Non-repudiation analysis using LySA with annotations

Mayla Brusò, Agostino Cortesi *
Computer Science Department, Ca' Foscari University, Via Torino, 155, Mestre, 30172 Venezia, Italy

A R T I CLE IN F O

Article history:

Received 16 January 2009
Received in revised form
15 April 2010
Accepted 21 April 2010

Keywords:

Static analysis
Control flow analysis
Security
Process calculus

Abstract

This work introduces a formal analysis of the non-repudiation property for security protocols. Protocols are modelled in the process calculus LySA, using an extended syntax with annotations. Non-repudiation is verified using a Control Flow Analysis, following the same approach of Buchholtz and Gao for authentication and freshness analyses.

The result is an analysis that can statically check the protocols to predict if they are secure during their execution and which can be fully automated.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

With the growth of Internet applications like e-shopping or e-voting, non-repudiation is becoming increasingly important, as a protocol property. Our aim is to provide a protocol analysis which checks this property to avoid that a protocol is used in malicious way. Among the existing techniques that perform the analysis of non-repudiation protocols, we may cite:

- The CSP (Communicating Sequential Processes) approach [14-16]: it is an abstract language designed specifically for the description of communication patterns of concurrent system components that interact through message passing.
- The game approach [12]: it considers the execution of the protocol as a game, where each entity is a player; the protocols are designed finding a strategy, which has to defend an honest entity against all the possible strategies of malicious parties.
- The Zhou-Gollmann approach [19]: it uses SVO Logic, a modal logic that is composed by inference rules and axioms which are used to express beliefs that can be analysed by a judge to decide if the service provided the property.
- The inductive approach [1]: it uses an inductive model, a set of all the possible histories of the network that the protocol execution may produce; a history, called trace, is a list of network events, that can indicate the communication of a message or the annotation of information for future use.

We follow a different approach, the same as Buchholtz [4] and Gao [7], who show how some security properties can be analysed using the LySA [2] process calculus with annotations and a Control Flow Analysis (CFA) to detect flaws in the protocols. The main idea is to extend LySA with specific annotations, i.e. tags that identify part of the message for which the property has to hold and that uniquely assigns principal identifiers and session identifiers to encryptions and decryptions.

[^0]The advantages of this proposal are the following:

- The analysis is general enough to check any protocol (even if in few exceptional cases the result can be incorrect).
- The environment in which the protocol is executed can possibly involve infinitely many principals who run infinitely many sessions.
- The analysis can easily be implemented, providing a user-friendly tool which can automatically check the nonrepudiation property for any specified encoding.

It is interesting to notice that the non-repudiation analysis that we propose easily fits into the CFA framework [13], yielding a suite of analyses that can be combined in various ways, with no major implementation overload. Since the analyses share the same framework differing only in the annotations, a combination of them might lead to a result with less resource consumption. This combination could be easily obtained by generalizing the syntax and turning the correspondent monitors on in the semantics.

The structure of the paper is the following: Section 2 is a quick overview of LySA; Section 3 presents the CFA framework; Section 4 shows the new non-repudiation analysis, and its application to the protocols; Section 5 concludes.

2. $L y S_{A}$

LySA [2] is a process calculus in the π-calculus tradition that models security protocols on a global network. It incorporates pattern matching into the language constructs where values can become bound to variables. In LySA all the communications take place directly on a global network and this corresponds to the scenario in which security protocols often operate. Channels are considered in many process calculi, but they may give a degree of security that there is not in the common network, where a spy can eavesdrop and forge communications; furthermore, channels are often declared private and used explicitly as cryptographic keys while in real systems they are extremely problematic. LySA calculus offers instead a realistic environment in which there are not channels to protect the exchange of messages among the principals.

2.1. Syntax and semantics

An expression $E \in \operatorname{Expr}$ may represent a name, a variable or an encryption. The set Expr contains two disjointed subsets, Name and Var. The elements in the first subset can be identifiers, nonces, symmetric keys, key pairs (m^{+}, m^{-}) for asymmetric key cryptography (where m^{+}is the public key and m^{-}is the private one), etc., ranged over by n. The elements in Var are only variables, ranged over by x. The remaining expressions are symmetric and asymmetric encryptions of k-tuples of other expressions, defined as $\left\{E_{1}, \ldots, E_{k}\right\}_{E_{0}}$ and $\left\{\left|E_{1}, \ldots, E_{k}\right|\right\}_{E_{0}}$, respectively, where E_{0} represents a symmetric or asymmetric key.

LySA also allows to construct processes $P \in$ Proc, which use the expressions explained above. Processes can have the following form:

- $\left\langle E_{1}, \ldots, E_{k}\right\rangle . P$: the process sends a k-tuple of values onto the global network; when the message has been successfully sent the process continues as P.
- $\left(E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right) . P$: the process reads the k-tuple of values sent, it checks if the first j values expected are identical to E_{1}, \ldots, E_{j}, and, if this succeeds, the remaining $k-j$ values are bound to the variables x_{j+1}, \ldots, x_{k}, and the process continues as P, which is the scope of the variables; notice that a semi-colon is used to distinguish between the expressions used for matching and the variables.
- decrypt E as $\left\{E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right\}_{E_{0}}$ in P : the process denotes the symmetric decryption and it works in a way similar to the input construct; if the encryption key is identical to E_{0}, the process decrypts the k-tuple, then it checks if the values expected are identical to E_{1}, \ldots, E_{j}, and, if this succeeds, the remaining $k-j$ values are bound to the variables x_{j+1}, \ldots, x_{k}, and the process continues as P, which is the scope of the variables; a semi-colon distinguishes between the expressions used for matching and the variables.
- decrypt E as $\left\{\left|E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{E_{0}}$ in P : the process denotes the asymmetric decryption and it works like symmetric decryption; the only differences are in E_{0} and in the key used to encrypt, which have to be a key pair m^{+}and m^{-}; their order depends on the role of decryption, i.e. if it is used to verify a private key signature or to obtain the original message after a public key encryption.
- $(v n) P$: the process generates a new name n and it continues in P, which is the scope of the name.
- $(v \pm m) P$: the process generates a new key pair, m^{+}and m^{-}, and it continues in P, which is the scope of the key pair.
- $P_{1} \mid P_{2}$: the process denotes two processes running in parallel that may synchronize through communication over the network or perform actions independently.
- $!P$: the process acts as an arbitrary number of processes P composed in parallel.
- 0 : the process is the inactive or nil process that does nothing.

Both expressions and processes are defined in Table 1.

Table 1
Syntax of LySA calculus.

$E::=$	Terms
n	Name
x	Variable
m^{+}	Public key
m^{-}	Private key
$\left\{E_{1}, \ldots, E_{k}\right\}_{E_{0}}$	Symmetric encryption
$\left\{\left\|E_{1}, \ldots, E_{k}\right\|\right\}_{E_{0}}$	Asymmetric encryption
$P::=$	Processes
$\left\langle E_{1}, \ldots, E_{k}\right\rangle . P$	Output
$\left(E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right) \cdot P$	Input
decrypt E as $\left\{E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right\}_{E_{0}}$ in P	Symmetric decryption
decrypt E as $\left\{\left\|E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right\|\right\}_{E_{0}}$ in P	Asymmetric decryption
$(v n) P$	Restriction
$(v \pm m) P$	Pair restriction
$P_{1} \mid P_{2}$	Parallel composition
$!P$	Replication
0	Nil

Table 2
Function $f n(P)$ for free names.

$f n(n)$	$\stackrel{\text { def }}{=}\{n\}$
$f n\left(m^{+}\right)$	$\stackrel{\text { def }}{=}\left\{m^{+}\right\}$
$f n\left(m^{-}\right)$	$\stackrel{\text { def }}{=}\left\{m^{-}\right\}$
$f n(x)$	$\stackrel{\text { def }}{=} \emptyset$
$f n\left(\left\{E_{1}, \ldots, E_{k}\right\}_{E_{0}}\right)$	$\stackrel{\text { def }}{=} f n\left(E_{0}\right) \cup \ldots \cup f n\left(E_{k}\right)$
$f n\left(\left\{\left\|E_{1}, \ldots, E_{k}\right\|\right\}_{E_{0}}\right)$	$\stackrel{\text { def }}{=} f n\left(E_{0}\right) \cup \ldots \cup f n\left(E_{k}\right)$
$f n\left(\left\langle E_{1}, \ldots, E_{k}\right\rangle . P\right)$	$\stackrel{\text { def }}{=} f n\left(E_{1}\right) \cup \ldots \cup f n\left(E_{k}\right) \cup f n(P)$
$f n\left(\left(E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right) \cdot P\right)$	$\stackrel{\text { def }}{=} f n\left(E_{1}\right) \cup \cdots \cup f n\left(E_{j}\right) \cup f n(P)$
$f n\left(\right.$ decrypt E as $\left\{E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right\}_{E_{0}}$ in $\left.P\right)$	$\stackrel{\text { def }}{=} f n(E) \cup f n\left(E_{0}\right) \cup \ldots \cup f n\left(E_{j}\right) \cup f n(P)$
$f n\left(\right.$ decrypt E as $\left\{\left\|E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right\|\right\}_{E_{0}}$ in $\left.P\right)$	$\stackrel{\text { def }}{=} f n(E) \cup f n\left(E_{0}\right) \cup \ldots \cup f n\left(E_{j}\right) \cup f n(P)$
$f n((v n) P)$	$\stackrel{\text { def }}{=} f n(P) \backslash\{n\}$
$f n((v \pm m) P)$	$\stackrel{\text { def }}{=} f n(P) \backslash\left\{m^{+}, m^{-}\right\}$
$f n\left(P_{1} \mid P_{2}\right)$	$\stackrel{\text { def }}{=} f n\left(P_{1}\right) \cup f n\left(P_{2}\right)$
$f n(!P)$	$\stackrel{\text { def }}{=} f n(P)$
$f n(0)$	$\stackrel{\text { def }}{=} \emptyset$

A binder introduces new names or variables which have scope in the rest of the process. The prefix ($v n$) in the process $(v n) P$ and the prefix $(v \pm m)$ in the process $(v \pm m) P$ are binders, because they create new keys which have scope in the process P. Also input and decryption are binders that introduce the variables x_{j+1}, \ldots, x_{k}. If a name or a variable is not bound by any binder, it is free; the function $f n(P)$ collects all the free names in the process P and it is defined in Table 2 while the function $f v(P)$, defined in Table 3, collects the free variables. The bound variables are defined by the function $b v(P) \stackrel{\text { def }}{=} \operatorname{var}(P) \backslash f v(P)$, where $\operatorname{var}(P)$ is the function that defines the set of variables contained in a given protocol P; roughly speaking, $b v(P)$ provides the set of all the variables that are not free in the protocol P. All these functions are also defined on the terms, which are part of the processes.

LySA provides a reduction semantics that describes the evolution of a process step-by-step, using a reduction relation between two processes, written $P \rightarrow P^{\prime}$. If the reduction relation holds then P can evolve into P^{\prime} using the rules depicted in Table 6 that show an inductive definition of the relation by axioms and inference rules.

The structural congruence between two processes, written $P \equiv P^{\prime}$, means that P is equal to P^{\prime} except for syntactic aspects, but this does not interfere with the way they evolve. The structural congruence is defined as the smallest relation satisfying the rules in Table 4, that express the following ideas:

- The reduction relation is an equivalence relation.
- The parallel composition is defined to be commutative, associative, and has 0 as neutral element.
- The order of the processes in the parallel composition is not influential.

Table 3
Function $f v(P)$ for free variables.

