THE JOURNALOF
LOGIC PROGRAMMING

ELSEVIER The Journal of Logic Programming 38 {1999) 371-386

Technical Note
Sharing is optimal
Agostino Cortesi *, Gilberto Filé

Universita Ca Foscari, Computer Science Department, Via Torino 155, 301 70 Mestre-Venezia, Italy

Received 13 January 1998; received in revised form 4 May 1998; accepted 17 August 1998

Abstract

One of the most popular abstract domains used for the analysis of logic programs is the
domain Sharing which expresses the fact that computed substitutions bind variables to
terms containing common variables. Despite the fact that this domain is widely used and stud-
ied, it is not yet known whether its abstract operations are complete or at least optimal. We
solve this open question showing that the operations of lub and projection of Sharing are
complete (and thus optimal), whereas that of wunification is optimal, but not complete.
© 1999 Elsevier Science Inc. All rights reserved.

Keywords: Static analysis; Abstract interpretation

1. Introduction

Abstract interpretation [1] is a general framework for defining and relating differ-
ent semantics of transition systems. The most popular application of abstract inter-
pretation is the design of data flow analysis for programming languages. Many data
flow analyses have been designed for logic programs and often these analyses have
the goal of inferring variable sharing information. This information is useful for
many purposes: AND-parallelism [2], freeness [3], program transformation [4,5].
Probably the most popular domain for inferring sharing information is Sharing
[6]. Despite the number of applications of Sharing and of studies of its properties
[7-10], a fundamental property of Sharing is not yet known: whether its operations
are complete [1,11] or at least optimal [1].

We answer this question here showing that the operations /ub and projection of
Sharing are complete (and thus optimal), whereas the unification operation is only
optimal and not complete. To this end we also show the correctness of all three op-
erations of Sharing. As a matter of fact, the correctness of the unification of Shar-
ing has been already shown in Refs. [6,10], but in these works the domain is
different from that considered here and thus we give the full proof of this result

*Corresponding author. Tel.: +39 41 290 8428; fax; +39 41 290 8419; e-mail: cortesi@dsi.unive.it.

0743-1066/99/$ - see front matter © 1999 Elsevier Science Inc. All rights reserved.
PI1: S0743-1066(98)10026-2

372 A. Cortesi, G. Filé | J. Logic Programming 38 (1999) 371-386

too. It is worth mentioning that, in order to give a precise foundation to our results,
we consider here an important point that arises when dealing with the concrete uni-
fication and that is often neglected: do our results depend on a particular concrete
unification algorithm? We show, exploiting a result of [12], that as long as idempo-
tent most general unifiers (mgu’s) are considered, the sharing does not depend on
which mgu is considered.

The paper is organized as follows. Section 2 recalls some preliminary definitions.
In Sections 3 and 4 the concrete interpretation Rsub and the abstract interpretation
Sharing are introduced, each with its three operations: lub, projection and unifica-
tion. In Section 5 we show that /ub and projection of Sharing are complete and in
Section 6 we show that abstract unification is optimal (but not complete). Finally,
Section 7 discusses recent related works, in particular [9,10], and concludes.

2. Preliminaries
2.1. Substitutions

Let V be a countable set of variables, FP(V) be the set of finite subsets of variables
of V, and Tv g be the set of finite terms over V and an alphabet of function symbols
G. A substitution ¢ is a function in V — Ty g such that ¢(x) # x only for a finite num-
ber of variables x. The ser of support and the variable range of o are given by
supp(o) = {x | o(x) # x} and var-range(a) = | J{Var(ox) | x € supp(a)}, where Var(t)
denotes the set of variables occurring in ¢. The set of variables occurring in o is
Var(c) = supp(c) U var-range(s). A substitution may be specified by listing its non-
trivial bindings, viz., ¢ = {x/¢(x) | x € supp(s)}. Given two substitutions ¢, and
6y, their composition, denoted o;00, is {x/62(01(x))|x € supp(s,) and o,
(o1(x)) #x} U{y/02(y) | y € supp(a2) \ supp(c1)}. A substitution o is idempotent
when ¢ o ¢ = ¢. It is well-known that ¢ is idempotent iff supp(o) N var-range(c) = 0.

If there exists ¥ such that ¢, = Yo ay, then 6, is more general than o.. Let
E={t =s,...,4t = s¢} be a set of term equations. If ¢ makes ¢(r,) syntactically
identical to o(s;) for each {t; = 5;) € E, ¢ is called a unifier of E.

A most general unifier of E, mgu(E), is an idempotent unifier of E that is more gen-
eral than all other unifiers of E. The set £ is in solved form if it has the form
{xi =1,...,x, =1,} where each x; is a distinct variable occurring in none of the
terms ¢;. In this case, the substitution ¢ = {x1/4,...,x,/t,} is an idempotent mgu
of E. Any idempotent substitution ¢ is an mgu of the corresponding set of equations
in solved form, denote by Eg¢(c).

We write Subst for the set of idempotent substitutions. Although Subst is not
closed under composition, in a step of the execution of a logic program in which
Yoo is constructed, it is always the case that, var-range(d) N supp(c) = @, which,
provided that ¢ and ¢ are idempotent, ensures that ¥ o ¢ is also idempotent.

2.2. Abstract interpretations
According to [1], a data-flow analysis for a programming language L is a non-

standard (abstract) semantics of L. Both the standard and an abstract semantics
of L are obtained interpreting a generic semantics, where such an interpretation con-

A. Cortesi, G. Filé | J. Logic Programming 38 (1999) 371-386 373

sists of a domain of data-descriptions and of some operations on these data-descrip-
tions.

