
Electronic Notes in Theoretical Computer Science 54 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume54.html

Information Flow Security in Mobile Ambients

Agostino Cortesi Riccardo Focardi

Dipartimento di Informatica,
Università Ca’ Foscari di Venezia,

Via Torino 155, 30173 Venezia – Mestre (Italy)
{cortesi,focardi}@dsi.unive.it

Abstract

A multilevel security policy is considered in the scenario of mobile systems, and mod-
eled within “pure” Mobile Ambients calculus, in which no communication channels
are present and the only possible actions are represented by the moves performed
by mobile processes. The information flow property of interest is defined in terms
of the possibility for a confidential ambient/data to move outside a security bound-
ary. Then, a very simple syntactic property is given that is sufficient to imply the
absence of unwanted information flows.
Keywords: Mobile Ambients, Security, Static Analysis.

1 Introduction

The problem. When an user is identified and allowed to access some com-
puter resources, an access control policy is imposed that guarantees that no
information leak is possible. In particular, the system should detect “Trojan
horses”, i.e. (aware or unaware) malicious programs that hide their dangerous
contents behind a trustworthy façade.

In this paper, we focus on Multilevel Security, a particular Mandatory
Access Control security policy: every entity is bound to a security level (for
simplicity, we consider only two levels: high and low), and information may
just flow from the low level to the high one. Typically, two access rules are
imposed: (i) No Read Up, a low level entity cannot access information of a high
level entity; (ii) No Write Down, a high level entity cannot leak information
to a low level entity. Sometimes, these two access controls are not enough as
information may be indirectly leaked, through, e.g., some system side-effect: a
typical example is represented by a resource shared among the security levels

1 Partially supported by MURST Projects “Interpretazione Astratta, Type Systems e Anal-
isi Control-Flow”, and “Certificazione automatica di programmi mediante interpretazione
astratta”.

c©2001 Published by Elsevier Science B. V.

Cortesi and Focardi

which may be alternatively overloaded by some Trojan horse (causing, e.g.,
longer response time at all security levels) in order to transmit information to
a malicious low level entity. These indirect ways of transmitting information
are called covert channels. Figure1 summarizes this policy.

Write

Read

Write

Read

Covert
Channel

Write-up

S1 O1

S2 O2

Read-down

Level n

Level n+k

Fig. 1. Multilevel Security Policy.

In order to detect both direct and indirect information leakages, a typical
approach (see, e.g., [2,5,6,7,9,10]) consists in directly defining what is an in-
formation flow from one level to another one. Then, it sufficient to verify
that, in any system execution, no information flow is possible from level high
to level low. This is the approach we follow in this paper.

The scenario. We will consider information flow security in the scenario
of mobile systems. This particular setting, where code may migrate from
one security level to another one, complicates even further the problem of
capturing all the possible information leakages. As an example, confidential
data may be read by an authorized agent which, moving around, could expose
them to unexpected attacks. Moreover, the code itself could be confidential,
and so not allowed to be read/executed by lower levels.

In order to study this problem as much abstractly as possible, we consider
the “pure” Mobile Ambients calculus [4], in which no communication chan-
nels are present and the only possible actions are represented by the moves
performed by mobile processes. This allows to study a very general notion of
information flow which should be applicable also to more “concrete” versions
of the calculus.

Verification. The information flow property of interest is defined in terms
of the possibility for a confidential ambient/data to move outside a security
boundary. We then give a very simple syntactic property and we prove, by
exploiting the control flow analysis proposed in [8], that it is sufficient to imply
the absence of unwanted information flows.

The rest of the paper is organized as follows. In Section 2 we introduce
the basic terminology on ambient calculus and we briefly report the control
flow analysis of [8]. Then, in Section 3, we present the model of multilevel

2

Cortesi and Focardi

security for mobile agents and we show how to guarantee absence of unwanted
information flows. Section 4 concludes the paper.

2 Background

In this section we introduce the basic terminology on ambient calculus and we
briefly report the control flow analysis of [8].