$f v(n)$	$\stackrel{\text { def }}{=} \emptyset$
$f v\left(m^{+}\right)$	$\stackrel{\text { def }}{=} \emptyset$
$f v\left(m^{-}\right)$	$\stackrel{\text { def }}{=} \emptyset$
$f v(x)$	$\stackrel{\text { def }}{=}\{x\}$
$f v\left(\left\{E_{1}, \ldots, E_{k}\right\}_{E_{0}}\right)$	$\stackrel{\text { def }}{=} f v\left(E_{0}\right) \cup \cdots \cup f v\left(E_{k}\right)$
$f v\left(\left\{\left\|E_{1}, \ldots, E_{k}\right\|\right\}_{E_{0}}\right)$	$\stackrel{\text { def }}{=} f v\left(E_{0}\right) \cup \cdots \cup f v\left(E_{k}\right)$
$f v\left(\left\langle E_{1}, \ldots, E_{k}\right\rangle . P\right)$	$\stackrel{\text { def }}{=} f v\left(E_{1}\right) \cup \cdots \cup f v\left(E_{k}\right) \cup f v(P)$
$f v\left(\left(E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right) \cdot P\right)$	$\stackrel{\text { def }}{=} f v\left(E_{1}\right) \cup \cdots \cup f v\left(E_{j}\right) \cup\left(f v(P) \backslash\left\{x_{j+1}, \ldots, x_{k}\right\}\right)$
$f v\left(\operatorname{decrypt} E\right.$ as $\left\{E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right\}_{E_{0}}$ in $\left.P\right)$	$\stackrel{\text { def }}{=} f v\left(E_{0}\right) \cup \cdots \cup f v\left(E_{j}\right) \cup\left(f v(P) \backslash\left\{x_{j+1}, \ldots, x_{k}\right\}\right)$
$f v\left(\operatorname{decrypt} E\right.$ as $\left\{\left\|E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right\|\right\}_{E_{0}}$ in $\left.P\right)$	$\stackrel{\text { def }}{=} f v\left(E_{0}\right) \cup \cdots \cup f v\left(E_{j}\right) \cup\left(f v(P) \backslash\left\{x_{j+1}, \ldots, x_{k}\right\}\right)$
$f v((v n) P)$	$\stackrel{\text { def }}{=} f v(P)$
$f v((v \pm m) P)$	$\stackrel{\text { def }}{=} f v(P)$
$f v\left(P_{1} \mid P_{2}\right)$	$\stackrel{\text { def }}{=} f v\left(P_{1}\right) \cup f v\left(P_{2}\right)$
$f v(!P)$	$\stackrel{\text { def }}{=} f v(P)$
$f v(0)$	$\stackrel{\text { def }}{=} \emptyset$

Table 4
Structural congruence $P \equiv P^{\prime}$.

$$
\begin{aligned}
& P \equiv P \\
& P_{1} \equiv P_{2} \Rightarrow P_{2} \equiv P_{1} \\
& P_{1} \equiv P_{2} \wedge P_{2} \equiv P_{3} \Rightarrow P_{1} \equiv P_{3} \\
& \left\langle\left\langle E_{1}, \ldots, E_{k}\right\rangle . P_{1} \equiv\left\langle E_{1}, \ldots, E_{k}\right\rangle . P_{2}\right. \\
& \left(E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right) \cdot P_{1} \\
& \equiv\left(E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right) \cdot P_{2} \\
& \text { decrypt } E \text { as }\left\{E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right\}_{E_{0}} \text { in } P_{1} \\
& \equiv \text { decrypt } E \text { as }\left\{E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right\}_{E_{0}} \text { in } P_{2} \\
& P_{1} \equiv P_{2} \Rightarrow\left\{\text { decrypt } E \text { as }\left\{\left|E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{E_{0}} \text { in } P_{1}\right. \\
& \equiv \text { decrypt } E \text { as }\left\{\left|E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{E_{0}} \text { in } P_{2} \\
& (v n) P_{1} \equiv(v n) P_{2} \\
& (v \pm m) P_{1} \equiv(v \pm m) P_{2} \\
& P_{1}\left|P_{3} \equiv P_{2}\right| P_{3} \\
& !P_{1} \equiv!P_{2} \\
& P_{1}\left|P_{2} \equiv P_{2}\right| P_{1} \\
& \left(P_{1} \mid P_{2}\right)\left|P_{3} \equiv P_{1}\right|\left(P_{2} \mid P_{3}\right) \\
& P \mid 0 \equiv P \\
& !P \equiv P!!P \\
& (v n) 0 \equiv 0 \\
& \left(v n_{1}\right)\left(v n_{2}\right) P \equiv\left(v n_{2}\right)\left(v n_{1}\right) P \\
& (v n)\left(P_{1} \mid P_{2}\right) \equiv P_{1} \mid(v n) P_{2} \text { if } n \notin f n\left(P_{1}\right) \\
& (v \pm m) 0 \equiv 0 \\
& \left(v \pm m_{1}\right)\left(v \pm m_{2}\right) P \equiv\left(v \pm m_{2}\right)\left(v \pm m_{1}\right) P \\
& (v \pm m)\left(P_{1} \mid P_{2}\right) \equiv P_{1} \mid(v \pm m) P_{2} \text { if } m^{+}, m^{-} \notin f n\left(P_{1}\right) \\
& (v \pm m)(v n) P \equiv(v n)(v \pm m) P \\
& P_{1} \stackrel{\alpha}{=} P_{2} \Rightarrow P_{1} \equiv P_{2}
\end{aligned}
$$

- The replication corresponds to an arbitrary number of process in parallel.
- The restrictions can be simplified under certain assumptions.
- Two processes are structurally equivalent whenever they are α-equivalent.

Two processes P_{1} and P_{2} are α-equivalent, written $P_{1} \stackrel{\alpha}{\equiv} P_{2}$, when they are identical except that they may differ in the choice of bound names. A procedure called α-conversion replaces all the instances of a bound name in a process for another name. The definition of the equivalence relation is in Table 5 . Notice that a substitution $P\left[n_{1} \mapsto n_{2}\right]$ substitutes all the free occurrences of n_{1} in P for n_{2}.

Finally, we define values $V \in$ Val, which are used in the reduction as expressions without variables $x \in \operatorname{Var}$:

$$
V::=n
$$

$\mid m^{+}$

Table 5

α-equivalence $\stackrel{\alpha}{\underline{\underline{\alpha}}}$.

$$
\begin{aligned}
& P \stackrel{\underline{\underline{\alpha}}}{=} P \\
& P_{1} \stackrel{\alpha}{\equiv} P_{2} \text { implies } P_{2} \stackrel{\alpha}{\equiv} P_{1} \\
& P_{1} \stackrel{\alpha}{=} P_{2} \wedge P_{2} \stackrel{\alpha}{=} P_{3} \text { implies } P_{1} \stackrel{\alpha}{=} P_{3} \\
& \left(v n_{1}\right) P \stackrel{\underline{\underline{\beta}}}{=}\left(v n_{2}\right)\left(P\left[n_{1} \mapsto n_{2}\right]\right) \text { if } n_{2} \notin f n(P) \\
& \left(v \pm m_{1}\right) P \stackrel{\alpha}{=}\left(v \pm m_{2}\right)\left(P\left[m_{1}^{+} \mapsto m_{2}^{+}, m_{1}^{-} \mapsto m_{2}^{-}\right]\right) \text {if } m_{2}^{+}, m_{2}^{-} \notin f n(P)
\end{aligned}
$$

Table 6
Semantics of LySA calculus.

$$
\begin{aligned}
& \text { (Com) } \frac{\bigwedge_{i=1}^{j} V_{i}=V_{i}^{\prime}}{\left\langle V_{1}, \ldots, V_{k}\right\rangle \cdot P \mid\left(V_{1}^{\prime}, \ldots, V_{j}^{\prime} ; x_{j+1}, \ldots, x_{k}\right) \cdot P^{\prime} \rightarrow \mathcal{R}} \\
& P \mid P^{\prime}\left[V_{j+1} / x_{j+1}, \ldots, V_{k} / x_{k}\right] \\
& \text { (Dec) } \quad \frac{\bigwedge_{i=0}^{j} V_{i}=V_{i}^{\prime}}{\text { decrypt }\left\{V_{1}, \ldots, V_{k}\right\}_{V_{0}} \text { as }\left\{V_{1}^{\prime}, \ldots, V_{j}^{\prime} ; x_{j+1}, \ldots, x_{k}\right\}_{V_{0}^{\prime}} \text { in } P \rightarrow \mathcal{R}} \\
& P\left[V_{j+1} / x_{j+1}, \ldots, V_{k} / x_{k}\right] \\
& \text { (ADec) } \quad \frac{\bigwedge_{i=1}^{j} V_{i}=V_{i}^{\prime}}{\operatorname{decrypt}\left\{\left|V_{1}, \ldots, V_{k}\right|\right\}_{m+} \text { as }\left\{\left|V_{1}^{\prime}, \ldots, V_{j}^{\prime} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{m^{-}}} \\
& \text {in } P \rightarrow_{\mathcal{R}} P\left[V_{j+1} / x_{j+1}, \ldots, V_{k} / x_{k}\right] \\
& \text { (ASig) } \quad \frac{\bigwedge_{i=1}^{j} V_{i}=V_{i}^{\prime}}{\operatorname{decrypt}\left\{\left|V_{1}, \ldots, V_{k}\right|\right\}_{m^{-}} \text {as }\left\{\left|V_{1}^{\prime}, \ldots, V_{j}^{\prime} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{m^{+}}} \\
& \text {in } P \rightarrow_{\mathcal{R}} P\left[V_{j+1} / x_{j+1}, \ldots, V_{k} / x_{k}\right] \\
& \text { (New) } \frac{P \rightarrow_{\mathcal{R}} P^{\prime}}{(v n) P \rightarrow_{\mathcal{R}}(v n) P^{\prime}} \\
& \text { (ANew) } \frac{P \rightarrow_{\mathcal{R}} P^{\prime}}{(v \pm m) P \rightarrow_{\mathcal{R}}(v \pm m) P^{\prime}} \\
& \text { (Par) } \quad \frac{P_{1} \rightarrow{ }_{\mathcal{R}} P_{1}^{\prime}}{P_{1}\left|P_{2} \rightarrow{ }_{\mathcal{R}} P_{1}^{\prime}\right| P_{2}} \\
& \text { (Congr) } \frac{P \equiv P^{\prime} \wedge P^{\prime} \rightarrow_{\mathcal{R}} P^{\prime \prime} \wedge P^{\prime \prime} \equiv P^{\prime \prime \prime}}{P \rightarrow_{R} P^{\prime \prime}}
\end{aligned}
$$

$$
\begin{aligned}
& \mid m^{-} \\
& \mid\left\{V_{1}, \ldots, V_{k}\right\}_{V_{0}} \\
& \mid\left\{\left|V_{1}, \ldots, V_{k}\right|\right\}_{V_{0}}
\end{aligned}
$$

The reduction relation describes how a process may evolve into another and it is defined inductively as the smallest relation such that the rules in Table 6 are satisfied. A reference monitor is used to check each step before allowing it to be executed. It can be turned off or on: in the first case there are not requirements that have to be meet; in the other case some properties are checked at run time and, if the check does not succeed, the process execution is aborted.

A substitution function is used in the reduction rules, written $P[V / x]$; it substitutes a variable x for a value V in the process P whenever x becomes bound to V.

The rule (Com) is the parallel composition between an output process and an input process. This means that the communication between two principals happens only if these two processes run in parallel. Furthermore, the first j values V_{1}, \ldots, V_{j} sent have to be identical to the first j values $V_{1}^{\prime}, \ldots, V_{j}^{\prime}$ that the recipient expects. In this case, the variables are substituted with the values V_{j+1}, \ldots, V_{k}. The rules (Dec), (ADec) and (ASig) are used to decrypt messages with a symmetric key, a private key and a public key, respectively. As before, the first j values V_{1}, \ldots, V_{j} encrypted have to be identical to the first j values $V_{1}^{\prime}, \ldots, V_{j}^{\prime}$ that who decrypts the message expects. In this case, the variables are substituted with the values V_{j+1}, \ldots, V_{k}. The rule (New) and (ANew) restrict the scope of the names created, therefore they are visible only in the respective processes. The rule (Par) is the parallel composition that can evolve into a new parallel composition where one of the two processes involved is evolved while the other remains unchanged. The rule (Congr) allows to apply the reduction relation to any process that is structurally congruent to the process found in the other rules.

2.2. Meta level calculus

The meta level is an extension of LySA that can be used to describe different scenarios in which many principals execute a protocol at the same time. Thanks to this level the analysis can run in a realistic environment with many initiators and responders. This is done by running several copies of the processes and renaming each name and each variable using indexes, added to make them unique.

