Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 202 (1998) 163-192

The quotient of an abstract interpretation

Agostino Cortesi™*, Gilberto Filé®, William Winsborough ¢

ADip. di Matematica Applic. e. Inform, University of Venezia, Corso di Laurea in Scienze
dell’Informazione, via Torino 155, 30170 Mestre-Venezia, Italy
5Dip. di Matematica Pura ed Applicata, Universita di Padova, via Belzoni 7. 1-35131, Padova, Ituly
¢ Transarc Corporation, USA

Received November 1994; revised December 1996
Communicated by G. Levi

Abstract

Within the abstract interpretation framework, abstract domains are used to represent interesting
properties of the concrete domain. For instance, properties that enhance the optimization of the
analyzed programs. An abstract domain D expresses, in general, several properties of the concrete
domain.

We describe a method for identifying, for any abstract domain D and for each property P
expressed by D, the subset of D that is useful for computing P-information. We call it the
quotient of D with respect to P. We also give a necessary and sufficient condition for having
that the quotient is an abstraction of D. This property seems essential for applications such as
that described below.

As an illustration of the usefulness of the notion of quotient, we show that rather sophisti-
cated comparisons between domains, can be carried out using it. Assume to have two abstract
domains that both compute some property P, but that also express distinct properties and thus
are incomparable as a whole. Such domains can be compared with respect to the precision with
which they compute P-information, by comparing their quotients with respect to P.

Using this method, two well-known abstract domains for Prolog programs, Prop and Sharing,
are compared with respect to the precision with which they compute groundness information.
© 1998 —Elsevier Science B.V. All rights reserved

1. Introduction

Abstract Interpretation is a general method for defining data-flow analyses. “Ad hoc”
analyses, that can be viewed as instances of the abstract interpretation approach, were
already used in the 1960s [22], for the optimization of imperative languages. How-
ever, the formal foundations of the approach have been given only in 1977 by the
Cousots in [5]. In this framework, a data-flow analysis is specified by describing a
domain of data-descriptions and operations on these data-descriptions that mimic the

* Corresponding author. Tel.: (39)(41)2908428; fax: (39)(41)2908419; e-mail: cortesi@dsi.unive.it.

0304-3975/98/819.00 © 1998 — Elsevier Science B.V. All rights reserved
PIIS0304-3975(97)00137-0

164 A. Cortesi et al. | Theoretical Computer Science 202 (1998) 163-192

concrete operations of the language. A tuple D= (D, uy,..., i), where D is the set of

data-descriptions (called abstract domain) and the y; are the operations on [(called

abstract operations), is called an abstract interpretation. The correctness ol the data-
flow analysis induced by D is guaranteed when some safety condition holds between

D and the concrete interpretation C =(C,0y,...,0;). In this paper we will take as

safety condition that:

(i) D and C are complete lattices,

(i1) there is a Galois insertion between D and C (with 7 and x concretization and
abstraction functions, respectively), and

(iii) for any c€ C and for any d €D, cCe p(d) = 0;(c) E¢ y(ui(d)).

When conditions (i) and (ii) are satisfied, we will say that D abstracts , when
also condition (iii) holds then we say that D abstracts C. Weaker safety conditions
are also sufficient for guaranteeing correctness [18, 12]. However, we need (i+--(iii) for
the purposes of the present paper.

In an abstract interpretation that expresses and thus computes several prorerties, we
want to identify which part is useful for computing each property. Let us be more
precise. Consider an abstract interpretation D that expresses a property P. We want to
identify the subset 2p(D) of D that expresses exactly the part of D that is useful for
computing P. We call it the quotienr of D with respect to P.

The notion of quotient is a tool for obtaining more insight in the functionalities of
complex abstract interpretations. Such insight can be useful in several wavs. In the
present paper we show that quotients are useful for comparing abstract interpretations.
Assume we want to compare the relative precision of two abstract interpretations D
and L in the computation of a given property P. This comparison may be impossible
relying on the classical notion of Galois insertion (or connection). In fact, I» and L
may express information that is irrelevant for computing P and makes them incompa-
rable using the classical formal tools. We show that the comparison can be done by
considering the quotients 2p(D) and 2p(L). Being able to perform such sophisticated
comparisons is obviously useful for choosing the best available abstract interpretation
for a particular purpose. Such comparisons are also useful when combining, different
abstract interpretations in order to obtain a more powerful one, as is suggested in
[12,4]. By appropriate comparisons one may check whether such combinations of D
and L are worthwhile at all and also one can “tune” the combination by a lowing it
only for those properties P for which it may turn out to be profitable: those for which
2p(D) and 2p(L) are incomparable.

The main achievements of the paper are described below.

(a) For any abstract interpretation D and any property P expressed by D, we define
the quotient 2p(D) of D w.rt. P and give a condition that guarantees ttat Zp(D)
is a complete lattice that abstracts D.

(b) We show that if D and L are optimal for the computation of a property P and
if Zp(D) abstracts 2p(L), then L is at least as precise as I} for computing P.
Moreover, if 2p(0) abstracts 2p(L) strictly (i.e., 2p(L) does not abstrac: 2p(D)),
then L is strictly more precise than D for computing P.

A. Cortesi et al | Theoretical Computer Science 202 (1998) 163192 165

(¢) As an application of this theory, we compare two abstract interpretations that
are well-known for the analysis of Prolog programs: Prop, [19,9], and Sharing,
[16]. We stress the fact that we consider here complete descriptions of Prop and
Sharing, i.e., with all the abstract operations needed for their use in static analysis.
Although both these interpretations compute the property of variable groundness,
they are not directly comparable (i.e. neither one abstracts the other) because Prop
computes also possible equivalence through disjunctions and Sharing computes
also variable sharing. We compare the (relative) precision of these two analyses
in the computation of variable groundness (GR) and we show that 2Ggr(Prop) is
Prop itself, whereas 2¢g(Sharing) is the set of formulas which are conjunctions
of formulas of the form: AW —x, where W is a set of variables and x is a
variable. Such formulas are called definite and form a proper subset, called Def
[13,2], of the formulas in Prop. Hence, 2;z(Sharing) strictly abstracts Prop and
thus, from (b) above, it follows that Prop is strictly more precise than Sharing
for the computation of variable groundness.

The notions and results of points (a) and (b) above are new. The construction of
the quotients of Prop and Sharing with respect to GR of point(c) is also new. That
9ir(Sharing) coincides with Def is an interesting result on its own right. In fact,
both Sharing and Def are well-known domains that have been defined independently
and that are both useful for the analysis of logic programs.

The present paper is an extended and improved version of [10]. The main improve-
ment is the introduction of the notion of quotient. In fact in [10], we observed that,
in order to compare D and L, it was necessary to define a reference domain £ and
then compare the workings of D and L projected on R. Clearly, R plays the same
role as 2p(D) and 2p(L) in the present approach, but in [10] we did not have any
systematic way to obtain it. Its definition was only based on the insight one had over D
and L.

Another improvement of the present paper concerns the criteria adopted for com-
paring the precision of interpretations. The criteria used now is strictly stronger (and
more natural) than that of [10]. Thus, the relation between Prop and Sharing shown
in the present paper is actually stronger than that contained in [10].