Let us recall some basic definitions [1,13]. Let C and D be complete lattices. Two
functions y,: D — Cand acp: C — D form a Galois connection between D and C if

Vee Cand Vd € D aeple) Cp d <= ¢ T ypeld).

The function y, is called concretization and oy is called abstraction. They are said
to be adjoint because one is determined by the other [13]. For instance,
Yd € D,ypc(d) = Uc{c | c € C,op(e) Ep d}. The dual relation holds for ape. This
definition is equivalent to requiring that concretization and abstraction are mono-
tonic and that the following two conditions hold: V¢ € C,ypc(acp(c)) D¢ ¢ and
Yd € D ocCD(e (d)) d

A Galois connectlon is said to be a Galois insertion when 7, is injective or, equiv-
alently, when 2., is onto. In this case, Vd € D, acp(vpe(d)) = d.

Assume that an abstract operation g corresponds to a concrete one op. We say
that p is correct with respect to op when

vd € D, u(d) Jlp acplop(vpe(d)).

The operation p is oprimal when the above disequation becomes an equality. In
[1,11], the stronger notion of completeness of an abstract operation is introduced
and discussed. The abstract operation u is complete when

Ve € C.acp(op(c)) = placn(c)).
Obviously, an optimal abstract operation is also correct. When there is a Galois in-
sertion, it is also easy to see that a complete operation is also optimal, but the con-
verse is not true.

3. The concrete interpretation (Rsub, Lig,, g, Ug,)

Before introducing the concrete interpretation, some explanations are due. In this
paper we adopt the classical abstract interpretation approach of [1,13]. In this ap-
proach, both the concrete and the abstract semantics are obtained by instantiating
a common generic semantics. This approach has the advantage of allowing modular
correctness proofs: instead of proving the correctness (optimality, completeness) of
the whole abstract semantics w.r.t. the concrete one (for instance the SLD seman-
tics), one can show the correctness (optimality, completeness) of each basic opera-
tion.

This approach has two important consequences on the concrete interpretation [14]
adopted here. The elements of this domain consist of pairs where the first component
is a set of substitutions (as usual) and the second component is a finite set of vari-
ables that specifies the variables of interest, i.e., the variables the analysis wants to
deals with. This second component is needed in order to account, in the concrete do-
main, for the fact that the abstract semantics computes values concerning only finite
sets of variables (in general, the variables of the clauses of the analyzed program).

The second consequence is that the concrete interpretation includes also a projec-
tion operation. This operation is the concrete counterpart of the abstract projection
which, on the contrary, has a very important role in making the abstract semantics
finitely computable.

374 A. Cortesi, G. Filé | J. Logic Programming 38 (1999) 371-386

Although non-standard, this choice of concrete domain allows to use an uniform
notation for concrete/abstract values and operations, and this is the reason we adopt
it [14,7.8]. Moreover, it enjoys two positive features: its values are almost identical to
the sets of substitutions computed by Prolog programs, and the projection operation
is very simple, matching the feeling that projection does not belong to the concrete
semantics, but it is “inherited” from the abstract semantics, where it is necessary for
achieving finiteness, as said above.

3.1. Domain

The set Rsub = [p(Subst) x FP(V)] U { Tg,, Lg,}. Rsub stands for restricted substi-
tutions. The partial order of Rsub is defined as follows. Ty, is the largest element,
Lgs is the smallest one, whereas [Z, U}] Cg, [2,, Us] iff U, = U, and X, C Z,.

3.2. Least upper bound and greatest lower bound

The operation Llg,, which produces the least upper bound of two elements of
Rsub, is as follows: for any &k € Rsub, Ta, Ug, & = Tgs, Lgs Ug k& = k, whereas

[21 U2, U1] if Uy= Us,

2L, U U [25,Us] = ;
(21, Ur] Ugs [22, U7 {TRS otherwise.

The greatest lower bound is defined on non-trivial elements by
(21, U] Mgs [£2, U] = [Z1 N Z3, U]. In the other cases, it is L. Rsub is a complete lat-
tice w.r.t. Cpg,.

3.3. Projection

The concrete projection 7, is the identity on the first argument when this is either
Tgs OF Lg,, otherwise it is

gy © Rsub x FP(V) — Rsub
(2, U], Uz) = [Z,U N).

3.4. Unification

A unique operation [14] is considered that accounts for both forward and back-
ward unifications. Its first argument is the set of substitutions computed at calling
time, the second one is the set of substitution computed when returning from the call,
and the third one is a (idempotent) mgu of the two atoms that are unified through the
call. For using this operation as forward unification it suffices to set the second ar-
gument to the identity substitution. In order to define the concrete unification Uk, it
is convenient to introduce first the following function ug,:

g, : Subst x Subst x Subst — Subst,
(01,02, 6) — mgu(Eq(a1) U Eq(a,) U Eq(9)).

Ug, is strict: if either of the first two arguments is Lg,, the result is Lg,. Otherwise, if
one of these is Tg,, the result is Ty, The other cases are as follows: assume that

A. Cortesi, G. Filé | J. Logic Programming 38 (1999) 371-386 375
Var(d) C U, U Us,; then

Upg, : Rsub x Rsub x Subst — Rsub,
([21, Ul], [22, Uz],a) [[{URS(O'],O'z,é) | where g, € 2,0, € &5,
and Var(oy) N Var(e;) = 0}, Uy U Uy).

Notice that ¢, and o, are required to be renamed apart. Intuitively, this works be-
cause o; deals with the variables of the calling clause whereas ¢, with those of the
called clause only.