Table 7
Syntax of meta level LySA calculus.

```
mx:: = 晾
ME :: = MTerm
n\overline{i}
mx
m+
m-
{ME , , .,ME ME } }ME 
{|ME , ,.,ME M | | } ME 
MP :: = MProc
| i\inS MP
let }X\subseteqS\mathrm{ in MP
(vi\overline{i}\in\overline{S}
(v vi\overline{i}\in\overline{S}
<ME 
(ME 1, ,.,ME j;m\mp@subsup{x}{j+1}{},\ldots,m\mp@subsup{x}{k}{}).MP
decrypt ME as {ME , ,.,ME ; ;mx j+1 , ,.,m\mp@subsup{x}{k}{}\mp@subsup{}}{M\mp@subsup{E}{0}{}}{}\mathrm{ in MP}
decrypt ME as {|ME , ,.,ME ; ;mx j+1 , ..,m\mp@subsup{x}{k}{}|\mp@subsup{}}{M\mp@subsup{E}{0}{}}{}\mathrm{ in MP}<\mp@code{M}
(v\mp@subsup{n}{\overline{i}}{\prime})MP
(v\pm\mp@subsup{m}{\overline{i}}{)})MP
MP
!MP
0
```

The syntax of the meta level is defined by the grammar described in Table 7. Its constructs incorporate a countable indexing set S, which includes a set of variables X.

The meta level terms $M E_{i}$ are identical to the object level terms, i.e. the terms explained before, except that names, variables and asymmetric keys are indexed. A sequence of indexes \bar{i} is added as subscript, that is a shorthand for i_{1}, \ldots, i_{k}. The meta level processes are the following:

- $\left.\right|_{i \in S} M P$: the process describes the parallel composition of instances of the process MP where the index i is an element in the set S.
- let $X \subseteq S$ in MP: the process declares a set identifier X which has some values of the index set S in the process MP; the set X can be infinite, so that the meta level process may instantiate to infinitely many processes, specifying arbitrarily large scenarios.
- $\left(v_{\bar{i} \in \bar{S}} n_{\bar{a} i}\right) M P:$ the process describes the restriction of all the names $n_{\bar{a} \bar{i}} ; \bar{a}$ is a prefix of the index that can be empty.
- $\left(v_{ \pm \bar{i} \in \bar{S}} m_{\overline{a i}}\right) M P$: the process describes the restriction of all the key pairs $m_{\bar{a} i}^{+}$and $m_{\overline{a i}}^{-}$; as above, \bar{a} is a prefix of the index thàt can be empty.
- $\left\langle M E_{1}, \ldots, M E_{k}\right\rangle . M P$: the process sends a k-tuple of values onto the global network; when the message has been successfully sent the process continues as MP.
- $\left(M E_{1}, \ldots, M E_{j} ; m x_{j+1}, \ldots, m x_{k}\right) . M P$: the process reads the k-tuple of values sent, it checks if the values expected are identical to $M E_{1}, \ldots, M E_{j}$, and, if this succeeds, the remaining $k-j$ values are bound to the variables $m x_{j+1}, \ldots, m x_{k}$, and the process continues as MP, which is the scope of the variables; a semi-colon is used to distinguish between the terms used for matching and the variables, as in the input process seen in the object level (the one described in Section 2.1).
- decrypt $M E$ as $\left\{M E_{1}, \ldots, M E_{j} ; m x_{j+1}, \ldots, m x_{k}\right\}_{M E_{0}}$ in MP: the process denotes the symmetric decryption; it checks if the encryption key is identical to $M E_{0}$, then the process decrypts the k-tuple, and it checks if the values expected are identical to $M E_{1}, \ldots, M E_{j}$, and, if this succeeds, the remaining $k-j$ values are bound to the variables $m x_{j+1}, \ldots, m x_{k}$, and the process continues as $M P$, which is the scope of the variables.
- decrypt $M E$ as $\left\{\left|M E_{1}, \ldots, M E_{j} ; m x_{j+1}, \ldots, m x_{k}\right|\right\}_{M E_{0}}$ in $M P$: the process denotes the asymmetric decryption and it works like symmetric decryption except that $M E_{0}$ and the key used to encrypt have to be a key pair m^{+}and m^{-}.
- $\left(v n_{\bar{i}}\right) M P$: the process generates k new names $n_{i}, i \in[1 . . k]$, and it continues as MP, which is the scope of the names.
- $\left(v \pm m_{\bar{i}}\right) M P$: the process generates k new key pairs, m_{i}^{+}and m_{i}^{-}, and it continues as MP, which is the scope of the key pairs.
- $M P_{1} \mid M P_{2}$: the process denotes two meta level subprocesses running in parallel that may synchronize through communications over the network or perform actions independently.
- !MP: the process acts as an arbitrary number of processes MP composed in parallel.
- 0 : the process is the inactive or nil process that does nothing.

The process let $X \subseteq S$ in $M P$ is a binder of X, therefore if X is instantiated to a subset of S then every occurrence of X in the process MP is instantiated. The process $\left.\right|_{i \in S} M P$ is a binder of i and the indexed restrictions are binders of names and key pairs.

Table 8
Instantiation relation $M P \rightarrow{ }_{I} P$.

(ILet)	$\begin{aligned} & \frac{M P\left[X \mapsto S^{\prime}\right] \Rightarrow P}{\text { let } X \subseteq S \text { in } M P \Rightarrow P} \text { if } S^{\prime} \subseteq{ }_{f i n} S \\ & \text { where } \subseteq f_{\text {fin }} \text { means finite subset } \end{aligned}$
(IIPar)	$\frac{M P\left[i \mapsto a_{1}\right] \Rightarrow P_{1} \cdots M P\left[i \mapsto a_{k}\right] \Rightarrow P_{k}}{\left.\right\|_{i \in\left\{a_{1}, \ldots, a_{k}\right\}} M P \Rightarrow P_{1}\|\cdots\| P_{k}}$
(IINew)	$\frac{M P \Rightarrow P}{\left(v_{\bar{i} \in\left\{\overline{a_{1}}, \ldots, \overline{k_{k}}\right\}} n_{\overline{a i}}\right) M P \Rightarrow\left(v n_{\overline{a a_{1}}}\right) \cdots\left(v n_{\overline{a a_{k}}}\right) P}$
(IIANew)	$\frac{M P \Rightarrow P}{\left(v_{ \pm \bar{i} \in\left\{\overline{a_{1}}, \ldots, \overline{a_{k}}\right\}} m_{\overline{a i}}\right) M P \Rightarrow\left(v \pm m_{\overline{a a_{1}}}\right) \cdots\left(v m_{\overline{a a_{k}}}\right) P}$
(IOut)	$\frac{M P \Rightarrow P}{\left\langle M E_{1}, \ldots, M E_{k}\right\rangle . M P \Rightarrow\left\langle M E_{1}, \ldots, M E_{k}\right\rangle . P}$
(IInp)	$\frac{M P \Rightarrow P}{\left(M E_{1}, \ldots, M E_{j} ; m x_{j+1}, \ldots, m x_{k}\right) \cdot M P \Rightarrow}$
(IDec)	$\begin{aligned} & \frac{M P \Rightarrow P}{\text { decrypt } M E \text { as }\left\{M E_{1}, \ldots, M E_{j} ; m x_{j+1}, \ldots, m x_{k}\right\}_{M E_{0}} \text { in } M P \Rightarrow} \\ & \text { decrypt } M E \text { as }\left\{M E_{1}, \ldots, M E_{j} ; m x_{j+1}, \ldots, m x_{k}\right\}_{M E_{0}} \text { in } P \end{aligned}$
(IADec)	$\begin{aligned} & \frac{M P \Rightarrow P}{\text { decrypt } M E \text { as }\left\{\left\|M E_{1}, \ldots, M E_{j} ; m x_{j+1}, \ldots, m x_{k}\right\|\right\}_{M E_{0}} \text { in } M P \Rightarrow} \\ & \text { decrypt } M E \text { as }\left\{\left\|M E_{1}, \ldots, M E_{j} ; m x_{j+1}, \ldots, m x_{k}\right\|_{M E_{0}} \text { in } P\right. \end{aligned}$
(INew)	$\frac{M P \Rightarrow P}{\left(v n_{\bar{a}}\right) M P \Rightarrow\left(v n_{\bar{a}}\right) P}$
(IANew)	$\frac{M P \Rightarrow P}{\left(v \pm m_{\bar{a}}\right) M P \Rightarrow\left(v \pm m_{\bar{a}}\right) P}$
(IRep)	$\frac{M P \Rightarrow P}{!M P \Rightarrow!P}$
(IPar)	$\frac{M P_{1} \Rightarrow P_{1} \quad M P_{2} \Rightarrow P_{2}}{M P_{1}\left\|M P_{2} \Rightarrow P_{1}\right\| P_{2}}$
(INil)	$0 \Rightarrow 0$

An instantiation relation, written $M P \rightarrow{ }_{\mathcal{I}} P$, is introduced to describe that a process P is an instance of a meta level process MP, as depicted in Table 8.

The rule (ILet) allows the meta level to instantiate to all the object level processes P that are in some finite subset of the set S. The rule (IIPar) instantiates the process $\left.\right|_{i \in S} M P$ to be the parallel composition of processes for each of the indexes in the set S. The rules (IINew) and (IIANew) instantiate the indexed restrictions to the restrictions of the names for all the values in the set $\{\overline{a 1}, \ldots, \overline{a k}\}$. The rules (IOut), (IInp), (IDec), (IADec), (INew), (IANew), (IRep), (IPar) and (INil) are instantiations of their subprocesses.

Example 1. Let us introduce a known non-repudiation protocol, namely the Zhou-Gollmann protocol [17], which is the following:

```
A B B: }\quad\mp@subsup{f}{NRO,B,L,C,NRO}{
B}->\textrm{A}:\quad\mp@subsup{f}{NRR}{},A,L,NR
A }->\mathrm{ TTP : f}\mp@subsup{f}{\mathrm{ SUB },B,L,K,sub_K}{
B}\leftrightarrowTTP : f. fON,A,B,L,K,con_
A\leftrightarrowTTP : fcON ,A,B,L,K,con_K
```

where:

- A is the originator of the non-repudiation exchange;
- B is the recipient of the non-repudiation exchange;
- TTP is the on-line trusted third party providing network services accessible to the public;
- M is the message sent from A to B;
- C is the encryption for the message M under a key K;
- K is the message key defined by A;
- L is a unique label that links all messages of a particular protocol run together;
- $N R O=\operatorname{Sig}_{A}\left(f_{N R O}, B, L, C\right)$ is the non-repudiation of origin for M;
- $N R R=\operatorname{Sig}_{B}\left(f_{N R R}, A, L, C\right)$ is the non-repudiation of receipt for M;
- sub_K=Sig $\left(f_{\text {SUB }}, B, L, K\right)$ is the proof of submission of K;
- con_K=Sig $\operatorname{KTTP}\left(f_{\text {CON }}, A, B, L, K\right)$ is the confirmation of K issued by TTP;
－f_{*} is a flag which expresses the aim of the message（the sender wants to give a proof of origin $N R O /$ receipt $N R R /$ submission SUB／confirmation con＿K）；
－ $\mathrm{A} \rightarrow \mathrm{B}: X$ means that principal A sends message X from principal B ；
－A $\leftrightarrow \mathrm{B}: X$ means that principal A fetches message X from principal B ．
The first message of the encoding provides B the encryption C of a message M under a key K ；if the message fails to reach B then the protocol ends without disputes，since B cannot read M yet without the decryption key K ．With the second step A is given the proof that B received the first message．After checking if B＇s evidence matches with A＇s evidence，A sends the decryption key K to the trusted third party TTP．Finally the trusted third party stores in a public directory a message consisting of the key and the proof that it belongs to a particular protocol session run by A and B ；the principals can fetch the key through the fourth and the fifth messages（the order of the last two messages is not important）．

Note that L and the proofs in the five messages must always match in order to eventually win a dispute，because they link the messages belonging to same session of the protocol．