The idea of identifying relevant parts of an abstract domain, that has given rise to
the notion of quotient, has also inspired the recent work [8] in which the notion of
complement between domains is defined. The reader may be interested to know that
in that paper, among several examples of application of the complement, the authors
consider Sharing and Def (= Z¢g(Sharing), cf. point(c) above) and characterize the
complement of Def w.rt. Sharing, i.e., the domain that represents what is left of
Sharing when Def is taken away from it.

Finally, it is important to remark that, even though we have applied it to the compar-
ison of two abstract interpretations for the data-flow analysis of Prolog programs, the
notion of quotient, presented in this paper, is in no way bound to logic programming
applications only. On the contrary, it can be useful for studying abstract interpretations
for all programming paradigms.

166 A. Cortesi et al. | Theoretical Computer Science 202 (1998) 163192

The paper is organized as follows. Section 2 contains the preliminary definitions.
The definition of quotient is given in Section 3 together with the general result men-
tioned in (b) above. The application of the theory to the comparison o Prop and
Sharing, mentioned in (c¢) above, is described in Section 4. The appendix contains
some definitions and technical lemmas that are needed for the application part,

2. Preliminaries

This section consists of three parts. The first introduces some classical notions of
abstract interpretation theory and some known results (see [5,6, 1]). The second part
contains the definitions of two types of optimality. The final part introduces the criterion
for comparing abstract interpretations that will be used in the rest of the paper.

2.1. Galois insertions and their composition

In what follows a function’s domain and range are indicated by subscrip's: syy is a
function from X to Y. The ordering and the least upper bound operator defined in X
are denoted by Ty and Ly, respectively.

Definition 2.1 (Galois connection and insertion). Let C and D be posete and con-
sider two functions of the following types: ypc:D-— C and oc¢p:C — D “he 4-tuple
Gep=(ypce.C,D,xpc) is a Galois connection if

VYeeCand Vd €D oacplc)Cpd & ¢ Ty, (d).

Gep is a Galois insertion when ypc is injective or, equivalently, when 2. is onto.
When G¢p is a Galois insertion then we say that D abstracts C.

In a Galois connection or insertion Gep,ypc and acp are called the concretization
and the abstraction function, respectively. The following are well-known properties of
these functions, see [6].

Proposition 2.2. Let Gep be a Galois connectionfinsertion,

1. ypcoacp is extensive, ie., Ve € C, ;vpec o acp(c)dec:

2. %ep © Ypc is reductive, Le., Vd € D,acp o ype(d)Cpd;

3. Gep is an insertion if and only if acp o ype is the identity.

4. if acp and ype form a Galois connection, then one of the two functions determines
the other one. More precisely, for d €D, ypc(d)= ¢ {c€C |acp(c)lpd}, and
similarly, for ¢ € C. acp(c)y=Np{d € D|cCrypcl(d)}. Each function is called the
adjoint of the other one.

5. 2cp o ype © dop =2cp and similarly, ype o %ep¥pe = Vo

A function a:C — D, where € and D are po-sets, is additive when vX C C such
that L'c.X exists, a(LicX)= Up {a(x) | xe X}

A. Cortesi et al. | Theoretical Computer Science 202 (1998) 163-192 167

Proposition 2.3. Let acp:C— D, where C and D are complete lattices. The func-
tion acp is additive iff acp, together with its adjoint concretization, forms a Galois
connection between C and D.

Proof. The (=) direction is shown in [6, Proposition 7]. For the other direction,
assume that ocp and its adjoint yp¢ form a Galois connection. We must show that

VXCC, aep(UeX)= LUp {1(‘[)(.Y) ‘XEX}.

Clearly, acp(LcX) is an upper bound of {ocp(x)|x € X} because Vx € X, UeX Zl¢ x.
We show now that it is the least upper bound. Let d be an upper bound of {axc/ (x)]
xe€X}, ie., VxeX, acp(x)Cpd. Thus, by definition of Galois connection, Vx €.X,
xE¢ ypc(d). This implies that ypc(d) Je UeX. It suffices now to apply x¢p to both
members of the inequality, to obtain: x¢poypc(d) dp 2cp(Llc X), and thus, by Propo-
sition 2.2(2), we have that, d Jp a2 p(LicX). [

It is well-known, see [6], that in place of considering two domains C and D, where
D abstracts C, one can view D as a particular subset of C: the subset of C containing
the fixpoints of an upper closure operator on C.

Definition 2.4 (Upper closure operator). Given a poset C, an upper closure operator
(uco) on C, is a function p:C — C, that is monotonic, idempotent and extensive (i.e.
Ve e C, p(c) e). The set of fixpoints of p is {c € C| p(c)=c}. This set is indicated
by p(C).

The following result shows that Galois insertions and uco’s are two equivalent ways
of representing abstractions. The proof can be found in [6]. In what follows, if Gcp
is a Galois connection/insertion, then 7pc(D)= {ypc(d)|d € D}.

Proposition 2.5. Let Gep = (7pe.C,D.xpe) be a Galois insertion. Then ype oo p is
an uco on C whose set of fixpoints is ypc(D). Vice Versa, if p is an uco on C, then
p(C) can be viewed as a new domain that abstracts C via a Galois insertion that
has p as abstraction and the identity as concretization.

The following result, shown in [6], will be useful in the sequel.

Proposition 2.6. [/ C is a complete lattice and D is a poset and there exists a Gulois
insertion between them, then also D is a complete lattice.

The idea of the previous result is that joins and meets on D “can be computed on
C and then abstracted on D”. More precisely, if Gep = (ypc, C.D,apc) is a Galois
insertion, then VX C D, Up X =opc(Uc{ypc(d)|d €X}). A similar relation holds for
the meet.

In this paper we will always consider domains that are complete lattices and will
assume the existence of Galois insertions between them.

168 A. Cortesi et al. | Theoretical Computer Science 202 (1998) 163192

Definition 2.7 (Interpretarion). An interpretation is a tuple D = (D, up) where D is a
complete lattice and up is a continuous function of type D — D.

In general, an interpretation contains more than one operation, and the operations
may have arity greater than one and may take some other arguments besides elements
of D. For the sake of clarity, we consider the simplest setting, as the gene-alization of
definitions and results is immediate.

Definition 2.8 (Abstraction). An interpretation D = (D, up) abstracts an interpretation
C=(C puc) if

1. there is a Galois insertion (ype, C,D,ocp) and

2. VeeC:Vde D cCeypol(d) = pc(e) Ec ypc(up(d)).
We say that D properly abstracts C if D abstracts C but C does not absiract D.

An abstract interpretation is intended to report information about a prozram’s exe-
cution behavior. When L abstracts D we know that the analysis induced by D is at
least as informative as the analysis induced by L. In the rest of the paper we denote
domains by capital letters C, D, L, R possibly subscripted, and we denote interpretations
by boldface capital letters C, D, L, R.

It is well known that if R abstracts D and D abstracts C, then R abstricts C. The
proofs of the propositions listed below are straightforward.

Proposition 2.9 (Same-order composition). Let Gpr and Gep be Gualois insertions.
Their composition, denoted Gep o Gpg is the Galois insertion Geg = (Vres G R, acr),
where yre = ypc © Yrp and acg = Apg © Aep.