4. The abstract interpretation (Sharing, Lig, sy, Usy)
4.1. Domain

The abstract domain Sharing has been proposed by Jacobs and Langen in Ref.
[6] in order to represent variable aliasing, covering, and groundness. Here we present
a slightly different domain wrt the original proposal in that our domain shows explic-
itly the variables of interest [7,8]. This is necessary in order to use this domain in a
real static analysis in which values on different sets of variables (for instance, the
variables of the clauses of the analyzed program) are generally computed.

Sharing = {[4,U] |4 C p(U),(d #0=0€4),U € FP(V)}U {Ts, La}.

Sharing is partially ordered: Tg; is the largest element and L is the smallest one; for
the other elements, [4,, U\], Cg; [42, Us) iff Uy = U, and 4, C 4,.

4.2. Least upper bound and greatest lower bound

The least upper bound of any two elements [4;, U;] and [4,, U] is defined by

[AI,UI] Ligy [A» U,

ral 4

] _ {[A] UAz,U]] if U, = U,
| Ta otherwise.

The greatest lower bound, if U, = U, = U is [4) N A4,, U]. Otherwise, it is Lg,. The
domain Sharing is a complete lattice w.r.t. Cg.

4.3. Abstraction

Let for any y € V,0cc(o,y) = {z€ V | y € Var(a(z))}. The abstraction function
between Sharing and Rsub maps g to Lg, and T, to T, whereas it is defined
on non-trivial elements by

gy su(C) = {if c=[{e},U] then [{occ(o,y)NU |y €V}, U,
s sn(C if c=[Z,U] then Ug {oarsi([{c},U]) | 0o € Z}.

Intuitively, an element of the first component of ag, s ([{a}, U]) is a set of variables in
U that under ¢ share the same variable. Observe that a variable of U is ground in
[4, U] iff it does not appear in any set of the abstract state. Clearly, ag, 5, is monoton-
ic. In order to show that it admits an adjoint function and that the two functions
form a Galois connection, it suffices by Ref. [13] to show the following result.

376 A. Cortesi, G. Filé { J. Logic Programming 38 (1999} 371-386

Proposition 4.1. The function ogs s is join-complete, i.e.,

VX C Rsub, ogs sn(ldreX) = Usp{otrs sn(x) | x € X}

Proof. The limit cases in which X is empty or it contains Tg,, Or it consists of Lz,
only, are immediate. Then, assume that X contains some pairs [Z, U]. All these pairs
must have equal second component, otherwise both sides of the equation are trivially
Txs- Then, it is sufficient to remind the definition of ag, s to conclude. [

The adjoint function of g, Is:
vsias([4, U]) = Ur{[Z, U] € Rsub | ages([Z, U]) Es [4, UL}

Actually, oz, s and yg, , define a Galois insertion between Rsub and Sharing. In
fact the following Proposition shows that ag, g is onto.

Proposition 4.2. For any [4, U] € Sharing, there exists o € Subst such that
opesi(({o}, U)) = [4, U].

Proof. Let 4 = {By,...Bn}. Consider y,...,y, € V\U. For each xe U, let
I = {i| 1 <i<m,x € B;}. The substitution o is defined by:
O_(X):{f(yj]:""yjh) 1f IX:{jla""jh}a
a if I, = 0.
It is easy to check that for such a o it holds ag, u([{c},U]) = [4,U]. O
Example 4.1. Let us illustrate the proposition above by a simple example. Let
[4, U] be an element of Sharing with U = {x|,x3,x3, x4}, and 4 = {0, {x1,x2,x3},

{x2,23},{x1,x3}, {x3}}. The substitution ¢ obtained according to Proposition 4.2 is
based on the following correspondence between elements in 4 and variables in V \ U.

{xlvx2ﬁx3}a{x27x3}7{-x15x3}1{ X3 }
Ll Y2 » V4
The resulting substitution is

g = {x]/f‘(yl7y3):x2/.f(yl7y2)7x3/f(yhy27y37y4)1x4/a}'

4.4. Projection

In Sharing Projection is the identity on Lg, and Tg,, whereas in the other cases
it is defined through set-intersection:
Tg, ¢ Sharing x FP(V) — Sharing
([Al, U]], Uz) — [{Bﬂ U2 ’ B (S Al}, U] n Uz]

4.5. Unification

Some auxiliary functions are useful [6] in order to define the abstract unification
function Ug,:
* The closure under union of A € p(p(V)), denoted 4*, is the smallest superset of A
satisfying X e 4* AY € 4* - (X UY) € 4"

A. Cortesi, G. File [J. Logic Programming 38 (1999) 371-386 377

The component of 4 € p(p(V)) that is relevant to a term ¢, denoted rel(4,1), is the
set {Se€d|Var(t)ynS #0}.
o If 4,4 € p(p(V)), the cross product A A is {{(SUS") | S € 4,5 € 4*}.

¢ The basic unification step is performed by

ug, : p(p(V)) x Subst — p(p(V))

YA € p(p(V)), YO € Subst, 6 = {x1/t1, ..., Xn/tn}
us;(Ap. 0) = amgu.args([x,...,x.],[f1,. .., tn], 4p)

amgu.args([],[], B) = B
amgu.args([x;|3], [|7], B) = amgu.args(¥, 7, amgu(x;, 1, B))
amgu(x,t,B) = (B ~ (rel(x,B) Urel(t,B))) U (rel(x, B) @ rel(t,B))
The backward/forward unification Ug, is defined as follows. Let
[4,U},[4'. U] € Sharing, with UnNU' =0, and let &€ Subst with
Var(d) CU U U

Uy, : Sharing X Sharing x Subst — Sharing

US}?([A’ U]’ [Als U/L 5) = [“Sh(A UA,: 5), Uu U’]-

. Lub and projection of sharing are complete

Correctness of least upper bound and projection operations have been proven, in

a different setting, in Ref. [10] (see Section 7). Here, we show a stronger result: that
these operations are complete too. Completeness of lub operation follows immedi-
ately from Proposition 4.1.

