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TYPE ANALYSIS OF PROLOG USING
TYPE GRAPHS*
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> Type analysis of Prolog is of primary importance for high-performance
compilers since type information may lead to better indexing and to so-
phisticated specializations of unification and built-in predicates, to name a
few. However, these optimization often require a sophisticated type infer-
ence system capable of inferring disjunctive and recursive types, and hence
expensive in computation time. The purpose of this paper is to describe a
type analysis system for Prolog based on abstract interpretation and type
graphs (i.e., disjunctive rational trees) with this functionality. The system
(about 15,000 lines of C) consists of the combination of a generic fixpoint
algorithm, a generic pattern domain, and a type graph domain. The main
contribution of the paper is to show that this approach can be engineered to
be practical for medium-sized programs without sacrificing accuracy. The
main technical contribution to achieve this result is a novel widening oper-
ator for type graphs which appears to be accurate and effective in keeping
the sizes of the graphs, and hence the computation time, reasonably small. <

1. INTRODUCTION

Although Prolog is an untyped language, type analysis of the language is important
since it allows the improvement of indexing, to specialize unification, and to pro-
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duce more efficient code for built-in predicates, to name a few. However, to provide
compilers with sufficiently precise information, type analyses must be rather sophis-
ticated and must contain disjunctive and recursive types. Consider, for instance,
the simple program to insert an element in a binary tree:

insert (E,void,tree(void,E,void)).

insert (E,tree(L,V,R),tree(Ln,V,R)) :- E <V,
insert(E,L,Ln).

insert (E,tree(L,V,R),tree(L,V,Rn)) :- E > V,
insert(E,R,Rn).

If compilers are given the information that the first argument is not a variable and
that the type T of the second argument is described by the grammar

T ::= void | tree (T,Any,T)

then at most two tests are necessary to select the appropriate clause to execute.!
Note that a recursive type is needed because of the recursive call. Information
about the functor of the second argument would only allow the specialization of
the first call to insert.

Extensive research has been devoted to type inference in logic programming,
although few systems have actually been developed. A popular line of research,
called the cartesian closure approach in [12], was initiated by Mishra {19] and further
developed by many authors (see [8] for a complete account). Mishra introduced the
idea of argument closure in type inference of logic programs. This idea was used
subsequently by Yardeni and Shapiro [30] who introduced the idea of approximating
the traditional T}, operator by replacing substitutions by sets of substitutions and
by using argument-closure to ignore interargument dependencies. This approach
was further refined by Heintze and Jaffar [12] who introduced a more precise closure
operator which, informally speaking, ignores intervariable dependencies instead of
interargument dependencies. The resulting inference problem was shown to be
decidable using a reduction to set constraints. By reducing the problem to the
inference of (a subclass of) monadic logic programs, Fruehwirth et al. [8] gave an
exponential lower bound for type checking and an exponential algorithm for type
inference. The appealing feature of this approach is that the problem is amenable
to precise characterization, and hence its properties can be studied more easily. Its
limitation for type analysis is that the relationships between predicate variables
are ignored, which may entail a loss of precision and makes it difficult to integrate
the system with other analyses such as modes and sharing. There are, however,
solutions around this problem such as the combination with traditional abstract
interpretation approaches. A type inference system based on this approach was
developed by Heintze [11], and the experimental results (on programs up to 32
clauses) indicate that there is hope to make this approach practical.

Another line of research is the work of Bruynooghe and Janssens (e.g. [2,13])
which is based on a traditional abstract interpretation approach [5]. The key idea
is to approximate a collecting semantics of the language by an abstract semantics

1Types are especially useful when combined with mode analysis, but they would specialize the
code even if mode information is not available or not accurate enough.
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where sets of substitutions are described by type graphs, i.e., disjunctive ratio-
nal trees.? A fixpoint algorithm is then used to compute the least fixpoint or a
postfixpoint of the abstract semantics. The problem of inferring the set of prin-
cipal functors for an argument in a program is undecidable, and the result of the
analysis is thus an approximation as is traditional in abstract interpretation. The
appealing features of abstract interpretation are the possibility of exploiting vari-
able dependencies, the control offered to the designer to choose the tradeoff between
accuracy and efficiency, and the ease with which type analysis can be combined with
other analysis as required by applications such as compile-time garbage collection
[21]. The drawback is that the result of the analysis is more difficult to charac-
terize formally as the design of the abstract domain is an experimental endeavor.
This approach has been implemented in a prototype system [13], but experimental
results have only been reported on very small programs and were not very encour-
aging. Hence, the practicability of this approach remains open. Note also that
the two approaches, which use fundamentally different algorithms, are not directly
comparable in accuracy since the accuracy of the abstract interpretation approach
depends upon the abstract domain.

The purpose of this paper is to describe the design and implementation of
a type system based on the second approach. The system is best described as
GAIA(Pat(Type) ), where GAIA is a generic top-down fixpoint algorithm for Prolog
[17,7],3 Pat is a generic pattern domain for structural information (4], and Type
is a type graph domain [13]. The main contribution of the system (about 15,000
lines of C) is to show that type analysis based on abstract interpretation and type
graphs can be engineered to be practical, at least for medium-sized programs (up
to 450 lines of Prolog). It also shows that type graphs can be practical, and this is
of importance for many applications such as compile-time garbage collection (e.g.,
[21]) and automatic termination analysis (e.g., [28]). The technical contribution to
obtain this result is a novel widening operator for type graphs, which appears to be
accurate and effective in keeping the sizes of the graphs, and hence the computa-
tion time, reasonably small. Note also that the use of widening operators for type
inference has been recently investigated in the context of functional programming,
but the technical details of this work are fundamentally different [20].

The rest of this paper is organized as follows. Section 2 illustrates the function-
ality of the system on a variety of small but representative examples. Section 3
gives an overview of the paper. Sections 4 and 5 briefly review our abstract inter-
pretation framework and the generic pattern domain. Section 6 describes the type
graph domain. Section 7 describes in detail the widening operator. Section 8 gives
some details about the implementation. Section 9 reports the experimental results.
Section 10 concludes the paper.

2Type graphs can, in fact, be seen as a data structure to represent tree automata or monadic
logic programs. See Section 6.7 in this paper.
3GAIA is available by anonymous ftp from Brown University.
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2. AN ILLUSTRATION OF THE FUNCTIONALITY OF THE
TYPE SYSTEM

The purpose of this section is to illustrate the behavior of the type analysis system
on a number of examples. It should give the reader an intuitive idea of the accuracy
and efficiency of the type analysis system. The examples are small for clarity, but
they represent abstractions of existing procedures and illustrate many aspects of
Prolog programming. Results on medium-sized programs are given in Section 9.

Our type analysis system receives as input a Prolog program and an input pat-
tern, i.e., a predicate symbol and some type information on each of the arguments.
The input pattern gives information on how the program is used, i.e., it speci-
fies the top-level goal and the type properties satisfied by the arguments. In this
section, for simplicity, all input patterns are of the form p(Any, ..., ,Any), where
Any represents the set of all terms. The output of the system is an output pat-
tern, i.e., a predicate symbol and some type information on each of the arguments.
The output pattern represents type information of the arguments on success of the
predicate. The system also returns a set of tuples (B;y, P, fout) which represent the
input and output patterns for a predicate symbol p needed to compute the result.
Note that the system performs a polyvariant analysis, i.e., there may be multiple
tuples associated with the same predicate symbol. In the following, we mainly
show the top-level result for simplicity. The results are presented as tree grammars
since there is a close analogy between grammars and type graphs (see Section 6.7).
Consider first the traditional naive reverse program

nreverse ([],[1).
nreverse ([F|T], Res):-
nreverse(T,Trev),

append (Trev, [F] ,Res) .

append ([],X,X).
append ([FIT],S,(FIR]) :- append(T,S,R).

For an input pattern nreverse (Any, Any), the system produces the output pattern
nreverse(T,T), where T is defined as follows:

T ::= [ ]| cons(Any,T).

In other words, both arguments should be lists after execution of nreverse. The
analysis also concludes that the first argument to append is always a list. Note
that the system has no predefined notion of list: [] and cons/2 are uninterpreted
functors. The analysis time for this example is about 0.01 seconds. Consider now
the following program which is an abstraction of a procedure used in the parser of
Prolog.

process(X,Y) :- process(X,0,Y).

process([1,X,X).
process{([c(X1) | Y] ,Acc,X) :- process(Y,c(X1,Acc) X).
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process([d(X1) | Y] ,Acc,X) :- process(Y,d(X1,Acc),X).

The program is interesting because it contains a sophisticated form of accumulator,
a traditional Prolog programming technique. For the input pattern process(Any,Any),
the analysis returns the cutput pattern process(T,S) such that

T = [1 | cons(Ty,T).
Ty ::= c(Any) | d(Any).
S =0 | c(Any,S) | d(Any,S).

The first argument is inferred to be a list with two types of elements while the
second argument captures perfectly the structure of the accumulator. The analysis
time is about 0.34 seconds. Consider now a slight variation of the program to
introduce two mutually recursive procedures:

process(X,Y) :- process(X,0,Y).

process{([],¥X,X).
process{([c(X1)1Y],Acc,X) :- other_process(Y,c(X1,Acc),X).

other_process([d(X1) |Y],Acc,X) :-
process(Y,d(X1,Acc) ,X).