The following two propositions are shown in [10].

Proposition 2.10 (Opposite-order composition). Assume that G and Gep are
Gualois insertions. Let ¢pp = ocy, 0 ypo and e1p =%cpoyre. The following holds:

(1) ¢pr and & p are monotone;

(i) vdeD, VL gplep(d)) Zp d and epi(erp(4)) Dy 4.

Proposition 2.11. Assume that G¢y, and Gep are Galois insertions. The following
conditions are equivalent:
(1) Gpr=(acpoyie.D,L,acroype) is a Galois insertion;
(1) ye(L) Cype(D);
(iii) Ve, e2 € Coacp(er) = acple2) = aci(er) = ac(c2).

Definition 2.12. If G-y Gep and Gpp = (acpoyrc, D. L, ocrovpe) are Galoi insertions,
we say that Gp; is coherent with respect to C.

Coherency and same-order composition are strongly related.

A. Cortesi et al. | Theoretical Computer Science 202 (1998) 163192 169

Proposition 2.13. Let Gcp G¢p and Gp, be Galois insertions. Then Gpy is coherent
with respect to C if and only if Gep = Gep o Gpy.

Proof. (=) We want to show that v, = ypc oy.p, which, since Gp; is coherent w.r.t.
C and thus 7. p=acp o v.c, can be rewritten in

LC=VYpcoXAcp e

This equality is verified because, by Proposition 2.11(ii), V/€ L, y.c(!) € 7pc(D) and
thus, by Proposition 2.2(5), VI€ L, vpcoocp(yrc())=71c()).

That o), =opr oacp is shown as follows. By coherency, %p; 0 %cp = %y © /pc ©
acp. Since Ve € C, acpl(c)=acp(ypc o dep(c)), cf. Proposition 2.2(5), using Proposi-
tion 2.11(ii1), one obtains that V¢ € C, xcr(c)=aci(yne © xep(c)).

(+=) By hypothesis, yp¢oyip =v.c. It suffices to apply a¢p to both members of
this equation and use Proposition 2.2(3), to obtain the desired relation

LD =2CHDOVLC-

That also ap; =acp o ype can be shown similarly. [

2.2. Optimalities

As usual, an abstract interpretation is optimal if it mimics the concrete one in the
best possible way. We also introduce a weaker notion in which we project the result
of the operation on a more abstract domain.

Definition 2.14 (Optimalities). Consider the interpretations D= (D, up) and C =(C,
fic). Assume that D abstracts C. D is optimal if Vd € D : up(d) = ocp(pc(vpe(d)).
Let now R be a domain which abstracts D, and let «cg = 2%pg 0 0cp. We say that D is
R-optimal if ¥d € D : apr(pp(d)) = acr(pc(ype(d))).

Lemma 2.15. Let C, D, and R as in the previous definition. If D is optimal then D
is ulso R-optimal.

Proof. Let d € D:

un(d) = 2ep(pc(ype(d))) as D is optimal
= apr(pp(d)) = apr(acp(pc(ypc(d)))) applying opg to both sides
= aprlup(d)) = s2er(pic(7pc(d))) by definition of acg. O

Observe that the notion of R-optimality is a generalization of the notion of optimality.
In fact, D is optimal iff D is D-optimal.
2.3. General comparison criterion

Let P be an abstract domain that represents a property we are interested in. Assume
that the two interpretations L and D also represent this property. This fact is modeled

170 A. Cortesi et al | Theoretical Computer Science 202 (1998) 163-192

by the assumption that P abstracts both L and D. We want to compare the ‘recision of
L and D with respect to the way they compute P, according to the following intuitive
idea. L is at least as precise as D with respect to P if every sequence of concrete
operations is better or equally approximated by L than by D when considering only
the information representable in P.

Definition 2.16 (Comparison criterion). Let D= (D, up) and L = (L, ;) be interpreta-
tions abstracting C = (C, y¢). Let P be a domain abstracting both D and L. Let also
pt~ denote the ith fold composition of pc and), and g the corresponding sequences
of operators of D and L.

e L is at least as precise as D with respect to P if

Vee CViZ0: 0. p(p (aer(e))) Ep app(pp(acn(c))).

e L is strictly more precise than D with respect to P if L is at least as precise as D
but the converse does not hold.

3. The quotient of an interpretation

This section consists of two parts. In the first one, two domains D and P are consid-
ered, where P represents a particular property expressed by D. An equivalece relation
r, on D is defined that identifies the classes of elements of D that are equivalent w.r.t.
the computation of P-information. It is shown that, when r, is additive, it is possible
to define an abstraction of D, called the quotient of D w.r.t. P, that represents exactly
the information of D that is used to compute P-information. In the second part of the
section we show the relevance of quotients for comparing the precision with which
different interpretations compute a given property.

Throughout this section, we always assume that Gep, G¢p, Gpp are Galois insertions
with Gpp coherent with respect to C (i.e., Gep = GepoGpp), and that the interpretation
D = (D, up) abstracts the interpretation C = (C, uc) with up optimal.

3.1. Definition and properties of the quotient

First, we characterize elements of D that are equivalent, with respect te P, in any
computation sequence.

Definition 3.1 (Associated relation). The equivalence relation fp on D asscciated to P
is defined by

(di.dr)en, < Viz0:app(up(d))) = opp(upldr)).

Observe in particular that (d|,d,)<, implies xpp(d;)=upp(d>). In the s:quel, id],
denotes the set {d'eD | (d.d")er,}.

A. Cortesi et al. | Theoretical Computer Science 202 (1998) 163192 171

Clearly, the intuition suggests that the quotient of D w.r.t. P should be a set O that
has one element corresponding to each equivalence class of D w.r.t. r,. Unfortunately,
this is not always the case. In fact, it is easy to find equivalence relations on D for
which such a @ is not an abstraction of D (whereas we want the quotient of D to
abstract it). Below we will show that if r, is additive, then such a Q is an abstraction
of D and it will, in fact, be the quotient we are looking for. After having proven
this fact, we will show in Theorem 3.7 that the additivity of 7, is equivalent to the
additivity of the abstraction function that connects D to Q. This relationship should
not be surprising in view of Proposition 2.3 that, in the present context, shows that
the additivity of the abstraction function implies the existence of a Galois insertion
between D and Q.

Definition 3.2 (Additivity). The relation 7, is additive when VSCr,, if §;={a|
(a,b)eS} and S; ={b|(a.b)eS}, it is true that (LipS), Lip S2) €,

In what follows some important consequences of the additivity of r, are shown.

Lemma 3.3. If the relation r, on D ussociated to P is additive, then
YdeD:(Upld],.d)er,. ie Upld],€[d],.

Proof. It is sufficient to observe that, by additivity of r,, if [d],={d;:i€l} then
(UD{d,ZEEI}, Lip {d}):(l_ll){d,:iEl},d)Erp.]
Lemma 3.4. If the relation v, on D ussociated to P is additive, then

Vd,dheD:d\Cpdr = Upldi], ZpUpld:],.