2.1 Mobile Ambients

The Mobile Ambients calculus has been introduced in [4] with the main pur-
pose of explicitly modelling mobility. Indeed, ambients are arbitrarily nested
boundaries which can moves around through suitable capabilities. The syntax
of processes is given as follows, where n denotes an ambient name.

P,Q ::= (νn)P restriction

| 0 inactivity

| P | Q composition

| !P replication

| n`
a
[P] ambient

| in`
t
n.P capability to enter n

| out `
t
n.P capability to exit n

| open`
t
n.P capability to open n

The labels `a ∈ Laba on ambients and labels `t ∈ Labt on transitions, have
been introduced in the control flow analysis proposed in [8]. This is just a
way of indicating “program points” and will be useful in the next section
when developing the analysis.

Intuitively, the restriction (νn)P introduces the new name n and limits its
scope to P ; 0 does nothing; P | Q is P and Q running in parallel; replication
provides recursion and iteration as !P represents any number of copies of P
in parallel. By n`

a
[P] we denote the ambient named n with the process

P running inside it. The capabilities in`
t
n and out `

t
n move their enclosing

ambients in and out ambient n, respectively; the capability open`
t
n is used to

dissolve the boundary of a sibling ambient. For more details see [4,8].

2.2 Control Flow Analysis

The control flow analysis described in [8] aims at modelling which processes
can be inside what other processes. It works on pairs (Î , Ĥ), where:

• The first component Î is an element of ℘(Laba × (Laba ∪ Labt)). If a
process contains an ambient labelled `a having inside either a capability or
an ambient labelled `, then (`a, `) is expected to belong to Î.

3

Cortesi and Focardi

(res) βCF
` ((νn)P) = βCF

` (P)

(zero) βCF
` (0) = (∅, ∅)

(par) βCF
` (P | Q) = βCF

` (P) t βCF
` (Q)

(repl) βCF
` (!P) = βCF

` (P)

(amb) βCF
` (n`

a
[P]) = βCF

`a (P) t ({(`, `a)} , {(`a, n)})

(in) βCF
` (in`

t
n.P) = βCF

` (P) t ({(`, `t)} , ∅)

(out) βCF
` (out `

t
n.P) = βCF

` (P) t ({(`, `t)} , ∅)

(open) βCF
` (open`

t
n.P) = βCF

` (P) t ({(`, `t)} , ∅)

Fig. 2. Representation Function for Control Flow Analysis

(res) (Î , Ĥ) |=CF (νn)P iff (Î , Ĥ) |=CF P

(zero) (Î , Ĥ) |=CF 0 always

(par) (Î , Ĥ) |=CF P | Q iff (Î , Ĥ) |=CF P ∧ (Î , Ĥ) |=CF Q

(repl) (Î , Ĥ) |=CF !P iff (Î , Ĥ) |=CF P

(amb) (Î , Ĥ) |=CF n`
a
[P] iff (Î , Ĥ) |=CF P

(in) (Î , Ĥ) |=CF in`
t
n.P iff (Î , Ĥ) |=CF P ∧

∀`a, `a′ , `a′′ ∈ Laba : ((`a, `t) ∈ Î ∧ (`a
′′
, `a) ∈ Î ∧ (`a

′′
, `a

′
) ∈ Î

∧ (`a
′
, n) ∈ Ĥ) =⇒ (`a

′
, `a) ∈ Î

(out) (Î , Ĥ) |=CF out `
t
n.P iff (Î , Ĥ) |=CF P ∧

∀`a, `a′ , `a′′ ∈ Laba : ((`a, `t) ∈ Î ∧ (`a
′
, `a) ∈ Î ∧ (`a

′′
, `a

′
) ∈ Î

∧ (`a
′
, n) ∈ Ĥ) =⇒ (`a

′′
, `a) ∈ Î

(open) (Î , Ĥ) |=CF open`
t
n.P iff (Î , Ĥ) |=CF P ∧

∀`a, `a′ ∈ Laba : ((`a, `t) ∈ Î ∧ (`a, `a
′
) ∈ Î ∧ (`a

′
, n) ∈ Ĥ)

=⇒
{

(`a, `′) | (`a
′
, `′) ∈ Î

}
⊆ Î

Fig. 3. Specification of Control Flow Analysis

• The second component Ĥ keeps track of the correspondence between names
and labels. If a process contains an ambient labelled `a with name n, then
(`a, n) is expected to belong to Ĥ.