Theorem 5.1. The lub of Sharing is complete.

Theorem 5.2. ng, is complete with respect to mgs, ie., Ve € Rsub and U € FP(V),
ags su(mrs(c, Un)) = mgn(ags su(c), Ua).

Proof. If ¢ is either Tg, or Lg, the result follows from the definition. Otherwise,
consider ¢ = [X, U;]. We get

tps sn (s ([Z, U1}, Un)) = age sw (2, Uy N UL))
by definition of 7y,
= [{occ(o,y)N(UiNlh) |yeV, o€ 2}, U N
by definition of ag,s
= g ([{occ(o,y)NU |y €V, g€ 2}, U]
by definition of =g
= s (orssn (X, Ui]), Un)

by definition of o,

378 A. Cortesi, G. Filé | J. Logic Programming 38 (1999) 371-386

6. Unification of Sharing is optimal

This Section is organized as follows. First we show that, when computing a mgu of
a set of equations E, all idempotent mgu’s of E carry the same sharing information.
Thus the actual unification algorithm used has no effect on the sharing information
as long as idempotent mgu’s are computed. After this, we prepare the background
for the optimality proof. First some notation is fixed and some technical facts are
proven. Then, it is shown that Ug, is correct and optimal w.r.t. Ug,, but not com-
plete.

6.1. Idempotent mgu’s and sharing
In Section 3 of Ref. [12] the following result is shown:

Theorem 6.1. Two idempotent mgu’s pu, and p, of some set of equations E satisfy the
Sfollowing two conditions:

L Var(u,) = Var(w,);

2. There is {x1/y1,...,%a/¥a} C Wy, with all the y, distinct, such that u,=

{yl/xla e 7Yn/xn} O Uy

From this result it is easy to show the following theorem.

Theorem 6.2. Let u) and p, be two idempotent mgu’s of the same equation set. For any
Ue W(V)a ORs Sh([{:ul}7 U]) = ORs Sh([{u2}5 U])

Proof. When U = Var(y;) (recall that by point (1) of Theorem 6.1, Var(y,) =
Var(u,)), the result follows immediately from Theorem 6.1, point (2). When
U # Var(y;), just use the definition of ag, 5. [

6.2. Notation

In what follows, let [4,,U)] and [4,,U,] € Sharing with UyNU, =0. Let
also Ry =4,U4; and Uy =U U, and 6 = {x,/4,...,x,/t,} € Subst such that
Var(d) C Up. Recall that

Usi([41, U1, [42, 03], 8) = [usi(Ry, 8), Up).

The operation ug,(Ry, 6) treats the bindings of & one at the time. We denote by R,
the subset of p(Us) computed after having handled the first i bindings. The operation
ug; generates sets of variables by taking the union of already present sets. Observing
the computation of ug,(Ro, d) one can reconstruct which elements of R, are unioned
in order to generate each element of R,. | If an element of R, is generated in several
ways, just any one of them will be considered.

In what follows we will consider S € R, and assume that it is generated by taking
the union of K = {B,...,B;} C Ry. Clearly, if k is 1 then S = B, € R,.

! More precisely, one could mimic the computation of ug, (Ro, 8) computing {By,...,8,} whenever that
function computes Uie(; B;.

A. Cortesi, G. Filé | J. Logic Programming 38 (1999) 371-386 379

6.3. Technical results

Assume the notation fixed above. K satisfies the following 3 facts:
Fact 1. Vi€ [1,n],x; € S &= SN Var(y;) # 0.
Fact 2. If S € Ry then Vj € [1,4],3i € [1,n] such that B, N Var(x; = 1;) # 0.

Fact 3. Let us define the following relation R between elements of K: B;RB; if and
only if there exists / € [1,], such that B; N Var(x; = ;) # @ and B; N Var(x; = t;) # 0.
Let R* be the transitive closure of R; then it must be that Vi, j € [1,k], B;R"B;.

Proof of Fact 1. (=) If x; € S then x; appears also in R;, and then, by definition of
Ugy, it must be that UR,_; N Var(t;) # @. Moreover, each element B € R, that contains
x;, contains also a variable in Var(z;). Thus, this must be also true for S, that contains
at least one of these sets. The same reasoning proves the (<)-direction. I

Proof of Fact 2. It suffices to observe that if 3j€[l,4], such that
Vi€ [1,n], B; N Var(x; = t;) = 0, then, ug could not combine B; with any other
element of Ry, and thus S could not be produced. O

Proof of Fact 3. Assume that there are i and j € [1,4] such that B;R" B, is false. In
this case, K can be partitioned in two parts: K’ = {B € K | BR"B} and K" =K — K,
such that each binding of 6 has variables in common with at most one of | JK’ and
{JK”. From this, by induction on n, it follows that elements of K’ and K" are never
unioned in the computation of ug,(Ry,). Thus, the set S (see Section 6.2) cannot
belong to ug,(Rg, 8). Contradiction. O

6.4. Correctness

As already mentioned in the Introduction, the correctness of the abstract unifica-
tion of Sharing was already shown in Ref. [6]. In a different setting, also Ref. [10]
proves it. However, since the domain we consider is different and for the sake of
completeness, we give the full proof of this result too.