The encoding is the following，where three key pairs（ $A K^{ \pm}$for $A, B K^{ \pm}$for B ，and $K T T P^{ \pm}$for the trusted third party）and a symmetric key（SK）are used：

```
(v\pmKTTP)}(v\pmAK)(v\pmBK)
    !(vSK)(vL)(vM)
    \langlef fNOO,B,L,{M\mp@subsup{}}{SK}{},{\mp@subsup{|}{NRO}{O},B,L,{M\mp@subsup{}}{SK}{}|\mp@subsup{}}{AK}{}
    (fNRR,A,L; xNRR).
    decrypt }xNRR\mathrm{ as {{f {}\mp@subsup{f}{NR}{},A,L,{M\mp@subsup{}}{SK}{};|\mp@subsup{}}{B\mp@subsup{K}{}{+}}{}\mathrm{ in
    \langlef SUB,B,L,SK,{\f(SUB,B,L,SK|\mp@subsup{}}{A\mp@subsup{K}{}{-}}{}\rangle
    (fCON},A,B,L,SK; xCon)
    decrypt xCon as {|fCON,A,B,L,SK;|}}\mp@subsup{}}{KTT\mp@subsup{P}{}{+}}{}\mathrm{ in 0
| !(fNRO,B;xL,xEnMsg,xNRO).
    decrypt xNRO as {|f NRO,B,xL,xEnMsg;|}}\mp@subsup{A\mp@subsup{K}{}{+}}{}{+}\mathrm{ in
    \langlef fNRR},A,xL,{|\mp@subsup{f}{NRR}{},A,xL,xEnMsg|\mp@subsup{}}{B\mp@subsup{K}{}{-}}{}\rangle
    (fCON,A,B xL; xK, xCon).
    decrypt xCon as {|f⿱⿰㇒一CON,A,B,xL,xK;|}}\mp@subsup{}}{\mathrm{ KTTP+}}{}\mathrm{ in
    decrypt xEnMsg as {;xMsg\mp@subsup{}}{xK}{}}\mathrm{ in 0
| !(f_SUB,B;xL,xSK,xSub).
    decrypt xSub as {|fSUB,B,xL,xSK;|}}\mp@subsup{}}{A\mp@subsup{K}{}{+}}{}\mathrm{ in
    \langlef_CON,A,B,xL,xSK,{[\mp@subsup{f}{CON}{},A,B,xL,xSK|\mp@subsup{}}{\mathrm{ KTTP-}}{-}
    <f_CON ,A,B,xL,xSK,{[f\mp@subsup{f}{CON}{},A,B,xL,xSK|}}\mp@subsup{}}{\mathrm{ KTTP-}}{}>>.
)
```

where the restrictions $(v \pm K T T P),(v \pm A K)$ ，and $(v \pm B K)$ define the key pairs used in the scope of the protocol．In particular the private keys，denoted by a minus，are used only by the subprocess modelling the behavior of the correspondent user；for example only the subprocess modelling the principal A can use the key $A K^{-}$．Public keys，denoted by a plus，are known by all the principals in the network so that all of them can check signatures（or encrypt messages if the protocol requires this）．

In this scenario we have modelled only three principals，each one with a specific role，but this is not realistic．In fact，in the global network there are many principals and this gives chances to an attack．Therefore we have to extend the protocol above with multiple principals，simply indexing each name，each variable and each parallel composition construct．We consider a scenario in which there are a trusted third party（an honest principal）and many initiators and responders．The set X contains both initiators and responders，so each principal can be one or the other．The resulting protocol is the following：

```
let X\subseteqS in (v vi\inXAK
    | li\inX |j\inX ! !vSK
```



```
        <f SUB, I},\mp@subsup{I}{j}{},\mp@subsup{L}{ij}{},S\mp@subsup{K}{ij}{},{|\mp@subsup{f}{SUB}{},\mp@subsup{I}{j}{},\mp@subsup{L}{ij}{},S\mp@subsup{K}{ij}{}|\mp@subsup{}}{A\mp@subsup{K}{i}{-}}{}\rangle
        (f)
        decrypt xCon ij as {|f⿱⿰㇒一CON,I},\mp@subsup{I}{i}{},\mp@subsup{I}{j}{},\mp@subsup{L}{ij}{},S\mp@subsup{K}{ij}{};|\mp@subsup{}}{\mathrm{ KTTP }}{}\mp@subsup{}{}{+}\mathrm{ in 0
    | i\inX | | 
            decrypt xNRO
```



```
            (fCON, I, I, Ij,xL ij; ;KK ij, xCon ij).
            decrypt xCon ij as {|f⿱⿰㇒一大口N},\mp@subsup{I}{i}{},\mp@subsup{I}{j}{\prime},x\mp@subsup{L}{ij}{},x\mp@subsup{K}{ij}{};|\mp@subsup{}}{KTT\mp@subsup{P}{}{+}}{}\mathrm{ in
            decrypt xEnMsg
    |}\mp@subsup{|}{i\inX}{}\mp@subsup{|}{j\inX}{}!(\mp@subsup{f}{SUB}{},\mp@subsup{I}{j}{};x\mp@subsup{L}{ij}{},xS\mp@subsup{K}{ij}{},xSu\mp@subsup{b}{ij}{})
            decrypt xSu\mp@subsup{b}{ij}{}\mathrm{ as {|{SUB, IJ,xL ij},xS\mp@subsup{K}{ij}{};|\mp@subsup{}}{A\mp@subsup{K}{i}{+}}{}}\mathrm{ in
```

```
<f_CON, I, I, I, ,LLij, <SK 
<fcoN, II, I, , ,LLij
```

)

3. Control flow analysis

In this section we introduce our Control Flow Analysis (CFA) as an extension of [13]. The aim of the CFA is to collect information about the behavior of a process and to store them in some data structures \mathcal{A}, called analysis components. To be finite, static analysis is forced to compute approximations rather than exact answers. Therefore the analysis can give false positives but it has to preserve soundness.

We will use Flow Logic settings for the specification and the proofs. It is a formalism for specifying static analysis and it focuses on the relationship between an analysis estimate and the process to be analysed, formally:

$$
\mathcal{A} \models P
$$

which is a predicate that holds when \mathcal{A} is a description of the behavior of the process P.
CFA abstracts the executions and represents only some aspects of the behavior of a process which can also be infinite. We will prove the correctness of the analysis by showing that the analysis components \mathcal{A} are such that the property they represent also holds when the process evolves. Formally:

$$
\mathcal{A} \models P \wedge P \rightarrow P^{\prime} \Rightarrow \mathcal{A} \models P^{\prime}
$$

The Flow Logic specifications can be of the following formats.
Definition 1 (Verbose Format). A Verbose Flow Logic specification records information about a process globally, by rules of the form

$$
\mathcal{A} \models P \text { iff a logic formula } \mathcal{F} \text { holds }
$$

that means that the analysis components \mathcal{A} are estimates of the process P if and only if the logic formula \mathcal{F} holds.

Table 9
Analysis of terms and processes.

(AN)	$\rho \models n: \vartheta$	iff $\lfloor n\rfloor \in \vartheta$
(ANp)	$\rho \models m^{+}: \vartheta$	iff $\left\lfloor m^{+}\right\rfloor \in \vartheta$
(ANm)	$\rho \models m^{-}: \vartheta$	iff $\left\lfloor m^{-}\right\rfloor \in \vartheta$
(AVar)	$\rho \models x: \vartheta$	iff $\rho(\lfloor x\rfloor) \subseteq \vartheta$
(AEnc)	$\rho \models\left\{E_{1}, \ldots, E_{k}\right\}_{E_{0}}: \vartheta$	$\begin{aligned} & \text { iff } \bigwedge_{i=0}^{k} \rho \models E_{i}: \vartheta_{i} \wedge \forall U_{0}, \ldots, U_{k}: \bigwedge_{i=0}^{k} U_{i} \in \vartheta_{i} \\ & \Rightarrow\left\{U_{1}, \ldots, U_{k}\right\}_{U_{0}} \in \vartheta \end{aligned}$
(AAEnc)	$\rho \models\left\{\left\|E_{1}, \ldots, E_{k}\right\|\right\}_{E_{0}}: \vartheta$	$\begin{aligned} & \text { iff } \bigwedge_{i=0}^{k} \rho \models E_{i}: \vartheta_{i} \wedge \forall U_{0}, \ldots, U_{k}: \bigwedge_{i=0}^{k} U_{i} \in \vartheta_{i} \\ & \Rightarrow\left\{\left\|U_{1}, \ldots, U_{k}\right\|\right\}_{U_{0}} \in \vartheta \end{aligned}$
(AOut)	$\rho, \kappa \models\left\langle E_{1}, \ldots, E_{k}\right\rangle . P$	$\begin{aligned} & \text { iff } \bigwedge_{i=1}^{k} \rho \models E_{i}: \vartheta_{i} \wedge \forall U_{1}, \ldots, U_{k}: \bigwedge_{i=1}^{k} U_{i} \in \vartheta_{i} \\ & \Rightarrow\left(\left\langle U_{1}, \ldots, U_{k}\right\rangle \in \kappa \wedge \rho, \kappa \models P\right) \end{aligned}$
(AInp)	$\rho, \kappa \models\left(E_{1}, \ldots, E_{j} ; \chi_{j+1}, \ldots, \chi_{k}\right) \cdot P$	$\begin{aligned} & \text { iff } \bigwedge_{i=1}^{j} \rho \models E_{i}: \vartheta_{i} \wedge \forall\left\langle U_{1}, \ldots, U_{k}\right\rangle \in \kappa: \bigwedge_{i=1}^{j} U_{i} \in \vartheta_{i} \\ & \Rightarrow\left(\bigwedge_{i=j+1}^{k} U_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right) \wedge \rho, \kappa \models P\right) \end{aligned}$
(ASDec)	$\rho, \kappa \models$ decrypt E as $\left\{E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right\}_{E_{0}}$ in P	$\begin{aligned} & \text { iff } \rho \models E: \vartheta \wedge \bigwedge_{i=0}^{j} \rho \models E_{i}: \vartheta_{i} \wedge \forall\left\{U_{1}, \ldots, U_{k}\right\}_{U_{0}} \in \vartheta \\ & \wedge \bigwedge_{i=0}^{j} U_{i} \in \vartheta_{i} \Rightarrow\left(\bigwedge_{i=j+1}^{k} U_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right) \wedge \rho, \kappa \models P\right) \end{aligned}$
(AADec)	$\rho, \kappa \models$ decrypt E as $\left\{\left\|E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right\|\right\}_{E_{0}}$ in P	$\begin{aligned} & \text { iff } \rho \models E: \vartheta \wedge \bigwedge_{i=0}^{j} \rho \models E_{i}: \vartheta_{i} \wedge \forall\left\{\left\|U_{1}, \ldots, U_{k}\right\|\right\}_{U_{0}} \in \vartheta: \\ & \forall U_{0}^{\prime} \in \vartheta_{0}: \forall\left(m^{+}, m^{-}\right):\left(U_{0}, U_{0}^{\prime}\right)=\left(\left\lfloor m^{-}\right\rfloor,\left\lfloor m^{+}\right\rfloor\right) \\ & \wedge \bigwedge_{i=1}^{j} U_{i} \in \vartheta_{i} \Rightarrow\left(\bigwedge_{i=j+1}^{k} U_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right) \wedge \rho, \kappa \models P\right) \end{aligned}$
(AASig)	$\rho, \kappa \models \operatorname{decrypt} E$ as $\left\{\left\|E_{1}, \ldots, E_{j} ; x_{j+1}, \ldots, x_{k}\right\|\right\}_{E_{0}}$ in P	$\begin{aligned} & \text { iff } \rho \models E: \vartheta \wedge \bigwedge_{i=0}^{j} \rho \models E_{i}: \vartheta_{i} \wedge \forall\left\{\left\|U_{1}, \ldots, U_{k}\right\|\right\}_{U_{0}} \in \vartheta \\ & \forall U_{0}^{\prime} \in \vartheta_{0}: \forall\left(m^{+}, m^{-}\right):\left(U_{0}, U_{0}^{\prime}\right)=\left(\left\lfloor m^{+}\right\rfloor,\left\lfloor m^{-}\right\rfloor\right) \\ & \wedge \bigwedge_{i=1}^{j} U_{i} \in \vartheta_{i} \Rightarrow\left(\bigwedge_{i=j+1}^{k} U_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right) \wedge \rho, \kappa \models P\right) \end{aligned}$
(ANew)	$\rho, \kappa \models\binom{v}{n} P$	iff $\rho, \kappa \models P$
(AANew)	$\rho, \kappa \models(v \pm m) P$	iff $\rho, \kappa \models P$
(APar)	$\rho, \kappa \models P_{1} \mid P_{2}$	iff $\rho, \kappa \models P_{1} \wedge \rho, \kappa \models P_{2}$
(ARep)	$\rho, \kappa \vDash!P$	iff $\rho, \kappa \models P$
(ANil)	$\rho, \kappa \models 0$	iff true

Definition 2 (Succinct Format). A Succinct Flow Logic specification records information about a process locally, by rules of the form

$$
\mathcal{A} \models P: \mathcal{A}^{\prime} \text { iff a logic formula } \mathcal{F} \text { holds }
$$

where \mathcal{A}^{\prime} is an analysis component that holds information only about the process P and it is not known anywhere else in the analysis.