Proof. Let d, =Up[dy], and d, =11 [d],- By Lemma 3.3, (d, dy)er, and (dy,dy) €
¥p. Thus by additivity of r,, (d. Up da,dy Up a’o)erp By hypothesis, d, ED ds, so we get
(dy, ||_|D(12)El‘p, ie. d] Lipd; € [d2],. Therefore, by the definition of d», diUpd> Zp cf’z,
and thus d1 Cp dz. =

Let us give now the definition of quotient. After that we will show that the additivity
of 7, implies that the quotient enjoys all the properties we wanted and in particular
that it abstracts D.

Definition 3.5 (Quotient). The quotient of D with respect to P is the set 2p(1)) de-
fined by

2p(D)={Lip[d], |d € D}.

2p(D) is a subset of D and thus it is partially ordered.

172 A. Cortesi et al | Theoretical Computer Science 202 (1998) 163-192

Theorem 3.6. If the associated relation r, is additive, the following facts hold.
(1) 2p(D) is a complete lattice that abstracts D;
(ii) P abstracts 2p(D) coherently w.r.t. C;

Proof. (i) We will show that Zp(D) is the set of fixpoints of the following uco p,
on D:

vdeD. py(d)= Up[d],.

Thus we must show that p, is extensive, idempotent and monotone:
— it is extensive: by definition;
— it is idempotent: using Lemma 3.3 it is simple to see that Vd €D, Ip[Lip[d],] =

Up [d]ps
— it is monotone: immediate from Lemma 3.4.

Obviously 2p(D)=:p,(D) and thus, from Proposition 2.5, it follows that there is a
Galois insertion between D and 2p(D) with abstraction p, and the identity as con-
cretization. Moreover, from Proposition 2.6, we have that 2p(D) is a comglete lattice.

(ii) Tn order to show that P abstracts 2p(D), by Proposition 2.11(ii), it suffices to
show that ypp(P) C p,(D). Precisely, we want to show that

VbeP. ypp(b)=Up[ypp(b)],

Let a =Up[ypp(b)],. Obviously. the following point (1) holds: a pypp (0).
Observe now that, by Lemma 3.3, app(a) =appoypp(b)=56 (z07 is the identity)
from which, applying 7,5 on both sides, one obtains:

aCpyppoapplay=rpp(b) (yox is extensive).

This together with (1) shows what we wanted. Thus, by Proposition 2.11(i), there is a
Galois insertion Gpp == (apg © Vpp. 2 (D), P,app ©yop) that is coherent w.r.t. D. Thus,
by Proposition 2.13, Gpp = Gpg o Ggp. Since, by hypothesis, Gpp is coherent w.r.t.
C, it is the case that, Gep = G¢cp o Gpp, and thus, Gep = Gep o GDQ e} GQF = GCQ o GQP
which, by Proposition 2.13, proves that Gpp is coherent w.rt. C. [

It is easy to see that the join on 2p(D), denoted Ly, is as follows: u; Lig up = Lip
[uyUpuz],. The meet is defined similarly. As already announced, the additiv:ty of rg is
equivalent to that of the abstraction function p, (defined in the proof of Theorem 3.6).
Recall that p,: D — 2p(D) is additive if YX CD. p,(UpX)= Uy {ps(x)|€X}.

Theorem 3.7. r, is additive iff p, is additive.

Proof. By the additivity of 7, it is true that
VXCD, | X r] {Upla],|acX}.
D D

Using the definition of 7, this is equivalent to

LiplpX1, = Up [Up{Uplal, |a€ X }],.

A. Cortesi et al. | Theoretical Computer Science 202 (1998) 163-192 173

It suffices now to observe that

UD[UDX]p = [)_g(LJDX) by definition of Py

and that

UplUp{Uplal,|acX}], =Up{ps(a)|acX} by definition of p, and of Liy
given before this theorem. O

3.2. Comparison of quotients

The results of this subsection show the important role that the notion of quotient
plays in the comparison of two abstract interpretations. For the sake of clarity, in ASS
below we summarize the notation and the hypotheses that we will use in the following
theorems.

ASS (a) D and L are abstract interpretations, C is the concrete interpretation and P
is the abstract domain that represents the property that is being studied.
(b) Gep. Ger, Gep, Gpp and Gy p are Galois insertions. The last two are coherent
with respect to C.
(¢) Ry =2p(D) and R, = 2p(L). By Theorem 3.6, there are Galois insertions (G, p
and Gg,p that are coherent with respect to C.
(d) D and L are, respectively, R|- and R,-optimal.
(e) R, abstracts R, coherently with respect to C.
The following fact is a simple consequence of the assumptions ASS above.

Lemma 3.8. Gg,p = Gg,g, © Gg,p and thus, in particular, og,p = ag,p o ag,g,-

Fig. 1 summarizes the relations existing among all domains considered. The arrows
correspond to y-functions.

P
/ . \
Ry = Q. (D) Ry=Q,(L)

| |
L

C

Fig. 1. Domain abstractions in Theorems 3.10 and 3.11.

174 A. Cortesi et al. | Theoretical Computer Science 202 (1998 163-192

Theorem 3.9. Assume ASS above. Then L is at least as precise aus D for comput-
ing P.

Proof. Consider any sequence 7np of operations of D. From the fact that D is
Ry-optimal and from the construction of the quotient R;, it is true that for any d €D,
the computation np(d) can be “read” over R, as far as the P-information is concerned.
More precisely, assume that ¢; is the result after the first i >0 steps of the computation
np(d), and let #; = apgp,(d;). then, for each i, app(d;)=og,p(#). A similar fact holds
for any computation n; on L. For such a m, let /y,/y,...,/; be the intermeciate results
and kq,...,k; be the corresponding values in R».

We will use the above fact and the notation introduced in the sequel of the proof.
Let for any concrete value ¢ € C, dy=2acp(c) and ly =ac (¢). Let also np and mp be
sequences of corresponding operations of D and L. In what follows, the ¢/;,#;,/;, and
k; are in the relation explained above. In order to prove the result, it suffices to show
the following fact:

(K) Viz0, yrc(t) Do vro(h)

In fact, from (%) it follows that xg,z, (ki) Cg, ;- By Lemma 3.8 above and the mono-
tonicity of ag,p, or,p(k;) = g p(xr.z (ki) Ep ag,p(t). We proceed by induction on i.
Basis. Let us first consider i =0. We want to show that

(1) yrelto) Do rclko).

By Proposition 2.9, ty = x¢g, (¢) and ko = acg,(c). Since R, abstracts R, coherently
w.r.t. C, the following two points hold:
(a) acr, = %r,r, O %cr,. Hence, ty = ap,z, (ko).
(b) 78, =7YR.C O VR R,
From point (a) and (b), using the extensivity of 7z r. 0 2g,z, (cf. Section 2.1), we
get immediately that
TR, c(t0) = YRy © VR Ry © Aok {K0) ZC VR (ko).