For the input pattern process(Any, Any), the analysis returns the output pattern
process(T,S) such that

T = [0 | cons(T;,Ty).
T; ::= c(Any)

Ty ::= cons(Ts,T)

T3 ::= d(Any)

S = 0 | d(Any,S1)

S1 ::= c(Any,S)

Once again, the types of the accumulator and of the list are inferred perfectly, and
the analysis time is about 0.08 seconds. Consider now the example depicted in
Figure 1, which contains nested lists and an accumulator. Given the input pattern
get (Any), the analysis system returns the output pattern get(T) where

T = [1 | cons(Ty,T).
T, ::= [ | cons(T,,Ty).
T2 = a | b.

The analysis time is about 0.09 seconds. The example illustrates well how the
nested list structure is inferred by the system and preserved when used inside the
accumulator of reverse. Consider the program depicted in Figure 2, which collects
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1list([1).
11ist([FIT]) :- list(F), 1llist(T).

list((]).

1ist([FIT]) :- p(F), list(T).
p(a). p(b).

reverse(X,Y) :- reverse(X,[],Y).

reverse([],X,X).
reverse([F|{T],Acc,Res) :- reverse(T, [FlAcc],Res).

get(Res) :~ 1list(X), reverse(X,Res).
FIGURE 1 A Prolog program manipulating nested lists.
add (0, [J).
© add(X + Y,Res) :- add(X,Res1), mult(Y,Res2), append(Resi,Res2,Res).

mult(1,(]).
mult(X * Y,Res) :- mult(X,Resl), basic(Y,Res2), append(Resl,Res2,Res).

basic(var(X), [X]).

basic{cst(C),[1).
basic(par(X),Res) :- add(X,Res).

FIGURE 2 A Prolog program manipulating arithmetic expressions.

information in arithmetic expressions. For the input pattern add(Any,Any), the
analysis produces the optimal output pattern add(T,S) where

T =T+ T, | O.

T, =Ty Ty | 1.

T, ::= cst(Any) | par(T) | var(Any).
S =[] 1 cons(Any,S).

The interesting point in this example is that the rule for T, contains an occurrence
of T showing that our analysis can generate grammars with mutually recursive rules.
The analysis time is about 0.11 seconds. Consider now the program on arithmetic
expressions depicted in Figure 3, which requires the widening procedure to be rather
sophisticated. For the input pattern add(Any,Any), the analysis produces the
optimal output pattern add(T,S) where

T =Ty | T+ Ty.

T, =Ty | Ty * Typ.

Ty ::= cst(Any) | var(Any) | par(T).
S = [1 | cons(Any,S).

The analysis time is about 0.56 seconds. The difficulty in this example is to prevent
the widening operator from mixing the definition of T, Ty, and T, and replacing them
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add(X,Res) :~- mult(X,Res).
add(X + Y,Res) :- add(X,R1), mult(Y,R2), append(R1,R2,Res).

mult(X,Res) :- basic(X,Res).
mult(X * Y,Res) :- mult(X,R1), basic(Y,R2), append(R1i,R2,Res).

basic(var(X), [X]).
basic(est(X),[J).
basic(par(X),Res) :- add(X,Res).

FIGURE 3 Another Prolog program manipulating arithmetic expressions.
by a rule subsuming them all but losing accuracy, e.g.,
T::=T+T | T*T | cst(hny) | var(Any) | par(T).

To achieve this behavior, it is necessary to postpone the widening until the structure
of the type appears clearly, as explained later in the paper. Consider now the
following program:

succ([1,[1).
succ([XI1Xs],[s(X)IR]) :- succ(Xs,R).

gen([1).
gen([0 | L]) :- gen(X),succ(X,L).

Tts success set, which cannot be represented exactly by a type graph, is the infinite
set, of lists

1

(o]

{0,s(0)]
[0,s(0),s(s(D))]

The difficulty here is that the lists and the integers are increasing in size at the same
time. Hence, the widening must infer both recursive structures simultaneously. For
the input pattern gen(Any), our analysis produces the output pattern gen(T),
where

T
Ty

(1 | cons(Ty,T).
D | S(Tl).

The analysis time is about 0.07 seconds. To conclude the positive examples, we
would like to mention the analysis of the tokenizer of Prolog, which produces the
result

T
Ty

(3 | cons(Ty,T).
ORI RN I RN S I R I S N I B A

atom(Any) | integer (Any) | string(Ty) | var (Any, Any)
T, ::= [J | cons(Any,T,).
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gsort(Xt , X2 ) :-
qsort( Xt , X2, (J).

qsort({] , L, L).

gsort([FIT] , 0, 4 ) :-
partition( T , F, Small , Big ),
qsort( Small , 0 , [FlOt] ),
qsort( Big , Ot , 4 ).

FIGURE 4 The quicksort program.

The analysis time is about 0.42 seconds, and the interesting point was the ability
of the widening to preserve the string type.

The weakness of our analyzer appears when dealing with difference-lists or par-
tially instantiated data-structures. Consider the quicksort program partially de-
scribed in Figure 4. If the order of the two recursive calls is switched, the analyzer
concludes that both arguments are of the type

T ::= [] | cons(Any,T).
However, in the order given, the analyzer only returns the type
T ::= [1 | cons(Any,Any).

for the second argument. The loss of precision comes from the fact that 0t is a
variable when the first recursive call takes place, and hence no information can
be deduced on its type. A remedy to this problem would consist of introducing
variable-vertices in the type graphs and sophisticated equality constraints between
the various nodes, as discussed in the conclusion.* We intentionally avoided to do
so, since this adds even more complexity to the domain and the feasibility of the
simpler case was not even demonstrated.

3. OVERVIEW OF THE TYPE ANALYSIS SYSTEM

Our type analysis system can be described as GAIA(Pat(Type)) where

1. GAIA(R) is a generic fixpoint algorithm for Prolog which, given an abstract
domain R, computes the least fixpoint (finite domains) or a postfixpoint
(infinite domains) of an abstract semantics based on R;;

2. Pat(R) is a generic pattern domain which enhances any domain R with
structural information and equality constraints between subterms;

3. Type is the type graph domain to represent type information.

The next three sections are devoted to each of the subsystems, with a special
emphasis on Type since the other two systems have been presented elsewhere [17,4].

4. THE ABSTRACT INTERPRETATION FRAMEWORK

In this section, we briefly review our abstract interpretation framework. The
framework is presented in detail in [17], and is close to the work of Marriott and

4This means moving from what Bruynooghe and Janssens call rigid type graphs to what they
call integrated type graphs.
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Sendergaard [18] and Winsborough [29]. It follows the traditional approach to
abstract interpretation [5).

Concrete Semantics. As is traditional in abstract interpretation, the starting
point of the analysis is a collecting semantics for the programming language. Our
concrete semantics is a collecting fixpoint semantics which captures the top-down
execution of logic programs using a left-to-right computation rule and ignores the
clause selection rule. The semantics manipulates sets of substitutions which are
of the form {z; « ¢,...,2, « t,} for some n > 0. Two main operations
are performed on substitutions: unification and projection. The semantics asso-
ciates to each of the predicate symbol p in the program a set of tuples of the form
(Oin, P, Opyz) which can be interpreted as follows:

“the execution of p(zy, .. .,x,)0 with 6 € @, produces a set of substi-
tutions {8y, ...,8,, ...}, all of which belongs to ©4y;.”

Abstract Semantics. The second step of the methodology is the abstraction of
the concrete semantics. Our abstract semantics consists of abstracting a set of sub-
stitutions by a single abstract substitution, i.e., an abstract substitution represents
a set of substitutions. As a consequence, the abstract semantics associates with
each predicate symbol p a set of tuples of the form (8, p, Bour) which can be read
informally as follows:

“the execution of p(xi,...,x,)f with 6 satisfying the property de-
scribed by B;, produces a set of substitutions @y, ...,8,, ..., all of which
satisfying the property described by SG,.:.”

The abstract semantics assumes a number of operations on abstract substitutions,
in particular, unification, projection, and upper bound. The first two operations
are simply consistent approximations of the corresponding concrete operations. The
upper bound operation is a consistent abstraction of the union of sets of substitu-
tions.

The Fizpoint Algorithm. The last step of the methodology consists of comput-
ing the least fixpoint or a postfixpoint of the abstract semantics. GAIA [17] is a
top-down algorithm computing a small, but sufficient subset of least fixpoint (or of
a postfixpoint) necessary to answer a user query. The algorithm uses memorization,
a dependency graph to avoid redundant computation, the abstract operations of
the abstract semantics, and the ordering relation on the abstract domain. It has
many similarities with PLAT [22], and can be seen either as an implementation of
Bruynooghe’s framework [1] or as an instance of a general fixpoint algorithm [16].
In the experimental results, we use the prefix version of the algorithm {7].