The analysis components record canonical values from the set \lfloor Val \rfloor ranged over by U to represent values generated by the same restriction. The component $\kappa \in \mathcal{P}\left(\lfloor V a l\rfloor^{*}\right)$ collects the tuples of canonical values corresponding to the values communicated in the global network while $\rho:\lfloor\operatorname{Var}\rfloor \rightarrow \mathcal{P}(\lfloor$ Val $\rfloor)$ records the canonical values corresponding to the values that variables may become bound to. A predicate $\rho, \kappa \models P$ says that ρ and κ are valid analysis results describing the behavior of P. To analyse the expressions it is used the form $\rho \models E: \vartheta$ to describe a set of canonical values $\vartheta \in \mathcal{P}(\lfloor$ Val $\rfloor)$ that the expression E may evaluate.

The analysis of terms and processes is described in Table 9. The rules (AN), (ANp) and (ANm) say that names may evaluate to themselves iff the canonical names are in ϑ. The rule (AVar) says that variables may evaluate to the values described by ρ for the corresponding canonical variable. The rules (AEnc) and (AAEnc) use the analysis predicate recursively to evaluate all the subexpressions in the encryption and they require ϑ to contain all the encrypted values that can be formed combining the values that subexpressions may evaluate to. The rule (AOut) says that the expressions are evaluated and it is required that all the combinations of the values found by this evaluation are recorded in κ. The rule (AInp) says that the first j expressions in the input construct are evaluated to be the sets ϑ_{i} for $i=1, \ldots j$; if the pattern match with the values in κ is successful, the remaining values of the k-tuple are recorded in ρ as possible binding of the variables

Table 10
The meta level analysis.

(MLet)	$\rho, \kappa \models_{\Gamma}$ let $X \subseteq S$ in M	iff $\rho, \kappa \models_{\Gamma\left[X_{\mapsto} S^{\prime}\right]} M$ where $S^{\prime} \subseteq \subseteq_{f i n} \Gamma(S)$ and $\left\lfloor S^{\prime}\right\rfloor=\lfloor\Gamma(S)\rfloor$
(MIPar)	$\rho,\left.\kappa \models_{\Gamma}\right\|_{i \in S} M$	iff $\bigwedge_{a \in \Gamma(S)} \rho, \kappa \models_{\Gamma} M[i \mapsto a]$
(MINew)	$\rho, \kappa \models_{\Gamma}\left(v_{\bar{i} \in \bar{S}} n_{\overline{a i}}\right) M$	iff $\rho, \kappa \models{ }_{\Gamma} M$
(MIANew)	$\rho, \kappa \models_{\Gamma}\left(v_{ \pm \bar{i} \in \bar{S}} m_{\bar{a} \bar{i}}\right) M$	iff $\rho, \kappa \models{ }_{\Gamma} M$
(MN)	$\rho \models n_{\bar{i}}: \vartheta$	iff $\left\lfloor n_{\bar{i}}\right\rfloor \in \vartheta$
(MNp)	$\rho \models m_{\bar{i}}^{+}: \vartheta$	iff $\left\lfloor m_{\bar{i}}^{+}\right\rfloor \in \vartheta$
(MNm)	$\rho \models m_{\bar{i}}^{-}: \vartheta$	iff $\left\lfloor m_{\bar{i}}^{-}\right\rfloor \in \vartheta$
(MVar)	$\rho \vDash x_{\bar{i}}: \vartheta$	iff $\rho\left(\left\lfloor x_{\bar{i}}\right\rfloor\right) \subseteq \vartheta$
(MEnc)	$\rho \models\left\{M E_{1}, \ldots, M E_{k}\right\}_{M E_{0}}: \vartheta$	iff $\bigwedge_{i=0}^{k} \rho \models M E_{i}: \vartheta_{i} \wedge \forall U_{0}, \ldots, U_{k}$: $\bigwedge_{i=0}^{k} U_{i} \in \vartheta_{i} \Rightarrow\left\{U_{1}, \ldots, U_{k}\right\}_{U_{0}} \in \vartheta$
(AAEnc)	$\rho \models\left\{\left\|M E_{1}, \ldots, M E_{k}\right\|\right\}_{M E_{0}}: \vartheta$	iff $\bigwedge_{i=0}^{k} \rho \models M E_{i}: \vartheta_{i} \wedge \forall U_{0}, \ldots, U_{k}$: $\bigwedge_{i=0}^{k} U_{i} \in \vartheta_{i} \Rightarrow\left\{\left\|U_{1}, \ldots, U_{k}\right\|\right\}_{U_{0}} \in \vartheta$
(MOut)	$\rho, \kappa \vDash{ }_{\Gamma}\left\langle M E_{1}, \ldots, M E_{k}\right\rangle . M$	iff $\bigwedge_{i=1}^{k} \rho \models M E_{i}: \vartheta_{i} \wedge \forall U_{1}, \ldots, U_{k}$: $\bigwedge_{i=1}^{k} U_{i} \in \vartheta_{i} \Rightarrow\left\langle U_{1}, \ldots, U_{k}\right\rangle \in \kappa \wedge \rho, \kappa \models{ }_{\Gamma} M$
(MInp)	$\rho, \kappa \models_{\Gamma}\left(M E_{1}, \ldots, M E_{j} ; x_{j+1}, \ldots, x_{k}\right) \cdot M$	$\begin{aligned} & \text { iff } \bigwedge_{i=1}^{j} \rho \models M E_{i}: \vartheta_{i} \wedge \forall\left\langle U_{1}, \ldots, U_{k}\right\rangle \in \kappa: \bigwedge_{i=1}^{j} U_{i} \in \vartheta_{i} \\ & \Rightarrow\left(\bigwedge_{i=j+1}^{k} U_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right) \wedge \rho, \kappa \models_{\Gamma} M\right) \end{aligned}$
(ASDec)	$\rho, \kappa \models{ }_{\Gamma}$ decrypt $M E$ as $\left\{M E_{1}, \ldots, M E_{j} ; \chi_{j+1}, \ldots, x_{k}\right\}_{M E_{0}}$ in M	$\begin{aligned} & \text { iff } \rho \models M E: \vartheta \wedge \bigwedge_{i=0}^{j} \rho \models M E_{i}: \vartheta_{i} \wedge \\ & \forall\left\{U_{1}, \ldots, U_{k}\right\}_{U_{0}} \in \vartheta \wedge \bigwedge_{i=0}^{j} U_{i} \in \vartheta_{i} \\ & \Rightarrow\left(\bigwedge_{i=j+1}^{k} U_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right) \wedge \rho, \kappa \models{ }_{\Gamma} M\right) \end{aligned}$
(AADec)	$\rho, \kappa \vDash{ }_{\Gamma}$ decrypt $M E$ as $\left\{\left\|M E_{1}, \ldots, M E_{j} ; \chi_{j+1}, \ldots, \chi_{k}\right\|\right\}_{M E_{0}}$ in M	$\begin{aligned} & \text { iff } \rho \models{ }_{\Gamma} M E: \vartheta \wedge \bigwedge_{i=0}^{j} \rho \models_{\Gamma} M E_{i}: \vartheta_{i} \wedge \\ & \forall\left\{\left\|U_{1}, \ldots, U_{k}\right\|\right\}_{U_{0}} \in \vartheta: \forall U_{0}^{\prime} \in \vartheta_{0}: \\ & \forall\left(m^{+}, m^{-}\right):\left(U_{0}, U_{0}^{\prime}\right)=\left(\left\lfloor m^{-}\right\rfloor,\left\lfloor m^{-}\right\rfloor\right) \\ & \wedge \bigwedge_{i=1}^{j} U_{i} \in \vartheta_{i} \Rightarrow\left(\bigwedge_{i=j+1}^{k} U_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right) \wedge \rho, \kappa \models_{\Gamma} M\right) \end{aligned}$
(AASig)	$\rho, \kappa \vDash{ }_{\Gamma}$ decrypt $M E$ as $\left\{\left\|M E_{1}, \ldots, M E_{j} ; x_{j+1}, \ldots, x_{k}\right\|\right\}_{M E_{0}}$ in M	$\begin{aligned} & \text { iff } \rho \models{ }_{\Gamma} M E: \vartheta \wedge \bigwedge_{i=0}^{j} \rho \models M E_{i}: \vartheta_{i} \wedge \\ & \forall\left\{\left\|U_{1}, \ldots, U_{k}\right\|\right\}_{U_{0}} \in \vartheta: \forall U_{0}^{\prime} \in \vartheta_{0}: \\ & \forall\left(m^{+}, m^{-}\right):\left(U_{0}, U_{0}^{\prime}\right)=\left(\left\lfloor m^{+}\right\rfloor,\left\lfloor m^{-}\right\rfloor\right) \\ & \wedge \bigwedge_{i=1}^{j} U_{i} \in \vartheta_{i} \Rightarrow\left(\bigwedge_{i=j+1}^{k} U_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right) \wedge \rho, \kappa \models{ }_{\Gamma} M\right) \end{aligned}$
(ANew)	$\rho, \kappa \models_{\Gamma}\left(v n_{i}\right) M$	iff $\rho, \kappa \vDash{ }_{\Gamma} M$
(AANew)	$\rho, \kappa \models_{\Gamma}\left(v \pm m_{i}\right) M$	iff $\rho, \kappa \models_{\Gamma} M$
(APar)	$\rho, \kappa \models{ }_{\Gamma} M_{1} \mid M_{2}$	iff $\rho, \kappa \vDash{ }_{\Gamma} M_{1} \wedge \rho, \kappa \models M_{2}$
(ARep)	$\rho, \kappa \models_{\Gamma}!M$	iff $\rho, \kappa \models{ }_{\Gamma} M$
(ANil)	$\rho, \kappa \models{ }_{\Gamma} 0$	iff true

Table 11
The attacker's capabilities.
(1) The attacker may learn by eavesdropping
$\bigwedge_{k \in \mathcal{A}_{k}} \forall\left\langle V_{1}, \ldots, V_{k}\right\rangle \in \kappa: \bigwedge_{i=1}^{k} V_{i} \in \rho\left(z_{0}\right)$

> The attacker may learn by decrypting messages with keys already known
$\bigwedge_{k \in \mathcal{A}_{\text {Enc }}} \forall\left\{V_{1}, \ldots, V_{k}\right\}_{V_{0}} \in \rho\left(z_{0}\right): V_{0} \in \rho\left(z_{\mathbf{0}}\right) \Rightarrow \bigwedge_{i=1}^{k} V_{i} \in \rho\left(z_{\mathbf{0}}\right)$
$\bigwedge_{k \in \mathcal{A}_{E n c}} \forall\left\{\left|V_{1}, \ldots, V_{k}\right|\right\}_{m^{+}} \in \rho\left(z_{\mathbf{0}}\right): m^{-} \in \rho\left(z_{\mathbf{0}}\right) \Rightarrow \bigwedge_{i=1}^{k} V_{i} \in \rho\left(z_{\mathbf{0}}\right)$
$\bigwedge_{k \in \mathcal{A}_{\text {Enc }}} \forall\left\{\left|V_{1}, \ldots, V_{k}\right|\right\}_{m-} \in \rho\left(z_{0}\right): m^{+} \in \rho\left(z_{0}\right) \Rightarrow \bigwedge_{i=1}^{k} V_{i} \in \rho\left(z_{0}\right)$
The attacker may construct new encryptions using the keys known
$\bigwedge_{k \in \mathcal{A}_{\text {Enc }}} \forall V_{0}, \ldots, V_{k}: \bigwedge_{i=0}^{k} V_{i} \in \rho\left(z_{\bullet}\right) \Rightarrow\left\{V_{1}, \ldots, V_{k}\right\}_{V_{0}} \in \rho\left(z_{\bullet}\right)$
$\bigwedge_{k \in \mathcal{A}_{\text {Enc }}} \forall m^{+}, V_{1}, \ldots, V_{k}: m^{+} \in \rho\left(z_{0}\right) \wedge \bigwedge_{i=1}^{k} V_{i} \in \rho\left(z_{0}\right) \Rightarrow\left\{\left|V_{1}, \ldots, V_{k}\right|\right\}_{m^{+}} \in \rho\left(z_{0}\right)$
$\bigwedge_{k \in \mathcal{A}_{\text {Enc }}} \forall m^{-}, V_{1}, \ldots, V_{k}: m^{-} \in \rho\left(z_{0}\right) \wedge \bigwedge_{i=1}^{k} V_{i} \in \rho\left(z_{0}\right) \Rightarrow\left\{\left|V_{1}, \ldots, V_{k}\right|\right\}_{m^{-}} \in \rho\left(z_{0}\right)$
The attacker may actively forge new communications
$\bigwedge_{k \in \mathcal{A}_{k}} \forall V_{1}, \ldots, V_{k}: \bigwedge_{i=1}^{k} V_{i} \in \rho\left(z_{0}\right) \Rightarrow\left\langle V_{1}, \ldots, V_{k}\right\rangle \in \kappa$
The attacker initially has some knowledge
$\left\{n_{\bullet}, m_{\bullet} \pm\right\} \cup \mathcal{N}_{f} \subseteq \rho\left(z_{\bullet}\right)$
and the continuation process is analysed. The rules (ASDec), (AADec) and (AASig) evaluate the expression E into the set ϑ and the first j expressions in the decryption constructs are evaluated to be the sets ϑ_{i} for $i=1, \ldots j$; if the pattern match with the values in κ is successful, the remaining values of the k-tuple are recorded in ρ as possible binding of the variables and the continuation process is analysed. Notice that the original syntax [4,7] uses only the rule (AADec) to define both asymmetric decryption and signature while we introduce here two rules imposing an order in the choice of the keys to make our analysis more efficient. The rules (ANew), (AANew), (APar) and (ARep) require that the subprocesses are analysed. The rule (ANil) deals with the trivial case.