Theorem 6.3. The abstract unification Ug, is correct with respect to Ug,.

Proof. Let [4;, Uy], [42, U3] € Sharing with Uy N U, = 0. Let also Ry = A; U A4, and
Up=U1UUzand d = {x1/t,...,x,/t,} € Subst such that Var(é) C U. The claim of
the Theorem is:

Usi([41, Ui, [A2, U], 0) Do orssn(Urs(Yonrs([A1, Ut]), Ysnps([A2, Ua)), 6)).

Letfori € [1,2],0; € X, where [Z;, Uj| = yg,4,([4;, U]} such that Var(s,) N Var(s,) =
(@ as required by the concrete unification, cf. Section 3.4. Because of this assumption,
an (idempotent) mgu of Eq(o,) U Eq(o,) is simply the union of the bindings of these

380 A. Cortesi, G. Filé | J. Logic Programming 38 (1999) 371-386

two substitutions, i.e., p, = 0, U 0. Therefore, it is true that
ups(01,02,0) = mgu(Eq(o:) U Eq(02) U Eq(3))
= mgu(Eq(p,) U Eq(3)).

It is convenient for this proof to consider the following construction of this mgu: let
Eq(d)={x1=n,...,x,=1,}, first we compute mgu(p,(x; =t)) =g, then if
Py = My 0 py, We compute mgu(p,(x2 =1)) = u,, then we apply p, = 0p; to
x3 = t3 and so on. At the end of this process the obtained substitution p, is an idem-
potent mgu of E = Eq(p,) U Eq(6) and thus, by Lemma 6.2, whatever we can prove
about its sharing, this holds for any other idempotent mgu of E.

Below, the notation fixed in Section 6.2 will be used again. In particular, the com-
putation of ug,([Ry, Uy|, 8]) is performed in a way similar to that just described for
P1,-- ., P, the bindings of & are considered one at the time and R; is the value ob-
tained after having considered the first i bindings of 6.

We prove by induction that

Vi €[0,n), v r([Ri; Uo]) Zas [{p:}, Ual.
From this fact the theorem follows by observing that Us([4), Ui, [4,, Us),)
= [R,, Uo], and by using the definition of Galois connection.
Base (i=0). From the assumption, Vi€ [1,2],0; € v (4, U]), and
Uyn U, = 0. It follows that [{py}, Us] € v, a,([Ro, Us)).
Step (i > 0). Assume now that the above statement holds for (R, ;, Up] and p, |,
and consider u, = mgu(p;_,(x; =t;)) and p, =y, 0 p,_|.
Observe that, by the definition of the operator oce, occ(p;,y) N Uy # @ only for
y € var-range(p;) U (U \ supp(p,)). Thus, we need to show that for each y either in
the var-range of p, or in Uy \ supp(p;), it is true that (occ(p;,y) N Uy) € R;. We distin-
guish two cases.
1. y & Var(p,_;(x; = t,)). This implies that
oce(p;_y,y) NVar(x; =) = 0. (+)
On the one hand, from (+) it follows that all the bindings of p,_, concerning y are
unchanged in p;. Moreover, no new binding concerning y can be added in p, be-
cause y & Var(p,_,(x; = t;)). Thus, occ(p;,y) = occ{p,_|,¥).

On the other hand, (+) implies that (occ(p,_,,y) N U,) & rel(x; = t;,R,_;) and
thus, by definition of ug, occ(p, |,y) N Uy is not modified after precessing the
ith binding of é. Hence, occ(p;,y) N U, € R;.

2. yehar(p_i(x; =t)). Let B=occ(y;,y). Observe that B #(since u, =
mgu(p;_,(x; = t;)). In p,, y will be shared by all the variables that in p, , share
some variable in B. More precisely,

oce(p,y) N Us = | J{oce(p,y,w) N Uy | w e B}

By induction hypothesis, all the sets occ(p,_;,w), w € B, are in R,_,. In order to
conclude the proof we show that ug, computes their union.

Since each we B is in Var(p,_,(x; =1)), it must be that occ(p, ,,w)N
Var(x; = t;) # 0. Thus, since Uy 2 Var(x; = t,), it follows that occ(p,_,w) N Uy €
rel(x; = t;, R, ;). This shows that all the sets occ(p,_,, w) N U, that must be union-
ed to produce occ(p;,y) N Uy, are considered by ug, when it handles x; = ¢,.

It remains to show that some of these sets are in rel(x;,R,_;) and some in
rel(t;,R;;). If this is the case, in fact, ug, produces, among others, also the set
occ(p;,y) N Us.

A. Cortesi, G. Filé | J. Logic Programming 38 (1999) 371-386 381

To this end, observe that B contains at least one variable, call it z;, that occurs
in p,_,(x;) and at least one, call it z,, that occurs in p,_,(#;), in fact, g, is a unifier of
pi_1(x; = ;) and thus y must be on both sides of y,(p, {x; = ¢)). Two possible
cases may apply to z;:

o piq(x)=x;=z. In this case, since x; € Uy, x; € oce(p,_1,x:) N Uy # 0.
Hence occ(p;_,x;) N Uy will be in rel(x;, Ri-y).
o pi_y(x;) # x;. In this case, occ(p,_,z1) N Uy contains x; and thus this set is in-
cluded in rel(x;, R;..1) too.
A similar reasoning applies to z;. This concludes the proof. [