Thus (1) holds.
Step. Let us now prove (k) for i>0. We want to show that

(2) yrcti—1) e Prclhizn) = (3) vrc(t) e ymclhi).
By the assumption of R - and R;-optimality of D and L, we know that
1; = aer, (Hc(Yr cltio1)))

where puc is the concrete operation corresponding to the ith operation of i1, and =;.
A similar relation holds for ;.
By assumption (2) and the monotonicity of puc¢ it follows that

teCrrc(tizr)) =c ueCGeraelkhior))

and thus, by the same reasoning used for the case /=0, we have that (3) 10lds. I

A. Cortesi et al | Theoretical Computer Science 202 (1998) 163-192 175

Theorem 3.10. Assume, in addition to ASS, that R\ properly abstracts Ry. Then L
is strictly more precise than D for computing P.

Proof. By assumption it is true that
(1) yr,c(R1)Cyrc(R2) and g, c(R2) & 7R, c(R1).

Hence, there is rp € Ry such that yg.(ro) € yr, c(R1). Let co = yr,c(r0), and Iy = yr,1{ro).
Note that, since yz.C =7.¢ 0 Vr.1, Yrc(lp) =cp.

Let now ¢=17yg,c 0 2%cgr(co). Clearly, by their definitions, ¢ J¢co and, ocg (¢p) =
acg, (€), from which the following fact (2) holds:

Fact (2). acp(cg) and z¢p(¢) are elements of D that are equivalent w.r.t. the compu-
tation of P, i.e., they are in the same equivalence class of the relation on D associated
to P.

Note also that, by (1), ¢ €yz.c(R2). Let us now abstract ¢ into L and R,. We call
= OCC/,(é) and = O(/_Rz(l).

By assumption, we know that for all corresponding sequences sp and s; of operations
of D and L, respectively, it is true that

app(sp(oep(€))) p app(si(xcL(€))).
From this, using Fact (2), we obtain
(3) app(splacp(co))) = app(sp(otep(€))) Dp arp(si{xci(€))).

Observe now that, since ¢ Z¢ ¢y, and both are in yg.¢(R2), it is true that, r, Ty rp.
Thus, there exists a computation sequence 7; of operations of L such that

app(nr(l)) # app(mi(lp))-
Since 7; is composed of continuous (and thus monotone) operations, we have
(4) app(n(1)) Jp app(mi(lo)).
It suffices now to put together (3) and (4) to show the thesis:
app(np(2ep(co))) Dp app(m(2ci(€))) = app(m (1)) Dp app(ni(lo))

= app(mi(2c(co))). O

4, Applications

We apply the theory developed in the previous section for comparing two well-
known abstract interpretations for logic programming: Prop [2,9,11,19] and Shar-
ing [16]. This section is organized as follows. After some preliminary definitions
concerning substitutions, in Section 4.2, we recall from [11] the concrete interpre-
tation Rsub and the two abstract interpretations we wish to compare. The domain

176 A. Cortesi et al. | Theoretical Computer Science 202 (1998) 163192

GR representing groundness and the characterizations of the quotients Zgz(Sharing)
and 2gr(Prop) are described in Section 4.3. The main result of the application part
is in Section 4, where we apply Theorems 3.9 and 3.10 for proving that Prop is
strictly more precise than Sharing with respect to the precision in computing
groundness.

We point out that the interpretations Prop and Sharing that we compare ate complete
interpretations, in the sense that they include all the operations needed fo- the static
analysis, viz. forward/backward unification, least upper bound, and projecticn. In order
to describe in a simple way all the operations (and, in particular, projection , we adopt
the approach introduced in [11]. In this approach, the (non trivial) values of a domain
are pairs in which the first component is “the usual value”, and the second component
explicitly specifies the variables about which the first component provides information.
These variables are often called the variables of interest.

4.1. Preliminaries

Let V be a countable set of variables. FP(V') denotes the set of finite subsets of
variables of V. A substitution ¢ is a function in that maps variables in V' to terms
over V and an alphabet of function symbols, and such that ox#x only ‘or a finite
number of variables x. The set of support of ¢ is given by supp(o)=1{c|ox#x}.
The variable range of o is given by var-range(o) = |J{Var(ox)|x € supp(s)}, where
Var(t) denotes the set of variables occurring in z. The set of variables occurring in ¢
is given by Var(a)=supp(a) U var-range(o). A substitution is typically specified by
listing its non-trivial bindings. So o = {x/ox | x € supp(a)}.

Consider two substitutions g and o,. If there exists ¥ such that ¢, = ¢ g}, then
oy is more general than g,, which we write 0, < . In this case, we say that ¢, an
instance of ;.

We write Subst for the set of idempotent substitutions. Although Subst is not closed
under composition, in a step of the execution of a logic program in which ¥ o ¢ is
constructed, it is always the case that, var-range(9) supp(c) =0, which, provided that
¥ and ¢ are idempotent, ensures that 7} o ¢ is also idempotent.

As we will consider sequences of concrete/abstract operations of “real” domains,
i.e. containing not only unary operations, as it was assumed in Definition 2.7 for the
sake of simplicity, it is necessary to make precise this notion for any set of perations.
Assume to have an interpretation D= (D, u),..., ;). A derived operator over D is
a term ¢ constructed using the symbols in p. ..., 4, the values in D, values o7 any other
domain that may be required by the operations (for instance, substitutions are needed in
the unification operations), and exactly one variable. The following example illustrates
this notion for Z = (Z, +.*), where Z represents the set of all integers completed with
top and bottom elements.

Example 4.1. A derived operator for Z is t = +(x(x,3), +(2, 1)).

A. Cortesi et al | Theoretical Computer Science 202 (1998) 163-192 177

Clearly, a derived operator ¢ is a function r:D— D. Intuitively, the result of the
function ¢ for a given value d €D is obtained by evaluating #(d) interpreting the
function symbols in ¢ according to D. In the above example, #(0)=3 and #(2)=:9.

4.2. The interpretations Rsub, Prop, and Sharing

The interpretations Rsub, Prop, and Sharing consist each of a domain and three
operations: unification, projection, and least upper bound. Since some of the operations
are quite technical, we have chosen to recall them in the appendix. and to describe
here only the domains, their partial orders, and the concretization/abstraction functions
relating them.

4.2.1. The “concrete” domain Rsub
The “concrete” domain Rsub [11] is the complete lattice

Rsub = [@(Subst) x FP(V)] U { Tae Lis}.

Rsub stands for restricted substitutions. The partial order of Rsub is defined, on non-
trivial elements, by [, U] Cgy [22, Uz] iff Uy =U, and) C 2. The operations od
Rsub are described in the appendix.

4.2.2. The domain Prop

For any set of variables U € FP(V), by AU we denote the formula consisting of the
conjunction of the variables in U. For any U € FP(V'), a positive formula [2,20] on U
is any propositional formula containing only variables in U and that is satisfied by the
truth-assignment that assigns true to all variables in U. The set of positive formulas on
U is denoted Posy. From now on, in order to avoid burdensome notation, we simply
write f* for the class of formulas equivalent to f and assume that Pos; consists of
classes of equivalent formulas. We also adopt the usual convention of representing
a truth-assignment a on U as the set {x € U |a(x) = true}.

Notice that for any U € FP(V), Posy U {F} is a complete lattice with least upper
bound and greatest lower bound, respectively, V (logical disjunction) and A (logical
conjunction), appropriately extended to classes of equivalent formulas.

