 </pin> </Customer>
</Address> </BankCusomers>
<PhoneNo> +39 3897745774 </PhoneNo>
</PersInfo>

Consider now the following XML query Qxml issued by a personnel in the
customer-care section:

Qxml = /BankCusomers/Customer/AccountIn f o[@type = “Savings′′]

The execution of Qxml on the view of Figure 3 returns the following results:

<AccountInfo>
<IBAN> IT*** ***** ***** ************ </IBAN>
<type> Savings </type>
<amount> > </amount>
</AccountInfo>

RDBMS-based OFGAC for XML. Consider the XML document in Figure 1 and
the observation-based policy specification in Table 1. By following [10], we first
map the XML document into relational database representation, partially shown
in Table 2. Observe that we do not translate the XML policies into the equivalent
SQL statements, rather we put the rules into the relational database itself by as-
sociating them with the corresponding elements or attributes. The empty rule in
a row specifies that the corresponding element (and its sub-elements and child-
attributes) or attribute has public authorization. If any access-conflict occurs for
any sub-element, it is resolved simply by adopting abstraction-take-precedence
policy according to which authorization corresponding to more abstract view
overrides the authorization corresponding to less abstract view. The users’ XML

OFGAC for XML Documents 9

queries are then mapped into SQL representation and are evaluated on this re-
lational database under OFGAC framework as reported in [8].

Table 2: The equivalent relational database representation of the XML code
(a) “BankCustomers”
id pid rule
BC1 null -

(b) “Customer”
id pid rule
C1 BC1 -

(c) “PersIn f o”
id pid rule
PI1 C1 R1

(d) “AccountIn f o”
id pid rule
AI1 C1 -

(e) “CreditCardIn f o”
id pid rule
CI1 C1 -

(f) “IBAN”
id pid val rule

IB1 AI1 IT10G 02006 02003 000011115996 R2

(g) “type”
id pid val rule

TP1 AI1 Savings R3

(h) “amount”
id pid val rule

AM1 AI1 5000 R4

(i) “CardNo”
id pid val rule

CN1 CI1 4023 4581 8419 7835 R5

(j) “ExpiryDate”
id pid val rule

EX1 CI1 12/15 R6

Suppose the following XML query Qxml is issued by an employee from
customer-care section of the bank:

Qxml = /BankCusomers/Customer/AccountIn f o[@type = “Savings′′]/IBAN

Since the OFGAC Policies and XML documents are now in the form of rela-
tional database, the system translates Qxml into an equivalent SQL query Qrdb as
follows:

Qrdb =SELECT Ch No.val FROM IBAN Ch No, type Ch Tp, AccountIn f o P AccIn f o,
Customer P Cust, BankCustomers P BCust WHERE (Ch No.pid = P AccIn f o.id
AND Ch Tp.pid = P AccIn f o.id AND Ch Tp.val = “Savings′′) AND P AccIn f o.pid
= P Cust.id AND P Cust.pid = P BCust.id

The execution of Qrdb on the database of Table 2, by following the OFGAC
technique in [8], yields the following result:

val
IT*** ***** ***** ************

Observe that RDBMS-based approaches suffer from time-inefficiency, whereas
view-based approaches, on the other hand, suffer from space-inefficiency. The
robustness of the proposed OFGAC system depends on the ability of the external
observers to extract sensitive information based on the observable properties of
the query results. The possibility of collusion attacks for XML documents under
OFGAC framework is same as that of relational databases as described in [8].

5 Conclusions

In this paper, we discussed the extension of the notion of observation-based fine
grained access control to the case of XML documents. The traditional FGAC can

10 R. Halder, A. Cortesi

be seen as a special case of the proposed OFGAC framework, where the sensitive
information are abstracted by the top element> of their corresponding abstract
lattices.

Acknowledgement

Work partially supported by RAS L.R. 7/2007 Project TESLA.

References

1. Bertino, E., Ferrari, E.: Secure and selective dissemination of xml documents. ACM
Trans. on Information and System Security 5(3), 290–331 (2002)

2. Bertino, E., Jajodia, S., Samarati, P.: A flexible authorization mechanism for relational
data management systems. ACM Trans. on Information Systems 17(2), 101–140 (1999)

3. Bouganim, L., Ngoc, F.D., Pucheral, P.: Client-based access control management for
xml documents. In: Proc. of the 13th Int. Conf. on Very Large Data Bases (VLDB ’04).
pp. 84–95. VLDB Endowment, Toronto, Canada (2004)

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints. In: Conf. Record of
the 6th Annual ACM POPL. pp. 238–252. ACM Press, Los Angeles, CA, USA (1977)

5. Damiani, E., de Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Design and im-
plementation of an access control processor for xml documents. Journal of computer
and telecommunications netowrking 33(1–6), 59–75 (2000)

6. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: A fine-grained
access control system for xml documents. ACM Trans. on Information and System
Security 5(2), 169–202 (2002)

7. Griffiths, P.P., Wade, B.W.: An authorization mechanism for a relational database
system. ACM Trans. on Database Systems 1(3), 242–255 (1976)

8. Halder, R., Cortesi, A.: Observation-based fine grained access control for relational
databases. In: Proc. of the 5th Int. Conf. on Software and Data Technologies (ICSOFT
’10). pp. 254–265. INSTICC Press, Athens, Greece (2010)

9. Jajodia, S., Samarati, P., Subrahmanian, V.S., Bertino, E.: A unified framework for
enforcing multiple access control policies. SIGMOD Record 26(2), 474–485 (1997)

10. Koromilas, L., Chinis, G., Fundulaki, I., Ioannidis, S.: Controlling access to xml
documents over xml native and relational databases. In: Proc. of the 6th VLDB
Workshop on Secure Data Management (SDM ’09). pp. 122–141. Springer LNCS,
Volume 5776, Lyon, France (2009)

11. Lee, D., Lee, W.C., Liu, P.: Supporting xml security models using relational databases:
A vision. In: Proc. of the 1st Int. XML Database Symposium (Xsym ’03). pp. 267–281.
Springer LNCS, Volume 2824, Berlin, Germany (2003)

12. Luo, B., Lee, D., Lee, W.C., Liu, P.: Qfilter: fine-grained run-time xml access control
via nfa-based query rewriting. In: Proc. of the 13th ACM Int. Conf. on Information
and knowledge management (CIKM ’04). pp. 543–552. ACM Press, Washington D.C.,
USA (2004)

13. Murata, M., Tozawa, A., Kudo, M., Hada, S.: Xml access control using static analysis.
ACM Trans. on Information and System Security 9(3), 292–324 (2006)

14. Tan, K.L., Lee, M.L., Wang, Y.: Access control of xml documents in relational database
systems. In: Proc. of the Int. Conf. on Internet Computing (IC ’01). pp. 185–191.
CSREA Press, Las Vegas, Nevada, USA (2001)