6.5. Optimality

Let us turn now to the proof of optimality of the abstract unification. The idea
behind the proof is that for each set S in the result of an abstract unification
Ug([41, Ui], [42, Un), &) we may identify a pair of concrete substitutions o, a5, repre-
sented by each of the two abstract states, such that the result of the concrete unifi-
cation ugs(0,0,,0) is a substitution whose abstraction is [{S,0},U; U Us]. The
substitutions o, and ¢, are defined according to the following idea. The set § is ob-
tained as the union of sets {B,,....B;} C 4, UA,. The case that k = 1 is simple.
When £ > 1 it must be that for each i € [1, 4], B; N Var(8) # 0. The substitutions o,
and o, assign to each variable x € § a term containing new variables w; ,...,w; that
correspond to those sets in {By,. .., B} that contain x. These terms are such that the
unification of Eg(o,) U Eq(o,) U £g(8) causes the unification of all these new vari-
ables. Therefore, in an mgu of Eq(oy) U Eqg{(a,) U Eq{d) all the variables in S are
bound to terms containing the same new variable and only that one. On the con-
trary, variables not in § will be bound to ground terms.

Theorem 6.4. The abstract unification Ug, is optimal with respect to Ug,.

Proof. Let [4;, U}]. |42, Us] € Sharing with Uy N U, = 0. Let also Ry = 4; U 4, and
Up=UUUsand 6 = {x1/t,...,x,/t,} € Subst such that Var(3) C U,. The claim is:

Usi([41, U], [42, U2, 8) = otgosn(Uns (755 ([41. Uh]), Vsis([42, Ua].).
In the light of the correctness shown in Theorem 6.3, we only need to show the fol-
lowing point (A):

(A) Usi([41. U], [42, Us], 8) T sgesn(Uns (v a5 [A1, Ut]), vop s (142, Ua),)
Again, the notation introduced in Section 6.2 is used below. Let also fori € [1,2],
[Z:, Ul = a8 ([4i, Ul]). We will show the following statement (X) that immediately
implies (A):

(X) VS €R,, there are 5,0, € Subst, such that:
(a) o1 € 2\, 02 € 2y, and Var(ay) N Var(oy) = B;
(b) ug, (01, 2, 8) is successful,
(c) if ugs(ay, 62,0) = p,. then apeu([{p,}, Uo]) = [{S}, Uy]. 2

2 Observe that, for the sake of simplicity, we do not show the empty set in the first component of
[{S}, Uo]. This causes no problem and is done throughout this proof.

382 A. Cortesi, G. Filé { J. Logic Programming 38 (1999) 371-386

Recall from the notation of Section 6.2 that § = K, with K = {By,..., By} C R,.
The following additional notation is needed:

e for each B, € K, let w; be a distinct extra variable not in Up;

e for each x€ S, B, = {B|B € K,x € B}; notice that, by the hypothesis that
UnU,=0,if x € U; then |JB, C U; in fact, we can partition K in two parts,
Ky ={B, €K |B; C U;} and K, defined analogously; notice also that for any
x,y € U; we may have B, N B, # 0;

e N=max{|B.||x €S}

e fixing x € S, and letting B, = {B,,...,B,,}, then the new variables associated to
these sets will be denoted, wy,,...,w;,.

The substitutions ¢; and ¢, will be defined through one substitution P, such that
supp(py) = Up; 01 and o, can be recovered from p, by separating the bindings con-
cerning U; from those concerning U,; var-range(p,) consists only of the extra vari-
ables w;.. The substitution p, is defined in the following four points:

1. For each x € § Var(d) there are two cases to distinguish:

(a) If x € var-range (3), then

po(x) =S (C(Wlnwh))c(wlz’wlz)’ e ’c(wlmwli)’f(wlnwll)’ s ?c(wll’wll Z)

[, times N — [, times

(b) If x € supp(d), then x = x, for some r € [1,n), i.e., x is the left-hand side of
the r-th binding, x,/t,, of 4. In this case, py(x)={(t,), where for each
y € Var(t,) \ §,{(y) = a, for some constant a, whereas if y € S N Var(s,), {(y) is
as follows:

C()’) =S (S(wllawlz)vc<w127wl3)7 e 7C(Wlh7wfllag(wllawll)7 ce ,C’(W]UW[] l)

I, times N — I, times

2. For each x € §\ Var(d), py(x) = s(wy,...,wy,).
3. For each x € Var(5) \ S there are two cases to consider:
(a) if x € var-range(4), then py(x) = a
(b) if x € supp(), then x =x, for some binding x,/t, of §. In this case,
po(x) = {,(t,), where {, binds to the constant a all variables in ,.
4. For each x € Uy \ (SU Var(d)), py(x) = a, for some constant a.
Now, it remains to verify that p, satisfies statement (X), i.e. that the bindings of p, can
be partitioned into two substitutions ¢, € X and o, € X, satisfying points (a) to (c).

Proof of point (X .a). Let o1 = {x/t € py | x € Uy}; 0, is defined similarly. Obviously,
these two substitutions have disjoint supp sets. They have also disjoint var-range sets
because for each x in Uy, Var(py(x)) € {wy,,...,w;,} and each of these variables
corresponds to a set in B, C A;. Thus, for any y € Us, Var(py(y)) N Var(py(x)) = 0.
To see that 6; € Z;, it suffices to observe that the construction of p, yields the
following point (Y):

Y) UK C supp (o)), and the variables in UK; are exactly the variables not
ground in o;, and for each such variable x, Var(o;(x)) = {wy,,...,w,}.