5. THE GENERIC PATTERN DOMAIN

Motivation. In the system of Bruynooghe and Janssens [13], the type graph do-
main is enhanced by a same-value component to maintain equalities between sub-
terms in order to improve accuracy. The generic pattern domain Pat (R) used here
was motivated by the same considerations. Moreover, in addition to preserving
equalities between subterms, Pat (R) also maintains sure type information (i.e.,
the functor associated with a subterm and its arguments) during and across clause
executions. The main advantages of using Pat (R) are the resulting simplification of



188

P. VAN HENTENRYCK ET AL.

the design and implementation of the domain and the factorization of sure type in-
formation. The simplification of the implementation is due to the fact that Pat (R)
updates any domain with sure type information and equalities between subterms.
Hence, given GAIA and Pat(R), the type analysis only requires implementing the
type graph domain (about 3,500 lines out of about 15,000 lines). The factorization
of sure type information enables the analyzer to reduce the size of the type graphs.
We have not tried to measure the impact of this feature experimentally. More gen-
erally, the results described in this paper should hold even if Pat(R) is replaced by
the same-value component of Bruynooghe and Janssens, although, once again, we
have not tried to verify this experimentally. In the rest of this section, we briefly
recall the basic notions behind the generic abstract domain Pat(R). See [4] for a
general account on Pat(R).

Informal Description of Pat (R). The key intuition behind Pat(R) is to repre-
sent information on some subterms occurring in a substitution instead of informa-
tion on terms bound to variables only. More precisely, Pat(R) may associate the
following information with each considered subterm: (1) its pattern which specifies
the main functor of the subterm (if any) and the subterms which are its arguments;
(2) its properties which are left unspecified and are given in the domain R. A
subterm is said to be a leaf iff its pattern is unspecified. In addition to the above
information, each variable in the domain of the substitutions is associated with one
of the subterms. Note that the domain can express that two arguments have the
same value (and hence that two variables are bound together) by associating both
arguments with the same subterm. This feature produces additional accuracy by
avoiding decoupling terms that are equal, but it also contributes in complicating
the design and implementation of the domain. It should be emphasized that the
pattern information is optional. In theory, information on all subterms could be
kept, but the requirement for a finite analysis makes this impossible for almost all
applications. As a consequence, the domain shares some features with the depth-k
abstraction [14], although Pat (R) does not impose a fixed depth, but adjusts it
dynamically through upper bound and widening operations.

Pat(R) is thus composed of three components: a pattern component, a same-
value component, and an R-component. The first two components provide the
skeleton which contains structural and same-value information, but leaves unspeci-
fied which information is maintained on the subterms. The R-domain is the generic
part which specifies this information by describing properties of a set of tuples
(t1,...,tp) where ty,...,¢t, are terms. As a consequence, defining the R-domain
amounts essentially to defining a traditional domain on substitutions. In particular,
it should contain operations for unification, projection, upper-bound, and ordering.
The only difference is that the R-domain is an abstraction of a concrete domain
whose elements are sets of tuples (of terms) instead of sets of substitutions. This
difference is conceptual, and does not fundamentally affect the nature or complexity
of the R-operations.

The implementation of the abstract operations of Pat(R) is expressed in terms
of the R-domain operations. In general, the implementations are guided by the
structural information and call the R-domain operations for basic cases. Pat(R)
can be designed in two different ways, depending upon whether we maintain infor-
mation on all terms or only on the leaves. For Pat (Type), we only maintain type
information on the leaves. Since Pat(R) and Type are both infinite domains, a
widening operation is needed as well. This operation is simply the upper-bound
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operation on Pat (R), with the upper bound operation on the subdomain replaced
by a widening operation. The widening operation on Type is the critical design
decision in Type and is discussed in Section 7.

The identification of subterms (and hence the link between the structural com-
ponent and the R-domain) is a somewhat arbitrary choice. In Pat(R), subterms
are identified by integer indices, say 1---n if n subterms are considered. For in-
stance, the substitution {& — t xa,23 «— a, x5 — y1\[]} will have 7 subterms. The
association of indices to them could be, for instance,

{(1,t%a),(2,1),(3,0), (4,a), (5, ya\[]), (6,51), (7, [])}-

The pattern component {possibly) assigns to an index an expression f(i1, ...,1n),
where f is a function symbol of arity n and 1i4,...,1, are indices. If it is omitted,
the pattern is said to be undefined. To represent the following set of substitutions

{{z1 —t*xa,z0 —a,z3 — yi\[]|},{z1 — t xa, 12 — b, z3 — y1\[]}}

the (most precise) pattern component will make the following associations:

{(1,23),(2,1),(3,0), (5,6\7), (7, [])}-

Note that no information is associated with subterm 4 since this information differs
in the substitutions. The same-value component, in this example, maps x; to 1, x2
to 4, and 3 to 5.

As mentioned previously, the R-domain associates some properties with the
leaves. In the case of the Pat (Type), we could have the association {(4,T), (6,Any) }
where T would be described as

Interaction Between Pat(R) and the Type Graph Domain. The interaction be-
tween Pat (R) and the type graph domain occurs mainly when Pat (R) is about to
lose information, i.e., when a nonleaf subterm is about to be replaced with a leaf.
The loss of information may happen in two situations:

1. when computing the result of a procedure from its clauses, i.e., in operation
UNION of GAIA;

2. when applying a widening operation to avoid computing the solutions of in-
finitely many different input patterns, i.e., in operation WIDEN of GATIA.

In both situations, the operations receive two abstract substitutions and return
an upper-bound of these substitutions. It may happen that the same subterm is
bound to two different functors in the two substitutions. When computing an upper-
bound of two terms with different functors, the indices appearing in the subtrees
of these two terms are removed from Pat(R) and replaced by an equivalent type
graph in Type.

6. THE TYPE GRAPH DOMAIN

In this section, we present the design of the domain Type. We use the type graph
domain of Bruynooghe and Janssens [13] which can be seen as a data-structure
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to represent tree grammars or monadic logic programs. The result described here
could be recast in terms of tree grammars and/or monadic predicates, but type
graphs seem more appropriate and more intuitive to handle the algorithmic issues
involved in the widening operator. The purpose of this section is to introduce the
basic terminology on type graphs, their meaning, and a number of cosmetic and
pragmatic restrictions. The connections with tree grammars and monadic logic
programs is also made.

6.1. Type Graphs

Our type graphs are essentially what Bruynooghe and Janssens call rigid types, and
readers are referred to [13] for a complete coverage of type graphs. Our presentation
uses more algorithmic concepts to simplify the rest of the presentation.

A type graph g is a rooted graph { G,r ), where G = (V,E) is a directed graph
such that, for any vertex v in G, the successors of v are ordered and r is a distin-
guished vertex called the root of g and denoted by root(g). A vertex v in a type
graph g is associated with the following information:

e its type, denoted by type(v), which is an element of {Any, functor, or};

e its functor, denoted by functor(v), which is a string and is associated with
the vertex only if type(v) = functor;

e its arity, denoted by arity(v), which is a natural number; the arity is strictly
positive if type(v) = or and 0 if type(v) = Any.

In the following, type graphs are denoted by the letter g and vertices by the
letter v, both possibly subscripted or superscripted. The successors of a vertex v
are denoted by succ(v), and the ith successor of v is denoted by succ(v,i) for
1 < i < arity(v). If v is successor of v> then v’ is a predecessor of v. The set
of predecessors of v is denoted by pred(v). We assume in the following that the
successors of an or-vertex are sorted by functor names for simplicity.

Note that more types (e.g., Integer, Real) can be added easily without affect-
ing the results described here.

6.2. Denotation

The denotation of a type graph g, denoted by Cc(g), is depicted in Figure 5. In
the figure, ST denotes the set of all terms, SST the powerset of ST, and 1fp is the
least fixpoint operator. Note that the transformation D implicitly depends on the
graph considered. Note also that, in the following, we also discuss the denotation
of a vertex v in a graph g, i.e., Lfp(D) (v), and we use Ccy(v) to denote it.

6.3. Additional Definitions

The following definitions will be useful subsequently. We assume for simplicity an
underlying type graph g.

A path is a sequence {vy,...,v,) of vertices, satisfying v; € succ(v,_;) (2 <
i < n). The length of path (vy,...,v,) is n. The depth of a vertex v, denoted by
depth(v), is the length of the shortest path from root(g) to v. A path from the
root to a vertex can be uniquely identified by a sequence of integers, each integer
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Ce({(V,E),x)) = 1tp(D)(1).

D: V — SST — V — SST
D P v =
it type(v) = Any then ST
else if type(v) = or then Ulgsgarity(v)(b(s““("»i))
else {f(t,,.. S tarity(v)) | £ = tunctor(v) & t; € ®(suce(v,i))}.

FIGURE 5 The denotation of type graphs.

denoting which successor to select. More formally, given a type graph g and a path
p, the path p identifies the vertex follow(root(g),p) where

follow(v,[]) = v;

follow(v, [i1,...,i,]) = follow(succ(v,i), [iz,...,i,1).

An ancestor of a vertex v is any vertex v # v on the shortest path from root(g)
to v. The set of ancestors of v is denoted by ancestor(v). By definition, this set is
empty if the vertex is not connected to the root. A cycleisapath{ vi,...,v,, vy ).
A cycle{ vi,...,vpn, V1 ) is canonical if depth(vy) < - < depth(v,).

The size of a graph g, denoted by size(g), is simply the number of vertices and
edges in the graph. The vertices (resp. the edges) of g are denoted by vertices(g)
(resp.edges (g)). We also use the function removeUnconnected to remove the ver-
tices which are not connected to the root. It is defined as

removeUnconnected ({{V,E) ,r)) = ((v>,E’),r) where
v ={vl|l v € V&r ¢ ancester(v)}U{r}.
E = {(v,v) | (v,v) € E& v,vv € v}.