Whenever the requirements hold, the continuation process is analysed.
The analysis is also defined for the meta level as an extension of the analysis seen so far and it takes the form

$$
\rho, \kappa \models{ }_{\Gamma} M
$$

where $\Gamma: \operatorname{SetID} \cup \mathcal{P}\left(\right.$ Index $\left._{\text {fin }}\right) \rightarrow \mathcal{P}\left(\right.$ Index $\left._{\text {fin }}\right)$ is a mapping from set identifiers to finite sets of indexes. To solve the problem of infinite object level processes we use again the canonical representation of the names. The analysis is defined in Table 10, and the new rules are explained below; the rest of the rules are similar to the ones for analysing object level (the one seen so far), except that they range over indexed names and variables.

The rule (MLet) updates Γ with the mapping $X \mapsto S^{\prime}$, where S^{\prime} is required to be finite and it has the same canonical names as the set S. The rule (MIPar) expresses that the analysis holds for all the processes where the index i is substituted by all the elements in $\Gamma(S)$. The rules (MINew) and (MIANew) ignore the restriction operators.

3.1. The attacker

The attacker is unique and runs its protocol P_{\bullet} following the Dolev-Yao formula $\mathcal{F}_{R M}^{D Y}$ [6]. We write $P_{s y s} \mid P_{\bullet}$ to show that an arbitrary attacker controls the whole network while principals exchange messages using the protocol. A protocol process $P_{\text {sys }}$ has type whenever it is close, all its free names are in \mathcal{N}_{f}, all the arities of the sent or received messages are in $\mathcal{A}_{\mathcal{K}}$ and all the arities of the encrypted or decrypted messages are in $\mathcal{A}_{E n c}$. These three sets are finite, like \mathcal{N}_{c} and \mathcal{X}_{c}, used to collect all the names and all the variables, respectively, in the process $P_{\text {sys }}$. The attacker uses a new name, $n_{\bullet} \notin \mathcal{N}_{c}$, and a new variable, $z_{\bullet} \notin \mathcal{X}_{c}$, which do not overlap the names and the variables used by the legitimate principals. It is again considered a process with finitely many canonical names and variables. A formula $\mathcal{F}_{R M}^{D Y}$ of the type $\left(\mathcal{N}_{f}, \mathcal{A}_{\mathcal{K}}, \mathcal{A}_{E n c}\right)$, which is capable of characterizing the potential effect of all the attackers P_{0}. of the type $\left(\mathcal{N}_{f}, \mathcal{A}_{\kappa}, \mathcal{A}_{E n c}\right)$, is defined as the conjunction of the components in Table 11.

4. Non-repudiation analysis

Non-repudiation guarantees that the principals exchanging messages cannot falsely deny having sent or received the messages. This is done using evidences [11] that allow to decide unquestionably in favor of the fair principal whenever there is a dispute. In particular, non-repudiation of origin provides the recipient with proof of origin while non-repudiation of receipt provides the originator with proof of receipt. Evidences [18] should have verifiable origin, integrity and validity.

The syntax of the process calculus LySA has to be extended to guarantee, given a protocol, the non-repudiation property, i.e. authentication (only the sender of the message can create it), integrity and freshness. This is done using electronic signatures and unique identifiers for users and sessions. To this aim, we introduce two sets, used in the body of the messages to collect information that will be useful to perform the analysis: $I D$, where $i d \in I D$ is a unique identifier for a principal, and $N R$, where $n r \in N R$ says that non-repudiation property is required for that part of the message $n r$. To include this sets in our analysis, a redefinition of the syntax of LySA is required, as shown in Table 12. Observe that, with respect to

Table 12
Syntax of LySA calculus extended with principal identifiers.

$\varepsilon::=$	Terms
n	Name
x	Variable
$\left[m^{+}\right]_{i d}$	Public key
$\left[m^{-}\right]_{\text {id }}$	Private key
$\left\{\varepsilon_{1}, \ldots, \varepsilon_{k}\right\}_{\varepsilon_{0}}$	Symmetric encryption
$\left\{\left\|\varepsilon_{1}, \ldots, \varepsilon_{k}\right\|\right\}_{\varepsilon_{0}}^{u}$	Asymmetric encryption
$\mathcal{P}::=$	Processes
$\left\langle\varepsilon_{1}, \ldots, \varepsilon_{k}\right\rangle . \mathcal{P}$	Output
$\left(\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right) \cdot \mathcal{P}$	Input
$\operatorname{decrypt} \varepsilon$ as $\left\{\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right\}_{\varepsilon_{0}}$ in \mathcal{P}	Symmetric decryption
$\operatorname{decrypt} \varepsilon$ as $\left\{\left\|\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right\|\right\}_{\varepsilon_{0}}^{u}$ in \mathcal{P}	Asymmetric decryption
$(v n) \mathcal{P}$	Restriction
$\left(v \pm[m]_{i d}\right) \mathcal{P}$	Pair restriction
$\mathcal{P}_{1} \mid \mathcal{P}_{2}$	Parallel composition
$[!P]_{i d}$	Replication
0	Nil

Table 13
Functions \mathcal{F} and \mathcal{G}.

```
\mathcal{F}:E\timesID->\varepsilon
- \mathcal{F}(n,id)=n
- \mathcal{F}(x,id)=x
- \mathcal{F}(\mp@subsup{m}{}{+},id)=[\mp@subsup{m}{}{+}}\mp@subsup{]}{id}{
- \mathcal{F}(\mp@subsup{m}{}{-},id)=[\mp@subsup{m}{}{-}\mp@subsup{]}{id}{}
- \mathcal{F}({\mp@subsup{E}{1}{},\ldots,\mp@subsup{E}{k}{}\mp@subsup{}}{\mp@subsup{E}{0}{}}{},id)={\mathcal{F}(\mp@subsup{E}{1}{},id),\ldots,,\mathcal{F}(\mp@subsup{E}{k}{},id)\mp@subsup{}}{\mathcal{F}(\mp@subsup{E}{0}{},id)}{}
- \mathcal{F}({|\mp@subsup{E}{1}{},\ldots,\mp@subsup{E}{k}{}|\mp@subsup{}}{\mp@subsup{E}{0}{}}{},id)={|\mathcal{F}(\mp@subsup{E}{1}{},id),\ldots,\mathcal{F}(\mp@subsup{E}{k}{},id)|\mp@subsup{}}{\mathcal{F}(\mp@subsup{E}{0}{},id)}{u}
G:P}\timesID->\mathcal{P
- \mathcal{G}(\langle\mp@subsup{E}{1}{},\ldots,\mp@subsup{E}{k}{}\rangle.\mathcal{P},id)=\langle\mathcal{F}(\mp@subsup{E}{1}{},id),\ldots,\mathcal{F}(\mp@subsup{E}{k}{},id)\rangle.\mathcal{G}(P,id)
- \mathcal{G}((\mp@subsup{E}{1}{},\ldots,\mp@subsup{E}{j}{};\mp@subsup{x}{j+1}{},\ldots,\mp@subsup{x}{k}{}).P,id)
=(\mathcal{F}(\mp@subsup{E}{1}{},id),\ldots,\mathcal{F}(\mp@subsup{E}{j}{},id);\mp@subsup{x}{j+1}{},\ldots,\mp@subsup{x}{k}{}).\mathcal{G}(P,id)
```



```
= decrypt }\mathcal{F}(E,id) as {\mathcal{F}(\mp@subsup{E}{1}{},id),\ldots,\mathcal{F}(\mp@subsup{E}{j}{},id);\mp@subsup{x}{j+1}{},\ldots,\mp@subsup{x}{k}{}\mp@subsup{}}{\mathcal{F}(\mp@subsup{E}{0}{},id)}{}\mathrm{ in }\mathcal{G}(P,id
- \mathcal{G(decrypt }E\mathrm{ as {|E },\ldots,\mp@subsup{E}{j}{};\mp@subsup{x}{j+1}{},\ldots,\mp@subsup{x}{k}{}|\mp@subsup{}}{\mp@subsup{E}{0}{\prime}}{u}\mathrm{ in P,id)}
= decrypt \mathcal{F}(E,id) as {|\mathcal{F}(\mp@subsup{E}{1}{},id),\ldots,\mathcal{F}(\mp@subsup{E}{j}{},id);\mp@subsup{x}{j+1}{},\ldots,\mp@subsup{x}{k}{}|\mp@subsup{}}{\mathcal{F}(\mp@subsup{E}{0}{},id)}{u}}\mathrm{ in }\mathcal{G}(P,id
- \mathcal{G ((vn)P,id) = (vn)\mathcal{G}(P,id)}
- \mathcal{G ((v \pmm)P,id) = (v }\pm[m\mp@subsup{]}{id}{})\mathcal{G}(P,id)
- \mathcal{G}(P|Q,id)=\mathcal{G}(P,id)|\mathcal{G(Q,id')}
- G(!P,id) = [!P] ]id
- \mathcal{G}}0,id)=
```

the LySA calculus in Table 1, a unique identifier u is associated to encryption and decryption and an $i d \in I D$ is associated to public and private keys to specify the principal that encrypts a given message. The redefinition is obtained applying the function \mathcal{G} to the processes of the protocol analysed that acts recursively on the subprocesses and redefines subterms using another function, called \mathcal{F}. The definition of the functions \mathcal{F} and \mathcal{G}, that map standard terms and processes into the extended ones, is shown in Table 13. Notice that the functions provide a new syntax in which:

- id s are attached whenever an asymmetric key appears;
- a session identifier u is attached to each asymmetric encryption and decryption;
- parallel composition assigns a different id to each process, because the two processes belong to a different user;
- replication has a particular form that the semantic rules use to create replications of the process with different id s (that have to be unique).

Notice that we have generalized the approach [7] proposed by Gao to provide freshness property in a protocol. Indeed, the author defines two functions to attach a session identifier to each statement; then, she redefines the semantics, using the functions to avoid to redefine the structural congruence. In our analysis, because of the redefinition of the latter, we do not have to modify significantly the reduction semantics, except that the rule (NRNRep) takes advantage of a particular syntax that allows to attach different and unique identifiers to each process. Thus has to be removed because the structural equivalence does not hold in this case. The rule (NRNRep) will appropriately treat the behavior of the replication
statement, as reported in Table 17. Finally, we have to add the following annotations to the signatures:

- [from id] is associated to encryption and it means that the recipient expects a message from id.
- [check $N R$] is associated to decryption and it means that for all the elements of the set $N R$, non-repudiation property must be guaranteed. It is interesting to notice that the elements in the set $N R$ can specify a part of the message, not necessarily the whole message, according to the definition of non-repudiation.