From point (Y) it follows immediately that og,g([{5:}, Ul) = K, U] C [4;, U],
and thus o; € X,

A. Cortesi, G. File | J. Logic Programming 38 (1999) 371-386 383

Proof of point (X.b). Consider for each equation (x; = ;) € Eq(d), the two terms
po(x;) and py(#;). In order to show that they are unifiable, we distiguish two cases:
1. One of them is ground: this may arise either when x; & S or when Var(£,) NS = §.
o When x; ¢ S (i.e, case 3(b) of the def. of p,), by Fact 1 of Section 6.3, we
have Var(1;) NS = 0. Thus, py(#) is ground too, and, by definition of p, it
is identical to py(x;).
o The case Var(#;) NS = @ is analogous to the previous one.
2. Both terms are non-ground terms. In this case, the following points come easily
from the definition of p, above:
(Z,) the only variables in the equation py(x;) = p,(t;) are extra variables w,;
(Z) po(x;) and py(#;) differ only for having different variables in corresponding
leaf positions;
(Z) solving the equation py(x; = ¢;) causes only the unification of all the present
variables with each other, leaving all variables free.
Thus, in both cases, the unification is successful.

Proof of point (X.c). Two cases are distinguished:

1. Case § N Var(6) = 0. Here, K = {S} and § € 4, for some i € [1,2]. Let us fix such
an i. By the proof of point (X.a), oxss([{po}, Ui]) = [{S}, U;]. From the same
proof, it follows also that in p, only the variables in § are not ground, and that
they all share only the (extra) variable w & U, corresponding to S. Hence,
arssul{[{Po}, Ub]) = ({8}, Up). Now, observe that, by point (X.b)(1), the equations
po(x; = &) are ground identities. This means that they are simply eliminated by
the unification algorithm. Thus, p, = p,, as expected.

2. Case S " Var(d) # 0. Let us examine the computation of mgu(Eq(p,) U Eq(d)). It is
well-known that, in computing an (idempotent} mgu of a system of equations, we
may consider the equations in any order. We consider the unification of p,(Eg(5))
first, and then we apply the computed mgu to Eq(p,).

o Point (Z;) above, shows that only extra variables occur in py(Eg(5));

o Fact 2 of Section 6.3 implies that all the extra variables w, ..., w; occur in
po(£4(5));

o Fact 3 together with point (Z3) prove that, in the unification process, all the
(extra) variables present in py(Eg(d)) are unified in a single variable. Thus an
mgu of py(Eq(d)) is u= {wi/wy,...,wi_1/wi}. We can substitute Eq(u) to
po(Eq(d)) and continue the unification with Eq(u) U Eq(p,);

o Point (Y) guarantees that extra-variables w; may appear only in the var-
range of p;. Hence, by the definition of u, u(Eg(p,)) is in solved form.
It is also easy to see that Eq(u) U u(Eg(p,)) is in solved form. Thus, it repre-
sents an idempotent mgu of our initial system Eq(p,)UEqg(5). The
corresponding mgu is p, = po p,. From point (Y) and the definition of u
it follows that in p, exactly the variables of S are not ground and
that they all share the extra variable wy, that is the only variable in var-range

(£n)-

From the previous points, we get ag, 54 ([{p,}, Uo)) = [{S}, U] (recall that wy & U,
and thus it is filtered out by the abstraction). This completes the proof of the the de-
sired statement (X) and of the whole Theorem as well. (]

384 A. Cortesi, G. Filé | J. Logic Programming 38 (1999) 371--386

As a final remark, observe that Ug, is not complete. For instance, consider
Uy = {x}, U, ={z}, and let o= {x/f(a,w)}, and & = {x/f(z,a)}. In this case,
agssn(Urs([{a1}, U], [{0}, Us], 8)) is equal to [{@}, U; U Uy, whereas the correspond-
ing abstract unification Ug([{{x},0}, Uh], [{{z}, 8}, U:],d) results to be equal to
[{{x.2},0}, U L Us).

7. Conclusions and related works

Recently, several researchers have studied the domain Sharing and its opera-
tions. Codish et al. in Ref. [10] propose an alternative way of representing set-sharing
information. In place of collecting the sets of variables that may share a common
variable, as Sharing does, they associate to each variable the set of variables that
may be contained in the terms bound to that variable. Clearly this new domain is
isomorphic to Sharing. In Ref. [10} the abstract operations of this new domain
are also discussed. The abstract unification is based on an associative commutative
and idempotent equality theory. Abstract /ub is shown to be complete, whereas only
the correctness of the abstract unification and projection are shown (cf. Theorem 7
of Ref. [10]). In the light of the optimality result shown in the present paper, it is ex-
pectable that also the abstract unification of Ref. [10] can be proven optimal.

In Ref. [9] it is proved that a strict abstraction, S5, of Sharing is sufficient for
computing pair-sharing. This means that, when analyzing programs, in place of
using Sharing, we may use the more abstract SS” obtaining exactly the same
pair-sharing information. This is important because abstract unification in SS? is
polynomial whereas that in Sharing is exponential.

It is worth mentioning that, as Bagnara et al. remark in Ref. [9], SS* is the quo-
tient of Sharing with respect to pair-sharing, where the notion of quotient was in-
troduced in Ref. [7]. *

In the light of the result of Bagnara et al., it is natural to wonder whether there are
analyses for which the Sharing domain is still needed or for all practical applica-
tions it can be replaced by the more efficient SS*.

In order to answer this question, we need to explain briefly the relation between
$§” and Sharing. For each element [S, U] € Sharing, the corresponding abstrac-
tion in 887 is [p(S), U], where, intuitively, p(S) adds to S every subset of U that does
not introduce any new pair-sharing to that already expressed by .