4

Cortesi and Focardi

The analysis is defined by a representation function and a specification. 2

They are recalled, respectively, in Figure 2 and Figure 3.

The representation function mainly collects information about all ambient
nestings yieldt by a process, in its initial state. The representation of a process
P is defined as βCF

`a∗
(P), where label `a∗ is a special label corresponding to the

environment.

The specification mostly amounts to recursive checks of subprocesses. The
open-capability says that if some ambient labelled `a has an open-capability
`t on an ambient n that may apply due to the presence of a sibling ambient
labelled `a

′
whose name is just n, then the result of performing that capability

should also be recorded in Î. The in and out capabilities behave similarly.

The correctness of the analysis is proven by showing that every reduction
of the semantics is properly mimicked in the analysis:

Theorem 2.1 Let P and Q be two processes such that βCF
`a∗

(P) v (Î , Ĥ) ∧
(Î , Ĥ) |=CF P ∧ P → Q then βCF

`a∗
(Q) v (Î , Ĥ) ∧ (Î , Ĥ) |=CF Q

Intuitively, whenever (Î , Ĥ) |=CF P and the representation of P is con-
tained in (Î , Ĥ), we are assured that every nesting of ambients and capabilities
in every possible derivative of P is also captured in (Î , Ĥ).

It is important to recall also that the resulting control flow analysis applies
to any process, and that every process enjoys a least analysis.

3 Information Flow

In this section, we present a formalization of multilevel security in the setting
of Mobile Ambients. Then, a simple syntactical property is given which allows
to verify the absence of unwanted information flows.

3.1 Modelling Multilevel Security

In order to define Multilevel security in Mobile Ambients we first need to
classify information into different levels of confidentiality. We do that by
exploiting the labelling of ambients. In particular, we partition the set of
ambient labels Laba into three disjoint sets LabaH ,LabaL and LabaB, which
stand for high, low and boundary labels.

Given a process, the multilevel security policy may be established by de-
ciding which ambients are the ones responsible of confining confidential infor-
mation. These are all labelled with boundary labels from set LabaB and we will
refer to them as boundary ambients. Then, all the ambients initially contained
in a boundary ambient, are considered high level ambients and are labelled

2 In ambient calculus bound names may be α-converted. For the sake of simplicity, here
we are assuming that ambient names are stable, i.e., n is indeed a representative for a class
of α-convertible names. See [8] for more details on how this can be handled.

5

Cortesi and Focardi

with labels from set LabaH . Finally, all the external ambients are considered
low level ones and consequently labelled with labels from set LabaL. This is
how we will always label processes, and corresponds to defining the security
policy (what is secret, what is not, what is a container of secrets).

As an example consider the following process:

P = containerb[hdatah[out ccontainer.0]] | Q

where b ∈ LabaB, h ∈ LabaH , c ∈ Labt is a capability label and Q contains
some low level ambients. Ambient container is a boundary for the high level
data hdata (note that data are abstractly represented as ambients). This
process is an example of a direct information flow. Indeed, P may evolve to
containerb[] | hdatah[] | Q, where the high level hdata is out of any boundary
ambient, thus vulnerable and potentially accessible by any ambient or process
in Q. 3 This flow of high level data/ambients outside the security boundaries
is exactly what we intend to control and avoid.