The domain Prop is as follows:

Prop— { [f., Ul:U€eFP(V), f < Posy U {F} } U {Tpr, J_pr}.

Prop is partially ordered: Tp, is the largest element and Lp, i1s the smallest; for the
other elements, [/1, Ui} <p, [f2, Us] if and only if Uy =U, and f; = /5.

Fig. 2 depicts the domain Prop for V = {x,y}. The lines represent the ordering
relation among the (equivalence classes of) formulas.

That positive formulas are useful for computing variable groundness in logic pro-
grams is well-known, see [2,9, 11,19, 12]. The intuition behind the relation between
positive formulas and substitutions, is as follows. Each substitution defines a truth-
assignment, and, since groundness is a property closed under instantiation, we say

178 A. Cortesi et al | Theoretical Computer Science 202 (1998) 163-192

TPV'
[true, 0] [true, {x}] [true, {y}] [true, {z,y}]

\\
[y =z {z,y}] [zvy{z,v}] [z—y {z,y}]

AN s
f XA

[z, {=}] [y, {¥}] [z, {=, y}] [z ~ vy, {z,3}] ty, {=. v}]

N

[z Ay, {z,y}]

[false, @] [false, {x}] [false, {y}] [false, {z, y}]
Le

Fig. 2. The domain Prop for V = {x,y}.

that a formula approximates a substitution when it is true w.r.t. the truth-assignments
defined by all instances of that substitution.

The truth-assignment of substitution ¢ is assign o :assign o x = true iff o yrounds x.
The concretization expressing the relation between Prop and Rsub, is

Yprrs - Prop — Rsub,
Trs if d=Tpy;
verrs(d) =< Lrs if d = Lp,;
[{o € Subst |Vo' Qo -assigna’ = [}, U] ifd=[f. U]
The function %g,p, : Rsub— Prop is the usual adjoint [6] of yprz, i.€., %pspr (€)= Mpr
{d € Prop|yprrs(d) Zrsc}. The tuple (7prgs, Rsub,Prop, agsp,) is a Galois Insertion

[11]. In [11] it is also shown that the operations of Prop (see the appendix) are
optimal.

A. Cortesi et al [Theoretical Computer Science 202 (1998) 163-192 179

Lemma 4.2 (Cortesi et al. [11]). Prop is optimal.

The definite formulas in U, denoted Defy, 2. 13], consist of the formulas f & Posy
that satisfy the following model intersection property: consider any two models M,
and M, of f, if M =M, NM,, then M |= f. The name “definite” for such formulas
comes from the following well-known syntactical characterization: for each f € Def};
there is a formula on U equivalent to f and consisting of a conjunction of definite
implications of the form AW — x.

Observe that the set Defy; is properly included in Posy. For instance, the formula
xV y of Posy,, does not belong to Defy,,}. In fact, let M} = {x}, and M, = {p} it is
immediate to see that both M, and M, are models of xV y, whereas M =M, "M, =0
is not a model of this formula.

In the same way as positive formulas were used for defining Prop, it is possible to
define a domain using the definite formulas:

Def={[f, U” UEFP(V). fEDé'fl:; U {F}} U {TD}H—LD/}~

Obviously, Def abstracts Prop with the identity as concretization and its adjoint as
abstraction. From this it also follows that Def also abstracts Rsub with the same
concretization as Prop.

4.2.3. The domain Sharing
The abstract domain Sharing proposed by Jacobs and Langen in [16] in order to
represent variable aliasing, covering, and groundness is defined by

Sharing={[4,U]|AC p(U), A£0D=0ecd, UcFP(V)}U{ T, L}

Sharing is partially ordered: Tg; is the largest element and Lg, is the smallest one; for
the other elements, [41, U], Cg, [42. Us] iff Uy = Us and 4 C 4,. The domain Sharing
for ¥ ={x, y} is depicted in Fig. 3. Even though the lattice structure is similar to that
of Prop, the two domains represent different informations of the concrete domain Rsub.

Jacobs and Langen [16] proved that Sharing enjoys a Galois insertion into ¢(Subst).
This can be immediately extended to our concrete domain Rsub. We recall briefly the
construction of the abstraction of this insertion. For xc V., U C V, and o &€ Subst. let
share(o,x,) be the set of variables in U whose images under ¢ contain the variable
x, i.e. share(a,x, Uy={ve U |x € Var(oy)}. For [Z,U] € Rsub,

opssu([Z, UN) = [{share(o,x, U)o L, xe V},U].

The concretization ys;zs is the usual adjoint of the abstraction. Let [4,U]=
agssu([{6}, U]). Each S€ A4 is a set of variables that under ¢ share a variable. Ev-
ery variable x € U such that Var(ox) =0 will not appear in 4. In [7] it is shown that
the operations of Sharing are optimal.

Lemma 4.3 (Cortesi and Filé [7]). Sharing is optimal.

180 A. Cortesi et al | Theoretical Computer Science 202 (1998) 163-192

T

=T
({0}, 2] (e, {=z3}, {=}1 (@ {y}}, (s}] ({9, {=}. {»}. {=z,v}}, {z ¥]]

/ N
({0, {v}, {z, v} }, {z, v }[{O, {z}, {w}}, {=z, v }{O, {2}, {=z, s } >, {=, 4 }]
\/ N4
/N AN

({2}, {=}1 ({e}, {(y}1 [{® {v}}, {=, y}H{0, {z, y}}, {z, y H{O, {z}} {a. ¢ }]

[{e}, {=.y}]
(e, 9] (0, {z}] (e {y}) [0, {=, ¥y}
‘LSPL

Fig. 3. The domain Sharing for V = {x, v}.

4.3. Quotients with respect to groundness

The interpretations Sharing and Prop are incomparable with respect to the notion
of abstraction [10]. The intuition behind this result is the following. On the cne hand,
by means of disjunctions, Prop represents also possible equivalence (and “hus also
groundness), whereas Sharing does not. On the other hand, Sharing represents vari-
able independence that is not expressible in Prop. However, as both interpretations
compute groundness information, we are interested in comparing their precision in the
computation of groundness.

4.3.1. The domain GR
The simplest domain that represents variable groundness is GR as follows. Given
an element [X, U] € Rsub, its groundness information can be represented by the set of

A. Cortesi et al. | Theoretical Computer Science 202 (1998) 163-192 181

TGr
0,9 (9, {z}] (@, {v}] (®, {=, v}
[{=}, {=, v}] [{y}, (=, v}
[{=}, {=}] [{y), (v} \ /
Uz, v} {z, ¥}
[L,0) L, {=}] (L {v)] (L, {z, ¥}
L

Gr

Fig. 4. The domain GR for V = {x, y}.

variables grounded by every substitution in 2:
GR={[4.U]:d€ p(UYU{L}, UeFP(V)}U{Ts Lo}

The set GR is partially ordered as follows. T, is the top element, and L, the bottom
one. [By, U] Cg [Ba, U] if Uy =U; and By 2 B;. Obviously, GR is a complete lattice.
The least upper bound of two elements [B;. U] and [B;, U] is defined as

[B1 N B U] if Uy=Us,
[B1, U] Ug B2, Uz]Z{ .
Gr otherwise.