Thus, for instance, SS* cannot distinguish between the following two values
of Bharing: S = [{{x,y}, {x.z},{»,2}}.U] and S = [{{x,»},{x,2}, {»,z},
{x.y.z}}. U], where U = {x,y.z}. Observe in fact that:

p({{x.y} Ax.zh Ay, 2}}) = p({{x, v} {2} .2}, {x, 0,23}
= {{x‘,y}* {x,z}, {y,z}, {x,y,z}}

Being able to distinguish between these two sharing situations may be important for
optimizations concerning the AND parallel execution of Prolog programs. Assume
we want to execute p(x),g(y),r(z) by means of parallel processes. In situations rep-

* Observe that Sharing is also studied in [7], where its quotient with respect to groundness information is
characterized as the well-known domain De f consisting of definite propositional formulas.

A. Cortesi, G. Filé | J. Logic Programming 38 (1999) 371386 385

resented by S, we are sure that no variable is shared by more than two processes,
whereas in the situations represented by S, all three processes may share a variable.
Good strategies for deciding which goals should be solved in parallel might use such
information.

Finally, it is interesting to observe that the relation between Sharing and pair-
sharing has also been studied in Ref. [15], with a different goal: to use the comple-
mentation operation Ref. [8], in order to decompose the domain Sharing into three
simpler domains, each expressing one of the different information that coexist in
Sharing, namely, groundness, pair-sharing and set-sharing information. The re-
duced product of these three components gives Sharing back. It is worthwhile to
mention that in that paper it is shown that Sharing cannot be obtained as the re-
duced product of a domain PS expressing only pair-sharing with some other domain
more abstract than Sharing. More precisely, in Ref. [15] it is shown that the com-
plement of PS with respect to Sharing is Sharing itself.

Acknowledgements

The work has been partially supported by the Italian MURST project
9701248444-044. Thanks to the anonymous referees for in-depth reading and helpful
comments.

References

(1] P. Cousot, R. Cousot, Abstract interpretation: A unified framework for static analysis of programs by
construction of approximation of fixpoints, Proceedings of the 4th ACM Symposium on Principles of
Programming Languages and Systems, ACM. New York, 1977, pp. 238-252.

[2] K. Mutukumar, M. Hermenegildo, Combined determination of sharing and freeness of program
variables through abstract interpretation, in: Proceedings of 8th International Conference on Logic
Programming ICLP91, Paris, MIT Press, Cambridge, MA. 1991, pp. 49-63.

[3] M. Codish, D. Dams, G. File, M. Bruynhooghe, On the design of a correct freeness analysis for logic
programs, The Journal of Logic Programming 28 (3) (1996) 181206,

[4] A. Bossi, N. Cocco, Programs without failures, in: N. Fuchs (Ed.). Proceedings of the 7th Logic
Programming Synthesis and Transformation LOPSTRY7, Leuven, Belgium, LNCS, Springer. Berlin,
to appear.

[5] S. Debray. P. Lopez Garcia, M. Hermenegildo, Non-Failure analysis for logic programs, Proceedings
of the 14th International Conference on Logic Programming, MIT Press, Cambridge. MA, 1997, pp.
48-62.

[6] D. Jacobs, A. Langen, Accurate and efficient approximation of variable aliasing in logic programs,
The Journal of Logic Programming 13 (1992) 29(.-314.

[7] A. Cortesi, G. File, W. Winsborough, The quotient of an abstract interpretation, Theoretical
Computer Science 202 (1-2) (1998) 163-192.

[8] A. Cortesi, G. File, R. Giacobazzi, C. Palamidessi, F. Ranzato, Complementation in abstract
interpretation, ACM Transactions on Programming Languages and Systems 19 (1) (1997) 7-47,

(9] R. Bagnara, P. Hill. E. Zaffanella, Set-sharing is redundant for pair-sharing, in: P. Van Hentenryck
(Ed.), Static Analysis: Proceedings of the 4th International Symposium. Paris, France. LNCS vol,
1302, Springer, Berlin, 1997, pp. 53-67.

[10] M. Codish. V. Lagoon, F. Bueno. An algebraic approach to sharing analysis of logic programs. in: P.
Van Hentenryck (Ed.), Static Analysis: Proceedings of the 4th International Symposium. Paris,
France, LNCS vol. 1302, Springer, Berlin, 1997, pp. 68-82.

386 A. Cortesi, G. Filé | J. Logic Programming 38 (1999) 371-386

[11] A. Mycroft, Completeness and predicate-based abstract interpretation, in: Proceedings of the ACM
Symposium on Partial Evaluation and Program Manipulation, PEPM93, ACM, New York, 1993, pp.
179-18S.

[12] J-L. Lassez, M. Maher, K. Marriott, Unification revisited, in: Jack Minker (Ed.), Foundations of
Deductive Databases and Logic Programming, Morgan-Kaufmanm, Los Altos, CA, 1987, pp. 587--
625.

[13] P. Cousot, R. Cousot, Abstract interpretation and applications to logic programs, The Journal of
Logic Programming 13 (1-4) (1992) 103-179.

[14] A. Cortesi, G. File, W. Winsborough, Optimal groundness analysis using propositional logic, The
Journal of Logic Programming 27 (2) (1996) 137-167.

[15] G. File, F. Ranzato F, Complementation of abstract domains made easy, in: M. Maher (Ed.),
Proceedings of the Joint International Conference and Symposium on Logic Programming
JICSLP96, MIT Press, Cambridge, MA, 1996, pp. 348-362.