In distributed and mobile systems, it is unrealistic to consider a unique
boundary, containing all the confidential information. As an example con-
sider two different sites venice and lipari, each with some set of confidential
information that need to be protected. This can be modelled by just defining
two boundary ambients, one for each site: veniceb[P1] | liparib[P2] | Q. In
order to make the model applicable, it is certainly needed a mechanism for
moving confidential data from one boundary to another one. This is achieved
through another boundary ambient which moves out from the first protected
area and into the second one. An example follows:

veniceb[sendb[out cvenice.inclipari | hdatah[]]] | liparib[opencsend] | Q

that may evolve to:

veniceb[] | liparib[opencsend | sendb[hdatah[]]] | Q

and finally to:

veniceb[] | liparib[hdatah[]] | Q
Note that send is labelled as a boundary ambient. Thus, the high level data
hdata is always protected by boundary ambients, during all the execution.

3.2 Verifying Absence of Information Flows

In this section, we study how to verify that no leakage of secret data/ambients
outside the boundary ambients is possible. A natural approach could be the

3 Note that the presence of an ambient may be tested by trying to open it or by entering
and then exiting from it. A low level ambient may thus test if hdata is present. This may
be seen as reading such high level information.

6

Cortesi and Focardi

direct application of the control flow of [8] reported in section 2.2. As a matter
of fact, consider again the example presented above:

veniceb[sendb[out cvenice.inclipari | hdatah[]]] | liparib[opencsend]

The least analysis for this process can be easily shown to be the following:

Î = {(la∗ , b), (b, b), (b, h), (b, c)}
ĥ= {(b, venice), (b, send), (b, lipari), (h, hdata)}

The important thing is that h is always contained inside b, i.e., a boundary
ambient. This basically proves that the system is secure and no leakage of h
data may happen.

However, the fact that the analysis simply collects all the potential nesting
without considering the temporal ordering of the events, may sometimes be
too approximated. As an example, consider again the previous process and
suppose that high level data is willing to enter some filter process, which could
possibly be low level code:

veniceb[sendb[out cvenice.inclipari | hdatah[inchfilter]]] |

| liparib[opencsend] | filterm[incsend] | openclfilter

Note that the filter behaves correctly with respect to multilevel security rules,
i.e., it only enters boundaries. In particular, this means that it will never
transport high level data outside the security boundaries. However, if we
perform the control flow analysis we obtain the following least solution:

Î = {(la∗ , b), (la∗ , h), (la∗ ,m), (la∗ , cl), (b, b), (b, h), (b,m), (b, c), (h, ch),

(m,h), (m, c)}
ĥ= {(b, venice), (b, send), (b, lipari), (h, hdata)}

Note that h appears at the environment level, showing a potential attack.
However, as observed before, there is no execution leading to such a situation.
The reason why the analysis looses precision here, is due to the fact that h
enters a m ambient which might be opened at the environment level, but the
analysis does not capture the fact that h enters m only after it has crossed
the boundary and can never return back.

In the following, we study a different (syntactic) condition on processes
that is sufficient to prove the absence of leakage of secret data/ambients out-
side the boundary ambients. Moreover, such a condition properly deals with
the situation discussed before.

The idea is to control the out ln and open ln capabilities executed on a
boundary ambient n. In particular, we require that such capabilities may
only be performed by boundary ambients.

First, we characterize a subset of capability labels, in order to mark out and
open capabilities that refer to boundary ambients. Let LabtO ⊆ Labt be the

7

Cortesi and Focardi

subset of labels that refer to out and open capabilities, and let LabtBM ⊆ LabtO
be a subset of this set of out and open capability labels. BM stands for
boundary moves capabilities. Let also φ : Labt → ℘(Amb) be a function that
given a capability label `t, returns the set of ambient names on which all the
capabilities labelled with `t operate.

Given a process P , the conditions that should be imposed on βCF
`a∗

(P) to
guarantee absence of information leakage are the following.

(i) (`a, n) ∈ Ĥ, `a ∈ LabaB, n ∈ φ(`t), `t ∈ LabtO ⇒ `t ∈ LabtBM

(ii) (`, `′) ∈ Î , `′ ∈ LabtBM ⇒ ` ∈ LabaB

Observe that condition (i) results in a well-formedness labelling. It requires
that all the out and open capabilities that operate on boundary ambients are
labelled as boundary moves (i.e., with labels in set LabtBM). If this condition
is initially satisfied by P (i.e., by βCF

`a∗
(P)), then it will hold also for every

derivative of P , as the labelling cannot change during process execution.