Finally, the principal functor set (or pf-set for short) of an or-vertex, v, denoted
by pf (v), is the set of functors of its successors, i.e.,

pf{v) = {functor(v') | v € succ(v) & type(v’) = functor}.

The definition is generalized to functor-vertices by defining pf (v) ={ functor (v)}
if v is a functor-vertex and to any-vertices by defining pf(v) = 0 if v is an any-
vertex.

6.4. Cosmetic Restrictions

Our system enforces a number of cosmetic restrictions on type graphs. These
restrictions do not reduce the expressiveness of the type system, but enable us to
simplify the algorithms and proofs of correctness. The cosmetic restrictions are as
follows.

o Flip-Flop: Successors of functor-vertices are or-vertices. Successor of or-
vertices are functor-vertices or any-vertices. The root of the graph is an
or-vertex.

e Or-Cycle: In every canonical cycle (vy,...,v,,v1), the initial (and final)
vertex vy is an or-vertex.

e No-Sharing: The graph obtained by removing the last edge of every canon-
ical cycle is a tree.
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o Isolated-Any: If {vi,...,v,}(n > 1) are the successors of an or-vertex,
then no v;(1 <34 < n) is an any-vertex.

The No-Sharing restriction implies that a type graph is a tree enhanced by a number
of edges introducing cycles. The Or-Cycle restriction, in conjunction with the Flip-
Flop restriction, implies that the last edge of a canonical cycle goes from a functor-
vertex to an or-vertex. Note that some of these restrictions are related to some of
the restrictions required by Bruynooghe and Janssens.

6.5. Principal Functor Restriction

We now introduce a restriction which reduces the expressiveness of type graphs.
This restriction, called the principal functor restriction in [13], is used in many
systems (e.g., [19, 30, 13]).

e Principal Functor Restriction: if {v;,...,v,}(n > 1) are the successors
of an or-vertex,

functor(v;) # functor(v;) (1<i<j<n).

Informally speaking, this restriction requires the successors of an or-vertex to
have different functors. It reduces the expressiveness of the type system since, for
instance, any type graph including f(a,b) and f(b,a) in its denotation will also
contain f(a,a) and f(b,b). This restriction in expressiveness has been formalized
in the context of tree automata (see Section 6.7).

6.6. The Domain

The abstract domain Type simply abstracts a set of term tuples of the form (ty,...,t,)
by an abstract tuple {(g;,...,g,). The concretization function is simply given by

Cc({grs .. ..8,)) = {{t1, ..., tp) |t € Celg) 1<i<n)}

6.7. Relation to Regular Tree Grammars

Type graphs can be seen as a data-structure to represent regular tree grammars
[10, 25]. This correspondence is systematically exploited in this paper to display
the results. It can be formalized by associating a non-terminal symbol T, with
each vertex v. The grammar rule associated with an or-vertex v with successors
Vi,-..,V, is simply

T, ::=Tyy | - | Ty, .
The rule associated with a functor-vertex having f as functor and vy, ,...,v, as
successors is simply

Ty 1= £(Ty,,...,Ty,).

For our application, regular tree grammars need to be extended with a special
terminal symbol Any which recognizes any tree. The rule associated with an any-
vertex simply becomes

T, ::= Any.
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The initial symbol of the regular tree grammar is the nonterminal symbol associated
with the root of the graph.

To define the tree generated by a regular tree grammar, it is useful to put the
grammar in normal form [10]. In our context, this means that all the rules must of
the form

T = £(Ty,...,Tn).

or of the form
T ::= Any.

A regular tree grammar can always be transformed into an equivalent grammar in
normal form. We are now in a position to define the trees recognized (or generated)
by a regular tree grammar.
A tree £(ty,...,t,) is recognized by a nonterminal symbol T if there exists a
rule
T ::= Any.

or if there exists a rule
T ::= £(Ty,...,Ty).

and t; is recognized by T;(1 < ¢ < n). The trees recognized (or generated) by a
regular tree grammar are the set of all trees recognized by its initial symbol.

Note that a regular tree grammar satisfies the principal functor restriction if, for
any nonterminal symbol 7' and functor f, there is atmost one rule of the form

T ::= £(Ty,...,Tn).

There are several points worth mentioning here. The trees recognized by regular
tree grammars are exactly the trees recognized by nondeterministic bottom-up or
top-down tree automata.® Moreover, the trees recognized by regular tree gram-
mars satisfying the principal functor restriction are exactly the trees recognized by
deterministic top-down tree automata. It is a basic result of tree automata theory
that determinism is a real limitation of top-down tree automata. This comes from
the fact that disjoint subtrees are recognized independently. This inability to share
information between subtrees is compensated in nondeterministic tree automata by
their ability to guess the correct relationships. See also [10] for a formal character-
ization of the set of trees recognized by deterministic tree automata in terms of a
closure property.

Note also that, in the examples, we sometimes relax the cosmetic restrictions to
improve clarity.

6.8. Relation to Monadic Logic Programs

Type graphs can also be related to monadic logic programs of [30, 8]. The logic
program associated with a type graph succeeds for all well-typed terms. A simple
way is to associate a procedure p, with each vertex v. The procedure for an any-
vertex is simply

any (X).

5Informally speaking, a state in a nondeterministic top-down tree automation corresponds to a
nonterminal and every grammar rule corresponds to a transition. Note that, in the terminology of
[10], frontier-to-root is used instead of bottom-up and root-to-frontier is used instead of top-down.
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The procedure for a functor-vertex having f as functor and vy, . . . ,v,, as successors
is simply
P (£ XK1, ...,Xn)) = py, (K1), .- o ,Pv, (Xn) .

The procedure associated with an or-vertex with successors vy, ... ,v, is simply

Py (X) Mt le (X).

pv(X) - py, (X).

Note that inferring even the principal functors of an argument is undecidable
since the halting problem for a program prog(Input, Output) can be expressed
as the type inference problem:

pa, Input) :- prog(Input, Output).
p(b, Input)

6.9. Operations on Type Graphs

The abstract operations of Type can be obtained immediately from three operations
on type graphs:

1. g1 < go: returns true if Ce(gy) C Ce(g);
2. g1 N gy returns gz such that Ce(gy) N Ce(gz) C Celgs).
3. g1 U gy returns gz such that Ce(gy) U Ce(g) C Ce(gs).

The first two operations are described in [13]. The first operation can be used
directly, while the second needs to be adapted slightly to enforce our cosmetic
restrictions, although there is no difficulty in doing so. Note that intersection is
used for unification since our type graphs are downward-closed. The third operation
is not described in [13] which uses an indirect approach: first, an or-vertex is created
with the two inputs as successors; then, a compaction algorithm is applied to satisfy
the restrictions. Qur system uses a direct implementation which does not raise any
difficulty. It is only necessary to take care of the principal functor restriction in the
case of or-vertices by applying the algorithm recursively. Of course, memoization
is used to guarantee termination.

Note also that, in the following, we often use operation < on vertices to denote
inclusion of their denotation. The algorithm is the same as for type graphs.

7. THE WIDENING OPERATOR

The main difficulty in the type graph domain comes from the fact that the domain
is infinite and does not satisfy the ascending chain property. In fact, it is not
even a cpo. To overcome this difficulty, Bruynooghe and Janssens [13] use a finite
subdomain by restricting the number of occurrences of a functional symbol on the
paths of the graphs. We adopted a different solution based on a widening operator
as proposed in [5]. The design of widening operators is experimental in nature, and
it affects both the performance and accuracy of the analysis. The examples given
previously in the paper show that our widening operator leads to accurate results
and is effective in keeping the graph sizes small. The purpose of this section is to
describe the widening operator informally and formally.
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7.1. Informal Presentation

In abstract interpretation of Prolog, widening needs to be applied in two different
situations:

1. when the result of a procedure is updated;
2. when a procedure is about to be called.

In the first case, widening avoids that the result of a procedure be refined infinitely
often, while in the second case, widening avoids an infinite sequence of procedure
calls. Hence, the widening operator is always applied to an old graph g4 (e.g., the
previous result of a procedure) and a new graph gnew (e.g., the union of the new
clause results) to produce a new graph g,.s (e.g., the new result of the procedure).
The main idea behind our widening operator is to consider two graphs

go = &old and En =8old Y Bnew

and to exploit the topology of the graphs to guess where g, is growing compared
to g,. The key notion is the concept of topological clash which occurs in situations
where

® an or-vertex v, in g, corresponds to an or-vertex v, in g, where pf(v,) #
PE(Va);

e an or-vertex v, in g, corresponds to an or-vertex v, in g, where depth(v,) <
depth(v,,).

In these cases, the widening operator tries to prevent the graph from growing
by introducing a cycle in g;,,. Given a clash (v,,v,) the widening searches for an
ancestor v, to v, such that pf(v,) C pf(vy). If such an ancestor is found and if
Vg = Vy, a cycle can be introduced.

Consider, for instance, append/3. The second iteration has produced the follow-
ing type graph for the first argument:

T, ::= [0 | cons(Any,Ty).
T, ::= [1.

The union of the clause results for the third iteration gives the following type graph
for the first argument:

Tnew ::= [ | cons(Any,Ts).
T, [0 | cons(Any,Ts).
Ts = (1.