The syntax of asymmetric encryption and decryption becomes:

- $\left\{\left|\varepsilon_{1}, \ldots, \varepsilon_{k}\right|\right\}_{\varepsilon_{0}}^{u}$ ffrom id]
- decrypt ε as $\left\{\left|\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{\varepsilon_{0}}^{u} \quad$ [check $N R$] in \mathcal{P}

Notice that the annotation [from id] and the label u have a different role in the analysis. The first says that the principal who encrypted the message must be the same specified in the label associated to the private key used, while the second expresses that the message has to belong to a particular session.

In practice, when there is a violation due to the id s, it means that the attacker encrypted a message and sent it to a principal who expected it from another principal (remember that the attacker can even use a key known different from his key). Instead, when there is a violation due to the labels u, it means that the attacker made a replay attack using a message exchanged in a previous session.

4.1. Dynamic property

To guarantee the dynamic property, the values have to be redefined into NRVal, attaching the identifiers to the asymmetric key pairs and the annotations in the encryption constructs as shown below:

$$
\begin{aligned}
& N R V::=n \\
& \quad \mid\left[m^{+}\right]_{i d} \\
& \quad \mid\left[m^{-}\right]_{i d} \\
& \quad \mid\left\{N R V_{1}, \ldots, N R V_{k}\right\}_{N R V_{0}} \\
& \quad \mid\left\{\left|N R V_{1}, \ldots, N R V_{k}\right|\right\}_{N R V_{0}}^{u}[\text { from id }]
\end{aligned}
$$

Furthermore, our extension involves redefinition of the semantics, of free names, of structural congruence, and of α-equivalence, as described in Tables 17, 14, 15, 16, respectively.

Notice that there are the following differences between the previous semantics and the one used in the analysis:

- The asymmetric encryption and decryption are redefined adding a session identifier u, an identifier that shows who has encrypted a given cipher message, and the annotations above.
- New terms ε and processes \mathcal{P} are used instead of the previous, E and P, which do not carry annotations.
- The process $!\mathcal{P}$ is not structurally equivalent to $\mathcal{P} \mid!\mathcal{P}$, because of the recursive definition of the function \mathcal{G}.

Table 14
Redefinition of the function $f n(P)$.

$f n(n)$	$\stackrel{\text { def }}{\underline{=}}\{n\}$
$f n\left(\left[m^{+}\right]_{i d}\right)$	$\stackrel{\text { def }}{=}\left\{\left[m^{+}\right]_{i d}\right\}$
$f n\left(\left[m^{-}\right]_{i d}\right)$	$\stackrel{\text { def }}{=}\left\{\left[m^{-}\right]_{\text {d }}\right\}$
$f n(x)$	$\stackrel{\text { def }}{ } \dagger$
$f n\left(\left\{\varepsilon_{1}, \ldots, \varepsilon_{k}\right\}_{\varepsilon_{0}}\right)$	$\stackrel{\text { def }}{=} f n\left(\varepsilon_{0}\right) \cup \cdots \cup f n\left(\varepsilon_{k}\right)$
$f n\left(\left\{\left\|\varepsilon_{1}, \ldots, \varepsilon_{k}\right\|\right\} \delta_{\varepsilon_{0}}^{u}\right.$ [from $\left.\left.i d\right]\right)$	$\stackrel{\text { def }}{=} f n\left(\varepsilon_{0}\right) \cup \cdots \cup f n\left(\varepsilon_{k}\right)$
$f n\left(\left\langle\varepsilon_{1}, \ldots, \varepsilon_{k}\right\rangle\right.$. $)$	$\stackrel{\text { def }}{=} f n\left(\varepsilon_{1}\right) \cup \cdots \cup f n\left(\varepsilon_{k}\right) \cup f n(\mathcal{P})$
$f n\left(\left(\varepsilon_{1}, \ldots, \delta_{j} ; \chi_{j+1}, \ldots, \chi_{k}\right) \cdot \mathcal{P}\right)$	$\stackrel{\text { def }}{=} f n\left(\varepsilon_{1}\right) \cup \cdots \cup f n\left(\varepsilon_{j}\right) \cup f n(\mathcal{P})$
fn(decrypt ε as $\left\{\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right\}_{\varepsilon_{0}}$ in \mathcal{P})	$\stackrel{\text { def }}{=} f n(\varepsilon) \cup f n\left(\varepsilon_{0}\right) \cup \cdots \cup f n\left(\varepsilon_{j}\right) \cup f n(\mathcal{P})$
$f n\left(\right.$ decrypt ε as $\left\{\left\|\varepsilon_{1}, \ldots, \varepsilon_{j} ; \chi_{j+1}, \ldots, x_{k}\right\|\right\}_{\varepsilon_{0}}^{u}$ [check $\left.N R\right]$ in \mathcal{P})	$\stackrel{\text { def }}{=} f n(\varepsilon) \cup f n\left(\varepsilon_{0}\right) \cup \cdots \cup f n\left(\varepsilon_{j}\right) \cup f n(\mathcal{P})$
$f n(v n) \mathcal{P})$	$\stackrel{\text { def }}{=} n n(\mathcal{P}) \backslash\{n\}$
$f n\left(\left(v \pm[m]_{i d}\right) \mathcal{P}\right)$	$\left.\stackrel{\text { def }}{=} f n(\mathcal{P}) \backslash\left[m^{+}\right]_{\text {did }},\left[m^{-}\right]_{\text {ld }}\right\}$
$f n\left(\mathcal{P}_{1} \mid \mathcal{P}_{2}\right)$	$\stackrel{\text { def }}{=} n n\left(\mathcal{P}_{1}\right) \cup f n\left(\mathcal{P}_{2}\right)$
$\left.f n(!P]_{l d}\right)$	$\stackrel{\text { def }}{=} f n(\mathcal{G}(P, i d))$
$f n(0)$	$\stackrel{\text { def }}{=} \emptyset$

Table 15
Redefinition of the structural congruence $P \equiv P^{\prime}$.

```
\(\mathcal{P} \equiv \mathcal{P}\)
\(\mathcal{P}_{1} \equiv \mathcal{P}_{2} \Rightarrow \mathcal{P}_{2} \equiv \mathcal{P}_{1}\)
\(\mathcal{P}_{1} \equiv \mathcal{P}_{2} \wedge \mathcal{P}_{2} \equiv \mathcal{P}_{3} \Rightarrow \mathcal{P}_{1} \equiv \mathcal{P}_{3}\)
\(\left\{\begin{array}{l}\left\langle\varepsilon_{1}, \ldots, \varepsilon_{k}\right\rangle . \mathcal{P}_{1} \equiv\left\langle\varepsilon_{1}, \ldots, \varepsilon_{k}\right\rangle . \mathcal{P}_{2} \\ \left(\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right) \cdot \mathcal{P}_{1} \equiv\left(\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right) \cdot \mathcal{P}_{2}\end{array}\right.\)
        decrypt \(\varepsilon\) as \(\left\{\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right\}_{\varepsilon_{0}}\) in \(\mathcal{P}_{1}\)
        \(\equiv\) decrypt \(\varepsilon\) as \(\left\{\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right\}_{\varepsilon_{0}}\) in \(\mathcal{P}_{2}\)
\(\mathcal{P}_{1} \equiv \mathcal{P}_{2} \Rightarrow\left\{\right.\) decrypt \(\varepsilon\) as \(\left\{\left|\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{\varepsilon_{0}}^{u} \quad\) [check NR] in \(\mathcal{P}_{1}\)
\(\equiv \operatorname{decrypt} \varepsilon\) as \(\left\{\left|\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{\varepsilon_{0}}^{u} \quad\) [check \(\left.N R\right]\) in \(\mathcal{P}_{2}\)
\((v n) \mathcal{P}_{1} \equiv(v n) \mathcal{P}_{2}\)
\(\left(v \pm[m]_{i d}\right) \mathcal{P}_{1} \equiv\left(v \pm[m]_{\text {id }}\right) \mathcal{P}_{2}\)
\(\mathcal{P}_{1}\left|\mathcal{P}_{3} \equiv \mathcal{P}_{2}\right| \mathcal{P}_{3}\)
\(P_{1} \equiv P_{2} \Rightarrow\left[!P_{1}\right]_{i d} \equiv\left[!P_{2}\right]_{i d}\) if both \(P_{1}\) and \(P_{2}\) are annotated with the same id
\(\mathcal{P}_{1}\left|\mathcal{P}_{2} \equiv \mathcal{P}_{2}\right| \mathcal{P}_{1}\)
\(\left(\mathcal{P}_{1} \mid \mathcal{P}_{2}\right)\left|\mathcal{P}_{3} \equiv \mathcal{P}_{1}\right|\left(\mathcal{P}_{2} \mid \mathcal{P}_{3}\right)\)
\(\mathcal{P} \mid 0 \equiv \mathcal{P}\)
\((v n) 0 \equiv 0\)
\(\left(v n_{1}\right)\left(v n_{2}\right) \mathcal{P} \equiv\left(v n_{2}\right)\left(v n_{1}\right) \mathcal{P}\)
\((v n)\left(\mathcal{P}_{1} \mid \mathcal{P}_{2}\right) \equiv \mathcal{P}_{1} \mid(v n) \mathcal{P}_{2}\) if \(n \notin f n\left(\mathcal{P}_{1}\right)\)
\(\left(v \pm[m]_{i d}\right) 0 \equiv 0\)
\(\left(v \pm\left[m_{1}\right]_{i d}\right)\left(v \pm\left[m_{2}\right]_{i d}\right) \mathcal{P} \equiv\left(v \pm\left[m_{2}\right]_{\text {id }}\right)\left(v \pm\left[m_{1}\right]_{\text {id }}\right) \mathcal{P}\)
\(\left(v \pm[m]_{i d}\right)\left(\mathcal{P}_{1} \mid \mathcal{P}_{2}\right) \equiv \mathcal{P}_{1} \mid\left(v \pm[m]_{i d}\right) \mathcal{P}_{2} \quad\) if \(\left[m^{+}\right]_{i d},\left[m^{-}\right]_{i d} \notin f n\left(\mathcal{P}_{1}\right)\)
\(\left(v \pm[m]_{i d}\right)(v n) \mathcal{P} \equiv(v n)\left(v \pm[m]_{i d}\right) \mathcal{P}\)
\(\mathcal{P}_{1} \stackrel{\alpha}{=} \mathcal{P}_{2} \Rightarrow \mathcal{P}_{1} \equiv \mathcal{P}_{2}\)
```

Table 16
Redefinition of the α-equivalence.

```
\mathcal{P}}\stackrel{\alpha}{=}\mathcal{P
\mathcal{P}}\stackrel{~}{=
\mathcal{P}}\stackrel{\alpha}{=}\mp@subsup{\mathcal{P}}{2}{}\mathrm{ and }\mp@subsup{\mathcal{P}}{2}{}\stackrel{\alpha}{=}\mp@subsup{\mathcal{P}}{3}{}\mathrm{ implies }\mp@subsup{\mathcal{P}}{1}{}\stackrel{\alpha}{=}\mp@subsup{\mathcal{P}}{3}{
(v\mp@subsup{n}{1}{})\mathcal{P}\stackrel{\alpha}{=}(v\mp@subsup{n}{2}{})(\mathcal{P}[\mp@subsup{n}{1}{}\mapsto\mp@subsup{n}{2}{}])\quadif \mp@subsup{n}{2}{}\not\infn(\mathcal{P})
(v\pm[m, m}\mp@subsup{]}{id}{})\mathcal{P}\stackrel{\underline{=\alpha}}{=
    if [m2 [id ,},[\mp@subsup{m}{2}{}\mp@subsup{]}{id}{-}\not\infn(\mathcal{P}
```

- The rule (NRNRep) in Table 17 assures that each process has a different id; starting from a replication process tagged with an identifier, the rule spawns a new process with the same identifier in parallel with another replication process associated now to a fresh unique identifier id'.

We use the reference monitor semantics $\left(\rightarrow_{R M}\right)$, an extension of the standard semantics $\left(\rightarrow_{\mathcal{R}}\right)$, to check the nonrepudiation property. Taking advantage of annotations, it forces some requirements and, if they are not meet, the process execution is aborted.