Condition (ii) requires that every out and open boundary move is executed
inside a boundary ambient. Note that, in general, this may be not preserved
when P evolves. Indeed, the following theorem states that also condition (ii)
above is preserved, in every execution of P .

Theorem 3.1 If the representation function βCF
`a∗

(P) initially fulfills condi-

tions (i)−(ii), then the least solution (Î , Ĥ) |=CF P to the control flow analysis
enjoys these conditions as well.

Sketch of the proof. We have stated that condition (i) is trivially preserved.
Let us consider condition (ii). The fact that we consider the least solution
means that all the elements in Î and Ĥ are either in βCF

`a∗
(P) or introduced by

the three rules for in, out and open of Figure 3. Capabilities in and out move
ambients as a whole, therefore the corresponding rules do not affect condition
(ii). Then, the only interesting rule is the last one, when open arises. Let
a new pair (`a, `′) be introduced in Î by that rule, with `′ ∈ LabtBM and
(`a
′
, `′) ∈ Î. By induction, we may assume `a

′ ∈ LabaB. As (`a
′
, n) ∈ Ĥ,

ambient n is labelled within LabaB. By condition (i) on well-formedness of
labelling, `t ∈ LabtBM , yielding `a ∈ LabaB, that concludes the proof.

Condition (ii) basically states two important properties on P execution: every
time a boundary ambient is opened, this is done inside another boundary
ambient; the only ambients that may exit from a boundary ambients are
boundary ambients. By induction on reduction rules of Mobile Ambients it is
now easy to prove the following information flow theorem:

Theorem 3.2 If βCF
`a∗

(P) fulfills conditions (i) − (ii), then, in every Q s.t.
P → Q, every high level ambient is always inside at least one boundary ambi-
ent.

8

Cortesi and Focardi

Note that the conditions are really simple to check. As an example consider
again the two example presented above. In particular,

P = containerb[hdatah[out ccontainer.0]] | Q

does not satisfy condition (ii) as out ccontainer, by condition (i), should be
labelled as a boundary move. However this makes a boundary move executable
in a high level ambient, invalidating condition (ii). On the other side, the
second example

veniceb[sendb[out cvenice.inclipari | hdatah[]]] | liparib[opencsend] | Q

fulfills both the conditions, with c ∈ LabtBM . This proves that hdata, in every
execution, is always inside a boundary ambient.

The syntactic conditions successfully applies also to the extended example
with hdata entering the filter:

veniceb[sendb[out cvenice.inclipari | hdatah[inchfilter]]] |

| liparib[opencsend] | filterm[incsend] | openclfilter

Also in this case, we are able to prove that hdata, in every execution, is
always inside a boundary ambient. Note that this was not provable through
the presented control flow analysis.

Finally, the approach may also be adapted to the case in which the external
environment (e.g. any malicious process put in parallel with the analyzed
process P) does not fulfill the required conditions. This is indeed reasonable
in a distributed open system. The idea is to suitably restrict the scope of
boundary ambients and provide low level ambients with some “taxi” processes
that, once entered, bring the client inside restricted boundaries. Let b1, . . . , bn
represent all the boundary ambients of process P . Then consider process

(νb1, . . . , bn)(P | !t1[in lb1] | . . . | !tn[in lbn]) | Q

As b1, . . . , bn are restricted names, they may not appear in Q. As a conse-
quence, if P fulfills the conditions (i)− (ii), this is sufficient to prove that the
whole system (whatever Q is considered) satisfies such conditions, too. It is
indeed simple to prove the following:

Proposition 3.3 If βCF
`a∗

(P) fulfills conditions (i) − (ii), then, for all Q (la-

belled in LabaL ∪ Labt \ LabtBM),

βCF
`a∗

((νb1, . . . , bn)(P | !t1[in lb1] | . . . | !tn[in lbn]) | Q)

fulfills conditions (i)− (ii).