Taking the union of T, and T, produces the type graph described by T,eq.

There is a topological clash between T, and T, for the path [2) 2], which
corresponds to the nonterminals T; and T,, respectively. The widening selects Tpeq
as an ancestor and introduces a cycle producing the final result

T. ::= [0 | cons(Any,T,).

Note also that an ancestor at any depth can be selected. For the first arithmetic
program (See Figure 2), the widening applies to the type graphs T, and T,, depicted
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T, ::=0 | 0+T.

T1 =1 I Ty, * Ta.

T = cst(Any) | par(0) | var(Any).

Tn =0 | T3+ Ts. FIGURE 6 Widening for the first
Ts =0 | 0+ T, arithmetic program.

T4 =1 l T4 * Ts.

Ts = cst(Any) | par(0) | var(any).

Tg =1 | Tg * T7.

Tz = cst(Any) | par(T3) | var(Anmy).

in Figure 6. Consider the clash occurring for the path [2, 2, 2, 2, 2, 1] for T, and Tj,.
An appropriate ancestor for Ts is T, which is not a direct ancestor. This results in
the optimal result T,.

T, ::=0 | T, + Ty.
Ty =1 | Ty *x Ty
T ::= cst(Any) | par(T,.) | var(Any).

When no ancestor with a suitable pf-set can be found, the widening operator sim-
ply allows the graph to grow. Termination will be guaranteed because this growth
necessarily adds along the branch of a pf-set which is not a subset of any existing
pf-set in the branch. This case, of course, happens frequently in early iterations
of the fixpoint. Returning to the arithmetic program, the second iteration for the
predicate basic/2 requires a widening for the first argument with the following two
graphs:

T, ::
Tn

cst(Any) | var(Any).

cst(Any) | par(0) | var(Any).

A topological clash is encountered, but there is no suitable ancestor. The result will
simply be T, in this case. Letting the graph grow in this case is of great importance
to recover the structure of the type in its entirety.

The last case to consider appears when there is an ancestor v, with a suit-
able pf-set, but unfortunately, v, > v, is false. In this case, introducing a cycle
would produce a graph T, whose denotation may not include the denotation of T,,,
and hence our widening operator cannot perform cycle introduction. Instead, the
widening operation replaces v, by a new or-vertex which is an upper bound to v,
and v, but decreases the overall size of the type graph. The widening operator is
then applied again on the resulting graph.

As a consequence, our widening operator is best viewed as a sequence of trans-
formations on T,,, which are of two types: (1) cycle introduction; (2) vertex replace-
ment, until no more topological clashes can be resolved. We now formalize these
notions.
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7.2. The Widening and Its Formal Properties

The following abbreviations will also be useful in this section.

OR(vy) = type(vy) = or.
same-depth(vy,vy) = depth(vy) = depth(vy).
same-pf (vy,vy) =pf(vy) = pf(vy).
We also use (n1,...,n;,...,n,) | ¢ to denote element n;. This notation is general-

ized to sets of tuples by defining S | i={s | i|s e S}

7.2.1. TOPOLOGICAL CLASHES. As mentioned previously, the key idea behind
our widening operator is to exploit the topology of the graphs to guess where the
sequence is growing. We can establish a correspondence between the vertices of two
graphs as follows.

Definition 7.1. The correspondence set between two type graphs gy and gy, de-
noted by c(g,,g,), is the smallest relation R closed by the following two rules:

e (root(gy), root(gl)) € R.
e (vy ,v3) € R & same-depth(vy, vy) & same-pf(vy,vy)=

(succ(vy,i), succ(vy,i)) € R(1 < i < arity(vy)).

The set of topological clashes can now be defined in a simple way. Informally speak-
ing, a topological clash occurs when two vertices in correspondence have different
pf-sets or different depths.

Definition 7.2. Let gi,g2 be the two type graph such that g4 < go. The set of
topological clashes between gy and g,, denoted TC(g;, g) is defined as follows:

TC(gy, g2) = {(vi, v2) | (vi, v2) €C(g1, g0 &
—(same-depth(vy,vy) & same-pf(vy,vy)}.

The following proposition is an immediate consequence of the definitions. Infor-
mally speaking, it says that topological clashes only occur at or-vertices.

Proposition 7.1. Let g;,g> be two type graphs such that g4 < g,. If (vq, v2) €
TC(g1, g2), then OR(vy) & OR(va). Moreover, if (v4, vq) are not the roots of
the graphs, there exists a unique tuple (v,, v;), denoted by ca(vy, v3), such
that vy € succ(v,) and vy € succ(vl).

Note also that (vy, vo) € TC(gy, g) implies that pf(v,) = @ (i.e., the only
successor of vp is an any-vertex) or pf(vy) C pf(vy). Our widening operation
focuses on a subset of topological clashes which lead to a growth in the graph.

Definition 7.3. Let g1,g2 be two type graphs such that gy < go. The set of
widening clashes between g; and g, denoted WIC(g1, g2), is defined as follows:
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replaceEdge(g,s,e’) = removeUnconnected(g’') where
vertices(g’') = vertices(g)
edges(g’) = edges(g) \ {e} U {e’}
Toot(g') = root(g).

replaceVertex(g,v,v’) = removeUnconnected(g’) where
vertices(g') = vertices(g) U {vi,...,v,} (n > 1)
edges(g’) = edges(g) \ E; U E; U E3
root(g') = root(g)
vertices(g) N {vy,...,v,} = 0
Ey = { (va,vs) | (va,vy) € edges(g) & v, = v }
Ex = { (va,v1) | (va,vs) € edges(g) & vy = v }
(va,vs) € E3 = vq € {v1,...,va} & v, € vertices(g’)
vy > v, v!
size(removeUnconnected(g')) < size(g).

FIGURE 7 The functions replaceEdge and replaceVertex.

WIC(g1, 820 = {(vi, vo)|(vy, vu) € TC g1, £2) & pf(vy) #0 &
((pf(vy) # pf(vy) & same — depth(vy, vy))V
depth(v;)< depth(vy)))}

7.2.2. TRANSFORMATION RULES. The widening operator essentially consists
of applying two transformation rules to eliminate (a subset of) widening clashes.
The transformation rules nondeterministically produce a new type graph g, from
two type graphs g, and g, and g, < g,,. They are defined in terms of two functions:
replaceEdge and replaceVertex. Informally speaking, replaceEdge(g,e,e’) re-
places edge e by edge e’ in the graph, while replaceVertex(g,v,v’) replaces
vertex v by a new vertex greater than or equal to v and v’ and decreases the size
of the graph. The formal definitions of the functions are given in Figure 7. In
the second definition, {vy,...,v,} are the new vertices added to the graphs, v, is
intended to replace v in the new graph, E; are the edges into v in the old graph
that are replaced by new edges into v; in the new graph (the set E;), and E; are
the remaining new edges starting from new vertices. Note the last two conditions
that guarantee that the denotation of v, is greater than the denotations of v, v:
and that the size of the new graph is smaller than the size of the old graph. The
first operation is straightforward. The second operation can be implemented easily
by making v, an any-vertex. It is, however, possible to obtain much more precision
by using a variant of the union operation which avoids creating or-vertices which
would lead to a growth in size. Note also that the case where v>> v can be handled
in a straightforward manner. We are now ready to specify the transformation rules.
The cycle introduction rule introduces a cycle in the graph by replacing edges to a
vertex by edges to one of its ancestors.

Definition 7.4 [Cycle Introduction Rule]. Let g, and g,, be two type graphs, and
let

CI(go, gn) = {{(v, vp) (v, vo))| (vo, vn) € WICgs, gn) &
v, € ancestor(v,) & v, > v, &
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depth(v,) > depth(vy) & v =ca(v,, v,) { 2}
The cycle introduction rule can be specified as follows:

TRi(go» 8n) =8~

Precondition :CI(g,, g.) # 0.

Postcondition : g, =replaceEdge (g,, e, e’)
for some(e, e’) € CI(g,, gn).

The following result shows that the cycle introduction rule involves the widening
clash entirely.

Proposition 7.2. Let g, = replaceEdge(gy,e,e') for some (e,e) € CI(gs, gn)-
Then,

HWTC(go, gn) < #WIC(go, &-)-

PROOF. Assume the notations of the definition of the cycle introduction rule. If
same-depth(v,,v,), then the result is obviously true since depth(v,) < depth(v,).
Otherwise, either depth(v,) < depth(v,), in which case the result is trivial, or
depth(v,) = depth(v,). In this last case, (v,, vq) € C(g,, gn) by definition of
the cosmetic restrictions, and thus pf (v,) = pf(v,) by definition of the topological
clashes. O

The replacement rule applies when a cycle cannot be introduced because the
denotation of the ancestor is not greater than the vertices in the clash. It replaces
the ancestor by an upper bound of the vertices.

Definition 7.5. [Replacement Rule.] Let g, and g, be two type graphs, and let

CR{go,8n) = {(vn,va) | (v,,v,) € WTC(go,8n) &
Vv, € ancestor (vp) & (v, > v ) &
depth(v,) > depth(v,) &

(pf(vn) C pflv,) V depth(v,)<depth(v,)) }.

The replacement rule can be specified as follows:

TR, (g0, &n)=8r
Precondition : CR(g,, gn)=0.
Postcondition : g.=replaceVertex(g,,v,,Vn)

for some (v, v,) € CR(g,, g.).