It is easy to see that there are Galois insertion between GR on the one side and
Rsub,Prop,Def and Sharing on the other. We only specify the concretization and
abstraction functions, as proving that ¢ach pair of functions forms a Galois insertion,
is an easy exercise:

{ 76rrs([B, UT) =[Z, U], where X = {o € Subst |Vx € B, Var(ox) =10},
<xR.\‘Gr([Za U]) = [nag by {.X el | Var(o'x) = ®}, U]*

182 A. Cortesi et al | Theoretical Computer Science 202 (1998) 163-192

{ v6rer([B, U) = v6rpr(IB, Ul = [AB, U],
aprr (L, UD) = aprae[fLUD=[{x| f =x} U],

{' vars([B, UD) = [0 (U\B), U],
“asper([4, UT) = [U\(UA), U].

These Galois insertions together with those that connect Prop,Def, and Sharing to
Rsub, defined above, are coherent with respect to Rsub.

4.3.2. The quotient of Prop with respect to GR

In Section 3 we have proved that the quotient of an interpretation with respect to
a given domain is a domain abstracting the starting domain, provided the associated
relation is additive.

The quotient of Prop with respect to GR is Prop itself. This is due to the fact that
none of the formulas of Prop is irrelevant for the computation of groundness [11].

Lemma 4.4. Let [f1,U).[f>.U)eProp. If f|+# fa, there exists « derived operator t
using the operations of Prop, such that op,q (t([f1, U1)) % aprcr(1([f2. UT) .

Corollary 4.5. rp, is the identity on Prop, and thus it is obviously additive
Theorem 4.6. 25z(Prop)=Prop.

Proof. Follows immediately from Corollary 4.5 and Theorem 3.6. [l

4.3.3. The quotient of Sharing with respect to GR

Let 75, be the relation on Sharing associated to GR. It will be shown that, differently
from what we just saw for Prop, the equivalence classes of rs; are not singletons.
However, rg, 1s additive and thus Z¢z(Sharing) exists. Moreover. we will show that
2cr(Sharing) is isomorphic to Def. Because of this fact, the comparison hetween
2ir(Sharing) and 2;x(Prop) will be extremely simple. Some results of this section
need rather technical proofs. For the readability sake these proofs are giv:n in the
appendix.

That Sharing expresses information about groundness is well-known, cf. [16].
A formalization of this intuition was first attempted in [10] where it is stown that
between Def and Sharing there is a Galois connection. The following ever: stronger
result has been shown recently in [8].

Theorem 4.7. The domain Def abstracts Sharing with the following abstra-tion and
concretization functions:
For [4,U] € Sharing, let

CAUD=AN{AW) —=x | W, CU, x€U, and VN€A:xeN = (W, 1 N)£(},

A. Cortesi et al | Theoretical Computer Science 202 (1998) 163-192 183

[F.U] if A=0,

oy (l4, U]) { [%([4,U]), U] otherwise,
Yorse(LLUD=[{U\M [M = f} U]

This Galois insertion is coherent w.r.t. Rsub.

According to Definition 3.1, the relation on Sharing associated to GR is defined as
follows. Let S),5> € Sharing, and let 7 be any derived operator on the operations of
Sharing:

S1.82)ersn & asne(t(S1)) = aspr(1(S2)).

The following theorem characterizes rg, using the abstractions of the elements of
Sharing into Def. Its proof is in the appendix.

Theorem 4.8. Let S),S, € Sharing, where S|, 5, € Sharing:

(S1,82)ers & asnpr(S1) = xsupr(S2).
The existence of the quotient 2¢x(Sharing) is guaranteed by the following result.
Theorem 4.9. rg, is additive.

Proof. Consider X Crg,. Let for i € [1,2], X;={S;[($1,S2)€ X}. We want to show
that

(UsnXy, UspX2) € 7y,
By Theorem 4.8,
(UsnX1, UspXo) €Ersy & agpr(UsnX1) = osnpr(Usn X2)-

Since, by Theorem 4.7, og,p, together with its adjoint, forms a Galois insertion, by
Proposition 2.3, it is additive and therefore, the following holds:

aspof(UsnX1) = Upyp{asipr(x) [x € X1} by the additivity
=Ups{asipr(x){x€Xz2} by definition of X and X;
= asnpr(UsnX2) again by the additivity. 0
The following theorem characterizes the quotient of Sharing w.r.t. GR.

Theorem 4.10. 25z(Sharing)= Def.

Proof. It is easy to show that the sets Def and {Uss[S],, | S € Sharing} are isomor-
phic: the abstraction g, ps 15 a bijection that preserves the orders of the two sets. In fact,

184 A. Cortesi et al. | Theoretical Computer Science 202 (1998) 163-192

TPr

[true, @] {true, {x}] [true, {y}] {true, {z,y}]

/ \\
ly — 2, {z.y} [z =y, {x. y}]
[z, {=}] [v, {v}] [z, {z.y}] [z« y, {z. v} [y, {a,u}]
[z Ay {2, 4}]
|

[false,®) [false, {z}] (faise, {y}] [false, {z,y}]

Lo

Fig. 5. The quotient 2Gg(Sharing) for ¥V = {x, v}.

on the one hand, if [4,, U] Cg, [42, U] then 4 C 4, and thus €([4,,U]) = %([42,U])
(see Theorem 4.7 for the definition of %). On the other hand, if f; = 1>, with [£}, U]
and [/2, U] in Def, then f| has less models than f5, and thus,

{UNM M = [iPNUM M = £
Hence, yprso([/1. UD) Son vorsull f2.U]).

Fig. 5 depicts, for the case that V = {x, y}, the quotient of Sharing with respect to
GR, which is the domain Def. Observe that the elements [{{x},{y}, {x, ¥}}, {x, »}] and
[{{x}.{¥}},{x, ¥}] belong to the same equivalence class [true, {x, v}] via rs;. The only
difference between these two elements is that the first one represents also substitutions
o such that ox and oy share a common variable. However, this distinction is irrelevant
when considering only groundness computation. In fact, both elements simply say that
x and y are completely unrelated with respect to groundness.

A. Cortesi et al [Theoretical Computer Science 202 (1998} 163-192 185

GR

/N

Q. (Sharing) Q,r(Prop) = Prop

| |

Sharing Prop

N S

Rsub

Fig. 6. Domain abstractions.

4.4. Comparison of Prop and Sharing w.r.1. GR

We can finally compare the two interpretations Prop and Sharing using the new
theory developed in Section 3.

Theorem 4.11. Prop is strictly more precise than Sharing with respect to the domain
GR representing groundness.

Proof. It suffices to show that Theorems 3.9 and 3.10 are applicable, that is, we have
to show that all the assumptions ASS (a)—(e) of Section 3.2 are satisfied:

— Point (a) and (b): have been stated in Sections 4.2.2, 4.2.3 and 4.3.1.

— Point (¢): is shown in Theorems 4.6 and 4.10.

— Point (d): is stated in Lemmas 4.2 and 4.3.