Note that processes !ti[in
lbi] allow any low level ambient to enter boundary

bi. So, legitimate flows from level to high level are possible even if boundaries

9

Cortesi and Focardi

are restricted. Note also that the condition on the labelling of Q simply means
thatQ just contains low level ambients and its capabilities are not (incorrectly)
labelled as boundary moves.

4 Conclusions

The main novelty of the approach presented in this paper is that we model
multilevel information flow within a “pure” mobile ambient setting, without
considering either channels or recently proposed restrictions of Mobile Am-
bients designed for security issues (like Secure Safe Ambients [3]). We have
also proposed a syntactic condition which is sufficient to guarantee absence of
unwanted information flow. Such a condition is really simple to verify and, at
the same time, seems to be not restrictive.

As a future work, we intend to extend the approach to other versions of
Mobile Ambients, and, in particular, to the full calculus with communication
channels. It is our opinion that if only communication within ambients is
considered, the approach should carry on very naturally. We also intend to
compare our approach with other control flow analyses proposed for particular
versions of Mobile Ambients, like, e.g., the one for Safe Ambients [1]. It would
be also interesting to study if the approach proposed here could be applied,
via some suitable encoding, also to “classical” calculi, like pi-calculus.

Finally, the way we propose to express a multilevel information flow pol-
icy through a syntactic characterization of ambient and capability labels, in
our opinion, may also lead to interesting applications when trying to model
cryptographic protocols by the same formalism.

Acknowledgements

We would like to thank the anonymous referees for their helpful comments
and suggestions.

References

[1] P. Degano, F. Levi, C. Bodei. Safe Ambients: Control Flow Analysis and
Security. In proceedings of ASIAN’00, LNCS 1961, 2000, pages 199-214.

[2] C. Bodei, P. Degano, F. Nielson, and H.R.Nielson. Static Analysis of Processes
for No Read-Up and No-Write-Down. In In Proc. FoSSaCS’99, volume 1578 of
Lecture Notes in Computer Science, pages 120–134, Springer-Verlag, 1999.

[3] M. Bugliesi and G. Castagna. ”Secure Safe Ambients”. Proc. 28th ACM
Symposium on Principles of Programming Languages (POPL’01), pp. 222-235,
London. 2001.

10

Cortesi and Focardi

[4] L. Cardelli and A. Gordon. ”Mobile Ambients”. In Proc. FoSSaCS’98, volume
1378 of Lecture Notes in Computer Science, pages 140–155, Springer-Verlag,
1998.

[5] R. Focardi and R. Gorrieri. ”A Classification of Security Properties for Process
Algebras”, Journal of Computer Security, 3(1): 5-33, 1995.

[6] R. Focardi and R. Gorrieri, ”The Compositional Security Checker: A Tool for
the Verification of Information Flow Security Properties, IEEE Transactions on
Software Engineering, Vol. 23, No. 9, September 1997.

[7] R. Focardi, R. Gorrieri, F. Martinelli, ”Information Flow Analysis in a Discrete
Time Process Algebra”, in Proc. of 13th IEEE Computer Security Foundations
Workshop (CSFW13), (P.Syverson ed), IEEE CS Press, 170-184, 2000.

[8] R. R. Hansen, J. G. Jensen, F. Nielson, and H. R. Nielson, Abstract
Interpretation of Mobile Ambients. In Proc. Static Analysis Symposium SAS’99,
volume 1694 of Lecture Notes in Computer Science, pages 134–148, Springer-
Verlag, 1999.

[9] M. Hennessy, J. Riely. ”Information Flow vs. Resource Access in the
Asynchronous Pi-Calculus”. ICALP 2000: 415-427.

[10] G. Smith, D.M. Volpano, ”Secure Information Flow in a Multi-Threaded
Imperative Language”. In Proc. of POPL 1998: 355-364.

11

	Introduction
	Background
	Mobile Ambients
	Control Flow Analysis

	Information Flow
	Modelling Multilevel Security
	Verifying Absence of Information Flows

	Conclusions
	References