Note that this rule only applies when pf(v,) C pf(v,) or when there is a
depth-clash, and hence it leaves room for the expansion of type graphs before
the widening applies. In the case of the depth-clash, there is at least one suitable
ancestor so that the rule always applies. Note also that this rule may solve the
widening clash by introducing new widening clashes in the graph. However, by
definition of replaceVertex, the size of the resulting graph must decrease.
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7.2.3. THE WIDENING OPERATION. We are now in a position to present the
widening operation. The widening essentially applies the transformation rules until
the sets CI and CR are empty.

Definition 7.6 [Widening Operator]. The widening operator g, ¥/ g is defined as
follows:

Eo V &n~™
if g, < g, then g, else widen(g,, g,U gn).

widen(g,,g,)=
if CI(go,gn) # @ then widen(g,,TRi{gs,gn))
else if CR(g, ,g,) # O then widen(g,,TR,(g,,8,))

else En.
We now prove two important results on operation 7.
Proposition 7.3 (Termination). Operation 57 terminates.

PROOF. We define a function F which maps a graph g to a pair of natural numbers
(ny,n2) such that ny = size(g) and ny = #WTC(g,, g). The set of these pairs
becomes a well-founded set with the following total ordering:

(ng,mg) < (ny,ny) i ny <njor

ny = nj and ny < n,.

Consider now the sequence of graphs g;,...,g;,... occurring as second argument
of widen. We have F(g;) < F(gi—1) since the cycle introduction rule satisfies
size(g,) < size(g; ;) and #WTC(g,, g;)< # WIC(g,, gi—1) by Proposition

7.2, while the replacement rule satisfies size(g;) < size (g;_1). O

We now prove that v/ is a widening operator. The main ideas behind the proof
can be described very informally as follows. v/ lets the graph grow, when a suitable
ancestor to introduce a cycle cannot be found. However, each time 57 lets the graph
grow, it introduces a vertex with a new pf-set (not included in the pf-sets of its
ancestors) along a branch. Hence, the more 7 is applied, the easier it becomes to
find a suitable ancestor along a given branch. Eventually, the graph cannot grow
along this branch. This idea is captured by the concept of potential in the proof. In
some cases, the potential does not decrease, but then we can show that the cycles
involve vertices closer and closer to the root. This is the idea behind the set E in
the proof. We now formalize these ideas.

Theorem 7.1.  Operator <7 is a widening operator.
PROOF. We first show that g, 7 gn > £,.8,. This follows immediately from the

fact that widen is applied initially on g, and g, U g, and that the transformation
rules cannot decrease the denotation.
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Letg'g,...,g,,. .. be asequence of type graphs and go, . . .,g, . . . asequence
defined as

>

go &o
gir1 = g veg(i>0

We show that gg, .. .,g;, - - . is stationary. To define a well-founded set, we assume
without loss of generality that a is the number of function symbols in the analyzed
program and we use the following notions. The potential of a vertex v, denoted
by p(v), is defined as follows:

plv) = 2%+1 if pf(v) = 0.
p(v) = #{s|sCpf(v)and v: € otherwise. ancestor(v)orv = v}

We use P[S,i] to denote the number of vertices v in 8 such that p(v) = i, and
we define a function P which associates a graph with tuple

{P[vertices(g), 2],...,P[vertices(g), 2%+11).
The set of these tuples is a well-founded set for the following total ordering:

(N1, ... ms) < {nf,...,n.)if
ny < nj or

(n4) = (n}) and ny < nj or

Ny, ..., ms—1) = (nf,...,n%_;) and ng < nj.
We also denote by E[g, 1] the number of edges in g whose destination is an or-vertex
at depth i and define a function E which maps a graph to the natural number

o0

> i Elg,il.

i=1

We prove that the sequence is stationary by associating with each graph g a pair
(mp,me) = (P(g),E(g)). The set of these pairs is a well-founded set for the
following total ordering:

(mp, me) < (my,me) if my < mj or
m, = m

Consider the following sets:

CO0 = C(gi, gi+1)\ TC(g;,gi+1)-

TC = TC(g:i, &i+1).

NE = {v€ gip1 | —Tvlv,vde Clgi, gir1)}-
0E = {veEg|-Iv Clgi, gi+1) }.

Each tuple (v,v') in CO satisfies p(v) = p(v’). Hence,

P{COLl1, k] = P[CO42, k] (2 <k <22 +1)
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Each tuple (v,v’) in TC can only be of three different forms by definition on v
knowing that OR(v) & OR(v>):®

o different-depth: — same-depth(v,v’);
e new-any-vertex: pf(v) # @ and pf(v') = §;
e different functor: same-depth (v,v') & pf(v’) # Q&pf(v) # pf(v’)

In the first case, we have depth(v’) < depth(v) by definition of 7. Hence, p(v’)
has already been accounted for in CO | 2. In the second case p(v') > p(v) by
definition of the potential. In the third case, p(v:) > p(v) by definition of 37 and
of the potential. Two cases must be distinguished now:

e existence of a functor clash: there exists a tuple (v,v') in TC such that
pf(v’) =0 or pf(v) # pf(v);
¢ depth clashes only: all other cases.

We first prove that if there exists a functor clash, then P(g); > P(g;+1). The
existence of a tuple (v,v') in TC such that pf(v’) = @ or pf{v) # pf(v’) implies
the existence of k such that

P[CO41UTCLL, k] > P[CO42UTCL2, K].
PICOI1UTCIL, j1 = P[COJ2UTCY2, j1(2 < j < k).

It remains to consider the sets NE and OE. Note that each vertex v" in NE has an an-
cestor v’ such (v,v’) € TC for some v by definition of 57. Moreover, p(v) < p(v’)
< p(v"). It then follows that

P[CO41UTCLL, k] > P[COL2UTCL2UNE, kJ.
P[COL1UTCIL,j] = P[COL2UTCI2UNE, jl1(2 < j < k).

and hence that P(g;) > P(gi+1).

Consider now the remaining case. Since there exists no tuple (v,v’) in TC such
that pf(v’) = @ or pf(v) # pf(v’), the fact that depth < depth(v’) for all
(v,v’) in TC implies that

PLCOLLUTCHL, j1 > PICOI2UTCE2,j1(2 < j < 22+1).

and that NE is the empty set. It follows that P(g;) > P(g;+1). We conclude the
proof by showing that if P(g;) = P(gi;1), then E(g;) >E(gi11) . P(g;) = P(git1)
implies that OE is the empty set. Assuming g; < g;+1, there must be at least
one pair (v,v’) € TC and, by definition of 7, depth(v) > depth(v’). Hence,
E(g;) > E(giy1). O

8. IMPLEMENTATION DETAILS

The implementation was greatly simplified by the availability of GAIA and Pat (R)
which enables us to focus on the type graph domain. The implementation of the
type graph domain is based on a small number of principles and optimizations.

SRecall that an or-vertex has an empty pf-set only if it has as its only successor an any-vertex.
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First, hash-tables are used in all algorithms to memorize pairs of vertices that
have been encountered already. This is useful to guarantee termination of almost
all operations, including inclusion, union, and intersection. Second, some of the
cosmetic restrictions are relaxed in the implementation to allow for a more compact
representation of the graphs. In particular, the Flip-Flop restriction is relaxed to
allow a functor-vertex to have functor-vertices and/or any-vertices as successors.
Finally, in the widening operation, the computation of the widening clashes is
performed at the same time as their resolutions. This enables us to speed up the
algorithms considerably since, in many cases, a single traversal {or a small number
of traversals) of the graph would be enough.

The main open issues that remain in our implementation of the type graph
domain are how to generalize the algorithms to remove the No-Sharing and the
Or-Cycle restrictions and to apply the idea of caching [7]. Lifting these restrictions
should allow for a more compact representation of the type graphs.

Ancther important issue concerns the integration of the domain into GAIA. In its
current version, GAIA creates an input pattern for each new abstract substitution
encountered for some goal. Although this is appropriate for multiple specialization
[29], it may be very demanding when the domain is large and contains disjunctive
information. Techniques to avoid explosion of the number of input patterns should
be investigated. See Section 9 for more discussion on this topic.

9. EXPERIMENTAL EVALUATION

We now describe the experimental result of our type system. We first describe the
benchmarks and discuss the efficiency and accuracy of the analysis.