— Point (e): is stated in Section 4.2.2. [

5. Conclusions

In this paper we addressed the problem of exactly characterizing the part of an
abstract domain which is useful for the computation of a given property. To this end,
we introduced the notion of quotient of an abstract interpretation. We showed that the
comparison of abstract interpretations w.r.t. a common property can be performed by
comparing their quotients w.r.t. that property. As an example, we applied this technique
to the comparison of two well-known abstract interpretations for logic programs: Prop
and Sharing.

Other algebraic operators on abstract domains and abstract interpretations have been
proposed in the literature, namely the reduced product [6], the open product [12], the
powerset [15], and the complement [7]. An interesting subject for future work is the
study of the interaction between the quotient and these operators. For instance, one
may wonder whether the quotient of a reduced product is the reduced product of the

186 A. Cortesi et al | Theoretical Computer Science 202 (1998) 163-192

quotients and also whether the quotient of the powerset of a domain D is the powerset
of the quotient of D.

Another question that deserves further study is what one can do for :omparing
two domains when the present framework cannot be applied, for instance, when one
of the associated relations is not additive. In this case it may still be possible to
perform a comparison by lifting the domains to their powersets and compiring their
quotients. In fact, quotients always exist for domains obtained through the nowerset
operation.

Appendix

The appendix consists of four parts. In the first three, we formally define the oper-
ations in Rsub, Prop, and Sharing. Then, we show some technical lemmas that lead
to the proof of Theorem 4.8.

A.1. Operations in Rsub

Let E be a set of term equations. If a substitution ¢ makes a(f)) sytactically
identical to o(t;) for cach (ty=5)€E, o is called a unifier of E. A mo.t general
unifier of E is a unifier ¢ of E that is more general than any other unifier of £. We
denote by mgu(E) any idempotent most general unifier of E. It is not ne:essary to
specify which most general unifier is considered, because, from the relationship existing
among the idempotent most general unifiers of a given set of equations 17], it is
immediate to see that each of them carries the same information about the properties
we are interested in, namely, variable groundness and sharing.

A set of equations £ is in solved form if it has the form {x;=¢.....x,=1¢,},
where each x; is a distinct variable occurring in none of the terms #;. Given a set of
equations £ ={x; =1¢,...,x, =1,} in solved form, the substitution ¢ = X, xa/t,

is an idempotent most general unifier of E; we denote £ by Eq(o).

Least upper bound: The operation Ug,, which produces the least upper bound of
two elements of Rsub, is as follows: for any & € Rsub, Tgy Ups k= Try, Lps _ps k =K,
for the other elements,

(21, U] Ugs [, Un] = {[él Y22 U] ;fthgi“:sg

Projection: The concrete projection 7z, : Rsub x FP(V)— Rsub maps ([2, U], U»)
to [Z, U NU;L

Thus, projection only changes the second component leaving the first one unchanged.
One may think that the fact that the projection does not eliminate from the sustitutions
the variables that are projected out, may cause problems of variable capture. As usual,
variable captures can be avoided using appropriate renamings.

A. Cortesi et al. | Theoretical Computer Science 202 (1998) 163192 187

Unification: In order to define the concrete unification Uk, it is convenient to in-
troduce first the following function ug;:

Ug, : Subst x Subst x Subst — Subst
(01,02,0) — mgu(Eq(c,) U Eq(02) U Eq(d)).

Ug, is strict: if either of the first two arguments is Lg,, the result 1s Lg,. Otherwise,
if one of these is Tg,, the result is Tg,. The other cases are as follows:

Ugs : Rsub x Rsub x Subst — Rsub
(1Z),U,], [25,02).0) = [{ugri(01,02,8)|01 € 21 & 02 € X2},
Uy u Uy U Var(o)).
A.2. Operations in Prop

Least upper bound: For all d € Prop, Tp, Up, d=Tp, and Lp, Lip, d =d; for the
other elements,

: 1V o, U] if U =U,,
I - .
L Gl e 2.) {Tpr otherwise.

Projection: The abstract projection mp, amounts to existentially quantifying a formula
[8,20]. The existential quantification of a propositional formula obeys 3x.f = f{x/T)
V f(x/F).

T ([f. UL V)= [3(UNY). fLUN V],

Unification: The abstract unification is obtained by means of logical conjunctions.
For 6 ={x;/t; | 1<i<n} € Subst, let ¢s= A{x; = (AVar(t;))|1<i<n}.

Up, : Prop X Prop x Subst — Prop
([, U Lf2. U &) —= L1 A f2 A s, Uy U U U Var(d)].

A.3. Operations in sharing

Leuast upper bound: The least upper bound of any two nontrivial elements [4;, U]
and [A4,, U>] is defined by

[41U4;, U] if Uy=U,,
A, U] Ugy [A2, Un] = i
(41, U] Uy [42,U2] {TSh otherwise.

Projection: The projection on Share is the identity on the bottom and top elements.
In the other cases it is defined by means of set intersection:

sy - Sharing x FP(V) — Sharing
([S1, U], Uz) [{A N ‘A <8 } U nts)

188 A. Cortesi et al. | Theoretical Computer Science 202 (1998, 163-192

Unification: In order to define the abstract unification function Ugy, for the Sharing

domain, we need the following auxiliary functions [16]:

o The closure under union of A€ (0 (V)), denoted 4*, is the smallest superset of
A satisfying X CA* AY e 4* - (X UY)e 4*.

e The part of 4 € @(@(V')) that is relevant to a term ¢, denoted rel(A,1), is the set
{Sed|Var(t)n S #0}.

e [f 4,4 € p(p(V)) then A0 A ={(SUS")|S€A and S'c A'}.

e The basic unification step is performed by

ugh + (V) x Subst — (0 (V)),
VAo € p((V)), ¥6 € Subst, 0 = {xi/t1,...,xp/tw}
usi(Ao, 0) = amgu.args([x, ..., x, 1, [t ..., L], Ao),
amgu.args([1,[],B)=B
amgu.args([x,|%), [t,[7], B) = amgu.args(X, T, amgu(x;, t;, B))
amgu(x,t, B) = (B\(rel(x,B) Jrel(1,B))) U (rel(x,B) ® rel(t, B))".

e The backward/forward unification Uy, : Sharing x Sharing x Subst - Sharing is
defined as follows. Let [4. U], [4’, U'] € Sharing, with U N U’ =0, and le 5 € Subst
such that Var(é)C U L U,

Usi([A, UL [A', U'].8) = [us(A U A", 8), U U U".

A.4. Technical results
The goal of this section is to show Theorem 4.8. Some preliminary results are
necessary.
Lemma A.l. Let S|, 5; € Sharing:
asppr(S1)=osipr(82) = 25i6-(S1) = Zsnir(Sa).

Proof. It suffices to observe that xg,q, =0prcrOtshos, cf. Section 4.3.1 for the defi-
nition of the abstraction functions. [

In what follows we will use the notion of % introduced in Section 4.3.3. For the
sake of clarity, we recall its definition below: for [4. U] € Sharing,

CUAUD=A{AW) —x| W) CU.xe U, and YN €4:x €N = (W, NN) £} .

Recall also that g ([4, U])=[€(4, U], U].

The following lemma plays a central role in this section: it expresses the ¢ meaning
of the result of the Us;, operation in terms of the conjunction of the ¥ meaning of its
arguments.