The Benchmarks. The benchmark programs’ are hopefully representative of
“pure” logic programs. KA is an alpha—beta program to play the game of kalah
[23]. PR is a symbolic equation-solver [23]. CS is a program to generate a number of
configurations representing various ways of cutting a wood board into small shelves
[26]. DS is the generate and test equivalent of a disjunctive scheduling problem [6].
RE is the Prolog tokenizer and reader of O'Keefe and Warren. PG is a program
written by Older to solve a specific mathematical problem. BR is a program taken
from Gabriel benchmark. PL is a planning program from [23]. QU solves the n-
queens problem. Finally, PE is the peephole optimizer of SB-Prolog, written by
Debray. We will also prefix some programs by L to indicate that the input query
assigns lists to some arguments. Finally, we will also use the arithmetic programs
discussed previously and denote them by AR and AR1. Table 1 gives some indication
of the size of these programs, while Table 2 reports the number of nonrecursive, tail
recursive, locally recursive (more than one recursive call or a nonterminal recursive
call), and mutually recursive procedures in each of the benchmarks. In Table 1, the
number of goals is the number of procedure calls in the program, while the size of
the static call tree is essentially the size of the static call graph, except that some
of the recursive calls are removed. This measure was introduced in [15] to simplify
the complexity analysis. Four programs have only tail recursive procedures or
nonrecursive procedures. Many programs have mutually recursive procedures and
some have many of them. In general, the majority of procedures are nonrecursive,

"The benchmarks are available by anonymous ftp from Brown University.
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TABLE 1. Sizes of the Programs

KA|QU{!PR| PE| CS| DS | PG| RE| BR | PL
Number of Procedures 44 3 52 19 32 28 10 42 20 13
Number of Clauses 82 9 | 158 | 168 55 52 18 | 163 45 26
Number of Program Points | 475 38 | 742 | 808 | 336 | 296 93 | 820 | 207 | 94
Number of Goals 84 8 | 130 90 57 60 17 | 168 37 29
Static Call Tree Size 73 5 75 80 46 47 11 | 144 21 25

TABLE 2. Syntactic Form of the Programs

KA QU |[PR|PE|CS|DS| PG| RE|BR]|PL
Tail recursive 12 4 12 6 9 14 6 6 11 4
Locally recursive 0 0 5 0 1 0 0 0 1 0
Mutuaily recursive 7 0 8 4 2 0 0 16 0 0
Non-recursive 25 1 27 9 20 14 4 20 8 9

and in many programs, most of the recursive procedures are tail recursive. Program
PR contains locally recursive procedures due to their divide and conquer approach.
Note that mutually recursive programs are generally difficult for type analysis, as
mentioned, for instance, in [11].

Computation Times. In this section, we analyze the efficiency of our type system
experimentally. Table 3 describes the CPU time (on a Sun Sparc-10), the number
of procedure iterations, and the number of clause iterations. Informally speaking,
the number of procedure (resp. clause) iterations is the number of times a pro-
cedure (resp. clause) is analyzed in the fixpoint algorithm (see [17] for a precise
description of these measures}). We also give the CPU time when the number of
successors to or-vertices is restricted to 5 and 2, respectively. The algorithms are
then generalized to replace an or-vertex with too many successors by an any-vertex.
As can be seen, the analysis is fast (below 3 seconds) for all programs except RE,
which takes about 117, 23, and 9 seconds, depending on the various restrictions.
Note that PR is heavily mutually recursive, that CS manipulates heavily nested lists,
and that PE has large disjunctions, yet the running time of these programs is excel-
lent. Program RE is time consuming since it manipulates large graphs (the result of
the tokenizer shown previously is only the first step), is heavily mutually recursive,
and contains an accumulator-based procedure (very much like the process predi-
cate shown previously) in the middle of the recursion. This procedure is actually
where the time goes since it is expensive in itself, is applied on the largest graphs
occurring in the program, and is recomputed each time a new approximation for
the main predicate is obtained. Program RE is a worst case scenario for our an-
alyzer. It is also important to stress that program RE seems to be a pathological
benchmark for all abstract domains of which we are aware (e.g., [17, 3]), and is not
even typical of a mutually recursive program since PR is heavily mutually recursive

TABLE 3. Computation Results

KA QU PR PE Cs DS PG RE BR PL
CPU Time 1.52 | 0.01 | 2,51 { 2.73 | 1.01 | 0.72 { 0.39 | 117.15 | 0.38 | 0.31
Procedure Iterations 149 18 253 109 99 7 59 1052 T 50
Clause [terations 290 35 791 569 190 142 123 3300 165 98
CPU Time (5} 1.27 | 0.01 2.35 2.06 { 0.97 | 0.61 0.37 23.00 | 0.38 | 0.28
CPU Time (2) 1.23 | G.01 2.25 1.69 1.02 | 0.71 0.35 9.19 | 0.43 | 0.31
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as well. The difficulty in RE comes from the combination of mutual recursion with
an abundance of functional symbols {representing priorities and precedence of op-
erators, for instance) which produces a rich spectrum of input patterns. Presently,
our analyzer allocates a new input pattern whenever needed, which can be very
demanding when the domain is as precise and as large as the type graph domain.
The most satisfactory solution around this problem is probably to limit the number
of input patterns for each procedure by collapsing them. Imposition of restrictions
on the size of the graphs or the out-degree of vertices as shown in the table are
another solution. Overall, the results are very encouraging, and seem to indicate
that type graphs can be engineered to be practical. The tradeoff between efficiency
and accuracy obviously remains an important topic for further research.
Accuracy. To give an idea of the accuracy of the system, we measure tag in-
formation that can be extracted from the input/output patterns of the analysis
under the following assumptions. First, no multiple specializations take place, i.e.,
a procedure is associated with a single version. This assumption is motivated by
the inherent difficulty in comparing polyvariant analyses since they may have fun-
damentally different input/output patterns. Second, we consider the following tag
information: NI (empty list), CO (cons), LI (list), ST (structure), DI (atom), and
HY (structure or atom). For each program, we extract the tag of each procedure
argument. These tags will allow us to generate more efficient code by avoiding
tests and specializing indexing. Hence, the analysis should infer as many tags as
possible. In addition, we compare the information so obtained with the information
produced by an analysis preserving only principal factors, i.e., the pattern domain
of [17] which can be seen as an instantiation of Pat(R) with mode and sharing.
These components play no role in the type analysis, but allow the computation
of freeness. This domain is roughly equivalent to the domain of Taylor [24]. The
type analysis described here is always more precise than the pattern domain, and
the gain can come from disjunctive and recursive types. Note also that when the
pattern domain infers a single functor for an argument, so does our type analysis.
The results are described in Tables 4 and 5 for the output and input tags, respec-
tively. A column is associated with each tag and contains the number of arguments
whose tag corresponds to the column. We also give in parentheses the number of
arguments inferred by a principal functor analysis when this number is nonzero.
Columns A, AI, and AR represent the number of arguments, the numbers of ar-
guments for which the type analysis improves over the functor analysis (i.e., infer
more tag information), and the ratio between the last two figures. The last three
figures collect the same information at the clause level, with the understanding that
a clause is improved if any of its arguments is inferred more precisely. The results
indicate that type analysis significantly improves a principal functor analysis. On
average, the type analysis produces an improvement in about 50% of the output
tags and about 21% of the input tags. The tag information is improved in 67% of
the clauses (output) and 38% of the clauses (input). Most of the improvement is
divided into the tags LI, DI, ST, and HY, with a majority of the tags being lists.
The results also show that the combination of type (as described in this paper)
and freeness (as described in many other papers) analysis should produce significant
improvement in code generation since the two analyses are complementary.
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TABLE 4. Accuracy Results: Output Tags

Type Graphs (Principal Functors) Comparison
Programs NI CO | LI ST DI | HY AJAl ] AR| C | CI| CR
AR 0 0 6 1 0 3 10 10 1.00 5 5 1.00
AR1 o] 0 6 4 0 0 10 10 | 1.00 5 5| 1.00
CSs 0 | 31(30) | 23 0 0 0 93 24 | 0.26 | 33 12 | 0.37
DS 0 5(4) | 29 0 1 (1) 0] 59| 30|05t |2 | 13} 045
BR 0 8(8) | 13 2(2) | 10 (10) ol 59|13 [o022]20] 111055
KA 0| 11{(11) | 20 27 | 13Q1) 2 |i 124 | 34| 0.27 | 45 | 22 | 0.49
LDS 0 5(4) | 39 0 1 (1) oll 61 ) 40| 066 | 31 ] 23| 0.56
LPE 0 6(6) | 25 8 (3) 6 4| 63| 40| 066 |19 19| 1.00
LPL 0 3(9) | 10 7 (3) 0 1] 33| 15045 14| 8| 057
PE 0 6(6) | 23 8 (3) 8 41 63| 38 (060 |19 19| 1.00
PG Q 6 (6) 14 0 0 0 31 14 0.45 10 7 | 0.70
PL 0 9 (9) 5 7(3) 0 1 33 10 | 0.30 14 8 | 0.57
PR 0| 19(19) | 24 | 24(20) | 10¢(8) 0| 144 | 32| 022 {53 22| 041
QU 0 1(1) | s 0 0 oil 11| 6|o0s5| 5{ 41080
RE 2 (2) 6(6) | 28 1 (1) 8 (2) 30123 ) 37 030 |43 27| 063
Mean , 1 0.50 0.67

10. CONCLUSION

In this paper, we have described a sophisticated type analysis system for Prolog.
The system is based on abstract interpretation and uses three main components:
a fixpoint algorithm, a generic pattern domain, and the type graph domain of
Bruynooghe and Janssens. The main contribution of our work is to show that
type analysis of Prolog based on type graphs can be engineered to be practical
without sacrificing accuracy. This has implications beyond type analysis since type
graphs are used for a variety of other analyses such as termination and compile-time
garbage collection. The key technical contribution of this work is a novel widening
operator which appears to be rather accurate and effective in keeping the sizes of
the graphs, and hence the computation time, reasonably small.

There are many ways to extend this work. A natural extension is to consider

TABLE 5. Accuracy Results: Input Tags

Type Graphs Comparison
Programs || NI T CO T LI ST DI [ HY A | Al AR C [ CI CR
AR1 0| Q 2 Q 0 ¢} 10 2 0.20 S 1 0.20
AR 8] 0 2 0 0 o] 10 2 0.20 5 1 0.20
CsS [¢] 9 (8) 14 0 0 0 93 15 | 0.16 | 33 10 | 0.30
DS 0 2(1) 15 0 1(1) 0 59 16 | 0.27 | 29 12 | 0.41
| BR 0 0 s 1(1) |10(0)| ol s9| s |o0o08|20]| 5025
KA 0| 2(2) | 13| 18(18) 7(1) 2 124 21 | 0.17 | 45 18 | 0.40
LDS 0|2(1)] 23 0 1(1) ol 61 24 (0393113042
LPE 0 0 18 5 (3) 0 0 63 20 1 032 ] 19 14 | 0.74
LPL 0t3@]l 2 4 (3) 0 1 33| 1404214} 10|07
PE 0 Q 8 5 (3) a 0 63 10 | 0.16 | 19 6 | 0.32
PG o} 5 (5) 7 0 0 0 31 7 ] 0.22 10 5 ] 0.50
PL 0 3@ 1 4 (3) 0 1l 33| 3loo9 |14l 3|o0nn
PR 0|9() 18] 9(7) 5(3)| o1 144 | 22015 |53 | 19| 036
QuU 0 0 2 4] 0 0 11 2] 0.18 5 2 | 0.40
RE 122 | 10 1(1) 5 (2) 3123 16]013}43| 14033
Mean 0.21 0.38
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integrated type graphs which allow variable-vertices and should enable difference-
list programs to be handled precisely. Another extension consists of providing a
database of types that the widening can use whenever an ancestor must be se-
lected and/or replaced. Finally, on the theoretical level, it would be interesting to
characterize for which classes of programs our widening is optimal in accuracy.

Note that, recently, another practical type analysis has been proposed by Gal-
lagher and de Waal [9]. The analysis is based on monadic logic programs, and
uses bottom-up abstract interpretation with a normalization procedure to obtain a
finite domain. The normalization has some similarities with our widening, but it
may lose much accuracy by merging types with the same principal functors. This
makes it impossible to handle nested structures with the same functors, a situation
which occurs very frequently in practice (see, for instance, the program in Figure 1
and the tokenizer of Prolog in Section 2). Their analysis is about 30 times a slower
on the common benchmarks (i.e., Press and Qsort), but they use a slightly slower
machine and Prolog as the implementation language.

Stimulating discussions with David McAllester are gratefully acknowledged. Detailed comments
from the three reviewers helped in improving the presentation and in establishing the connection
with tree grammars. We are particularly grateful to one of the reviewers for identifying several
limitations in the formalization of our algorithm. This research was partly supported by the Office
of Naval Research under Grant N00014-91-J-4052 ARPA Order 8225, by the National Science
Foundation under Grant numbers CCR-9357704, and by a National Young Investigator Award.

REFERENCES

1.

[S24

Bruynooghe, M., A Practical Framework for the Abstract Interpretation of Logic Pro-
grams, Journal of Logic Programming 10(2):91-124 (Feb. 1991).

Bruynooghe, M. and Janssens, G., An Instance of Abstract Interpretation: Integrating
type and Mode Inferencing, in: Proc. 5th International Conference on Logic Program-
ming, Seattle, WA, August 1988, MIT Press, Cambridge, pp. 669-683.

Corsini, M., Musumbu, K., Rauzy, A., and Le Charlier, B., Efficient Bottom-up Abstract
Interpretation of Prolog by Means of Constraint Solving over Symbolic Finite Domains,
in: Proc. 5th International Conference on Programming Language Implementation and
Logic Programming, Tallinn, Estonia, Aug. 1993.

Cortesi, A., Le Charlier, B., and Van Hentenryck, P., Combinations of Abstract Do-
mains for Logic Programming, in: 21st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages,, Portland, OR, Jan. 1994.

Cousot, P. and Cousot, R., Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints, in: ACM Press
(ed.) Conf. Record 4th ACM Symposium on Programming Languages (POPL 77), Los
Angeles, CA, Jan. 1977, pp. 238-252.

Dincbas, M., Simonis, H., and Van Hentenryck, P., Solving Large Combinatorial Prob-
lems in Logic Programming, Journal of Logic Programming 8(1-2):75-93 (Jan./Mar.
1990).

Englebert, V., Le Charlier, B., Roland, D., and Van Hentenryck, P., Generic Abstract
Interpretation Algorithms for Prolog: Two Optimization Techniques and Their Exper-
imental Evaluation, Software Practice and Exzpertence 23(4) (Apr. 1993).



208

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

P. VAN HENTENRYCK ET AL.

Fruehwirth, T., Shapiro, E., Vardi, M., and Yardeni, E., Logic Programs as Types for
Logic Programs, in: IEEFE 6th Annual Symposium on Logic in Computer Science, 1991,
pp- 300-309.

Callagher, J. and de Waal, D. A., Fast and Precise Regular Approximation of Logic
Programs, in: 11th International Conference on Logic Programming, Genoa, Italy, June
1994.

Gecseg, F. and Steinby, M., Tree Automata, Akademiai Kiado, Budapest, 1984.
Heintze, N., Practical Aspects of Set-Based Analysis, in: Proceedings of the Interna-
tional Joint Conference and Symposium on Logic Programming (JICSLP-92), Washing-
ton, DC, Nov. 1992.

Heintze, N. and Jaffar, J., A Finite Presentation Theorem for Approximating Logic
Programs, in: Proc. 17th ACM Symposium on Principles of Programming Languages,
1990, pp. 197-209.

Janssens, G. and Bruynooghe, M., Deriving Description of Possible Values of Program
Variables by Means of Abstract Interpretation, Journal of Logic Programming 13(2-
3):205-258 (1992).

Kanamori, T. and Kawamura, T., Analysing Success Patterns of Logic Programs by
Abstract Hybrid Interpretation, Technical Report, ICOT, 1987.

Le Charlier, B., Musumbu, K., and Van Hentenryck, P., A Generic Abstract Interpreta-
tion Algorithm and Its Complexity Analysis (Extended Abstract), in: 8th International
Conference on Logic Programming (ICLP-91), Paris, France, June 1991, MIT Press,
Cambridge, MA, pp. 64-78.

Le Charlier, B. and Van Hentenryck, P., A Universal Top-Down Fixpoint Algorithm,
Technical Report CS-92-25, CS Department, Brown University, 1992.

Le Charlier, B. and Van Hentenryck, P., Experimental Evaluation of a Generic Abstract
Interpretation Algorithm for Prolog, ACM Transactions on Programming Languages
and Systems 16(1):35-101 (Jan. 1994).

Marriott, K. and Sgndergaard, H., Notes for a Tutorial on Abstract Interpretation of
Logic Programs, North American Conference on Logic Programming, Cleveland, OH,
Oct. 1989.

Mishra, P., Towards a Theory of Types in Prolog, in: International Symposium on
Logic Programming, 1984, pp. 289-298.

Monsuez, B., Polymorphic Types and Widening Operators, in: International Workshop
on Static Analysis (WSA-93), Padova, Italy, Sept. 1993.

Mulkers, A., Winsborough, W., and Bruynooghe, M., Analysis of Shared Data Struc-
tures for Compile-Time Garbage Collection in Logic Programs, in: 7th International
Conference on Logic Programming (ICLP-90), Jerusalem, Israel, June 1990, MIT Press,
Cambridge, MA, pp. 747-764.

Muthukumar, K. and Hermenegildo, M., Compile-Time Derivation of Variable Depen-
dency Using Abstract Interpretation, Journal of Logic Programming 13(2-3):315-347
(Aug. 1992).

Sterling, L. and Shapiro, E., The Art of Prolog: Advanced Programming Technigues,
MIT Press, Cambridge, MA, 1986.

Taylor, A., LIPS on MIPS: Results from a Prolog Compiler for a RISC, in: 7th Inter-
national Conference on Logic Programming (ICLP-90), Jerusalem, Israel, June 1990,
MIT Press, Cambridge, MA, pp. 174-188.

Thomas, W., Automata on Infinite Objects, volume Handbook of Theoretical Computer



TYPE ANALYSIS OF PROLOG USING TYPE GRAPHS 209

26.

27.

28.

29.

30.

Science: Formal Models and Semantics, MIT Press, Cambridge, MA, 1990, pp. 133-161.
Van Hentenryck, P., Constraint Satisfaction in Logic Programming, Logic Programming
Series, MIT Press, Cambridge, MA, 1989.

Van Hentenryck, P., Cortesi, A., and Le Charlier, B., Type Analysis of Prolog Using
Type Graphs, in: Proc. ACM-SIGPLAN Conference on Programming Language Design
and Implementation (PLDI-94), Orlando, FL, June 1994.

Verschaetse, K. and De Schreye, D., 8th Deriving Termination Proofs for Logic Pro-
grams Using Abstract Procedures, in: 8th International Conference on Logic Program-
mang (ICLP-91), Paris, France, June 1991.

Winsborough, W., Multiple Specialization Using Minimal-Function Graph Semantics,
Journal of Logic Programming 13(4) (July 1992).

Yardeni, E. and Shapiro, E., A type System for Logic Programs, Journal of Logic
Programming 10(2):125-153 (1991).