The reference monitor semantics $P \rightarrow{ }_{R M} P^{\prime}$ takes annotations into account and defines $R M$ as

$$
\begin{aligned}
& R M\left(i d, i d^{\prime}, u, u^{\prime},\left\{N R V_{1}, \ldots, N R V_{n}\right\}, N R\right) \\
& \quad=\left(i d=i d^{\prime} \wedge u=u^{\prime} \wedge \forall n r \in N R: n r \in\left\{N R V_{1}, \ldots, N R V_{n}\right\}\right)
\end{aligned}
$$

where $\left\{N R V_{1}, \ldots, N R V_{n}\right\}$ is a set of redefined values for non-repudiation analysis. When the reference monitor is turned on, the reduction relation $\rightarrow_{\mathcal{R}}$ checks if the requirements are met; otherwise \mathcal{R} is considered true, i.e. the execution cannot be aborted for the requirements above, it verify only the assumptions of the standard rules.

Intuitively, we verify if the message received is encrypted by the correct sender and if it is a fresh message.
The main difference between the standard semantics and the redefined semantics is expressed by the rule used to verify a signature. In fact, when the reference monitor is turned on, the rules (NRNSig) ensure that the non-repudiation property holds for the elements specified by the annotations.

Definition 3 (Dynamic non-repudiation). A process \mathcal{P} ensures dynamic non-repudiation property if for all the executions

$$
\mathcal{P} \rightarrow{ }^{*} \mathcal{P}^{\prime} \rightarrow_{R M} \mathcal{P}^{\prime \prime}
$$

$i d=i d^{\prime}$ and $u=u^{\prime}$ and $\forall n r \in N R: n r \in\left\{N R V_{1}, \ldots, N R V_{k}\right\}$ when $\mathcal{P}^{\prime} \rightarrow R M \mathcal{P}^{\prime \prime}$ is derived using (ASig) on

Table 17
Redefinition of the semantics of LySA calculus.

(NRNCom)	$\bigwedge_{i=1}^{j} N R V_{i}=N R V_{i}^{\prime}$
	$\begin{aligned} & \overline{\left\langle N R V_{1}, \ldots, N R V_{k}\right\rangle . \mathcal{P} \mid\left(N R V_{1}^{\prime}, \ldots, N R V_{j}^{\prime} ; x_{j+1}, \ldots, x_{k}\right) \cdot \mathcal{P}^{\prime} \rightarrow \mathcal{R}} \\ & \mathcal{P} \mid \mathcal{P}^{\prime}\left[N R V_{j+1} / x_{j+1}, \ldots, N R V_{k} / x_{k}\right] \end{aligned}$
(NRNDec)	$\begin{aligned} & \frac{\bigwedge_{i=0}^{j} N R V_{i}=N R V_{i}^{\prime}}{\text { decrypt }\left\{N R V_{1}, \ldots, N R V_{k}\right\}_{N R V_{0}}} \\ & \text { as }\left\{N R V_{1}^{\prime}, \ldots, N R V_{j}^{\prime} ; x_{j+1}, \ldots, x_{k}\right\}_{N R V_{0}^{\prime}}[\text { check } N R] \\ & \text { in } \mathcal{P} \rightarrow{ }_{R} \mathcal{P}\left[N R V_{j+1} / x_{j+1}, \ldots, N R V_{k} / x_{k}\right] \end{aligned}$
(NRNADec)	$\begin{aligned} & \frac{\bigwedge_{i=1}^{j} N R V_{i}=N R V_{i}^{\prime}}{\operatorname{decrypt}\left\{\left\|N R V_{1}, \ldots, N R V_{k}\right\|\right\}_{[m+]_{i d}}^{u}[\text { from id }] \text { as }} \\ & \left\{\left\|N R V_{1}^{\prime}, \ldots, N R V_{j}^{\prime} ; x_{j+1}, \ldots, x_{k}\right\|\right\}_{[m-]_{i d}}^{u}[\text { check } N R] \text { in } \\ & \mathcal{P} \rightarrow{ }_{\mathcal{R}} \mathcal{P}\left[N R V_{j+1} / x_{j+1}, \ldots, N R V_{k} / x_{k}\right] \end{aligned}$
(NRNSig)	
(NRNNew)	$\frac{\mathcal{P} \rightarrow_{\mathcal{R}} \mathcal{P}^{\prime}}{(v n) \mathcal{P} \rightarrow_{\mathcal{R}}(v n) \mathcal{P}^{\prime}}$
(NRNANew)	$\frac{\mathcal{P} \rightarrow_{\mathcal{R}} \mathcal{P}^{\prime}}{\left(v \pm[m]_{i d}\right) \mathcal{P} \rightarrow_{\mathcal{R}}\left(v \pm[m]_{i d}\right) \mathcal{P}^{\prime}}$
(NRNPar)	$\frac{\mathcal{P}_{1} \rightarrow_{\mathcal{R}} \mathcal{P}_{1}^{\prime}}{\mathcal{P}_{1}\left\|\mathcal{P}_{2} \rightarrow_{\mathcal{R}} \mathcal{P}_{1}^{\prime}\right\| \mathcal{P}_{2}}$
(NRNCongr)	$\frac{\mathcal{P} \equiv \mathcal{P}^{\prime} \wedge \mathcal{P}^{\prime} \rightarrow_{\mathcal{R}} \mathcal{P}^{\prime \prime} \wedge \mathcal{P}^{\prime \prime} \equiv \mathcal{P}^{\prime \prime \prime}}{\mathcal{P} \rightarrow_{\mathcal{R}} \mathcal{P}^{\prime \prime \prime}}$
(NRNRep)	$[!P]_{i d} \rightarrow \mathcal{R} \mathcal{G}(P, i d)[!!]_{\text {l }}{ }^{\prime}$

Table 18
Non-repudiation analysis of terms $\rho \vdash \varepsilon: \vartheta$.

(NRAN)	$\rho \models n: \vartheta$	iff $\lfloor n\rfloor \in \vartheta$
(NRANp)	$\rho \models\left[m^{+}\right]_{\text {id }}: \vartheta$	iff $\left[\left\lfloor m^{+}\right]\right]_{i d} \propto \vartheta$
(NRANm)	$\rho \models\left[m^{-}\right]_{i d}: \vartheta$	iff $\left[\left\lfloor m^{-}\right\rfloor\right]_{i d} \propto \vartheta$
(NRAVar)	$\rho \models x: \vartheta$	iff $\rho(\lfloor x\rfloor) \subseteq \vartheta$
(NRAEnc)	$\rho \models\left\{\varepsilon_{1}, \ldots, \varepsilon_{k}\right\}_{\varepsilon_{0}}: \vartheta$	$\begin{aligned} & \text { iff } \bigwedge_{i=0}^{k} \rho \models \varepsilon_{i}: \vartheta_{i} \wedge \\ & \forall N R V_{0}, \ldots, N R V_{k}: \bigwedge_{i=0}^{k} N R V_{i} \propto \vartheta_{i} \Rightarrow \\ & \left\{N R V_{1}, \ldots, N R V_{k}\right\}_{N R V_{0} \propto \vartheta} \propto \end{aligned}$
(NRAAEnc)	$\rho \models\left\{\left\|\varepsilon_{1}, \ldots, \varepsilon_{k}\right\|\right\}_{\varepsilon_{0}}^{u}[$ from id] : ϑ	iff $\bigwedge_{i=0}^{k} \rho \models \varepsilon_{i}: \vartheta_{i} \wedge$ $\forall N R V_{0}, \ldots, N R V_{k}: \bigwedge_{i=0}^{k} N R V_{i} \propto \vartheta_{i} \Rightarrow$ $\left\{\left\|N R V_{1}, \ldots, N R V_{k}\right\|\right\}_{\left[N R V_{0}\right]_{j_{d}}}^{u}[$ from id $] \propto \vartheta$

decrypt $\left\{\left|N R V_{1}, \ldots, N R V_{k}\right|\right\}_{[m-1 / d}^{u}\left[\right.$ from $\left.i d^{\prime}\right]$ as
$\left\{\left|N R V_{1}^{\prime}, \ldots, N R V_{j}^{\prime} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{[m+]_{\text {ld }}^{\prime}}$ [check $\left.N R\right]$ in \mathcal{P}
Definition 3 says that an extended process \mathcal{P} ensures non-repudiation property if there is no violation in any of its execution.

4.2. Static property

A component $\psi \subseteq \mathcal{P}(N R)$ will collect all the labels $n r$ such that the non-repudiation property for the element $n r$ is possibly violated.

The \propto operator is introduced to ignore the extension of the syntax and is defined as
$N R V \propto \vartheta$ iff there exists $V \in$ Val such that $N R V=V$ and $V \in \vartheta$
where the relation $N R V=V$ is defined to be the least equivalence between an element in $N R V a l$ and an element in Val that inductively ignores the identifiers and the annotations.

The analyses of the terms and of the processes are shown in Tables 18 and 19. The rule (NRASig) checks the nonrepudiation property whenever a signature is verified.

To prove the correctness of our analysis we must prove that it respects the extended operational semantics of LySA, i.e. if $\rho, \kappa, \psi \models \mathcal{P}$ then the triple (ρ, κ, ψ) is a valid estimate for all the states passed through in a computation of \mathcal{P}. Furthermore, we prove that when ψ is empty, then the reference monitor is useless.

Table 19
Non-repudiation analysis of processes $\rho, \kappa, \psi \models \mathcal{P}$.

(NRAOut)	$\begin{aligned} & \rho, \kappa, \psi \models\left\langle\varepsilon_{1}, \ldots, \varepsilon_{k}\right\rangle \mathcal{P} \\ & \text { iff } \bigwedge_{i=1}^{k} \rho \models \varepsilon_{i}: \vartheta_{i} \wedge \end{aligned}$
(NRAInp)	$\begin{aligned} & \forall N R V_{1}, \ldots, N R V_{k}: \bigwedge_{i=1}^{k} N R V_{i} \propto \vartheta_{i} \Rightarrow \\ & \left(\left\langle N R V_{1}, \ldots, N R V_{k}\right\rangle \in \kappa \wedge \rho, \kappa, \psi \models \mathcal{P}\right) \\ & \rho, \kappa, \psi \models\left(\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right) \cdot \mathcal{P} \\ & \text { iff } \bigwedge_{i=1}^{j} \rho \models \varepsilon_{i}: \vartheta_{i} \wedge \end{aligned}$
(NRADec)	$\begin{aligned} & \forall\left\langle N R V_{1}, \ldots, N R V_{k}\right\rangle \in \kappa: \bigwedge_{i=1}^{j} N R V_{i} \propto \vartheta_{i} \Rightarrow \\ & \left(\bigwedge_{i=j+1}^{k} N R V_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right) \wedge \rho, \kappa, \psi \models \mathcal{P}\right) \\ & \rho, \kappa, \psi \models \operatorname{decrypt} \varepsilon \text { as }\left\{\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right\}_{\varepsilon_{0}} \text { in } \mathcal{P} \\ & \text { iff } \rho \models \varepsilon: \vartheta \wedge \bigwedge_{i=0}^{j} \rho \models \varepsilon_{i}: \vartheta_{i} \wedge \end{aligned}$
(NRAADec)	$\begin{aligned} & \forall\left\{N R V_{1}, \ldots, N R V_{k}\right\}_{N R V_{0}} \propto \vartheta \wedge \bigwedge_{i=0}^{j} N R V_{i} \propto \vartheta_{i} \Rightarrow \\ & \left(\bigwedge_{i=j+1}^{k} N R V_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right) \wedge \rho, \kappa, \psi \models \mathcal{P}\right) \\ & \rho, \kappa, \psi \models \operatorname{decrypt} \varepsilon \text { as }\left\{\left\|\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right\|\right\}_{\varepsilon_{0}}^{u^{\prime}}[\text { check } N R] \text { in } \mathcal{P} \\ & \text { iff } \rho \models \varepsilon: \vartheta \wedge \bigwedge_{i=0}^{j} \rho \models \varepsilon_{i}: \vartheta_{i} \wedge \\ & \forall\left\{\left\|N R V_{1}, \ldots, N R V_{k}\right\|\right\}_{N R V_{0}}^{u}[\text { from id }] \propto \vartheta: \end{aligned}$
(NRASig)	$\begin{aligned} & \forall N R V_{0}^{\prime} \propto \vartheta_{0}: \forall\left(m^{+}, m^{-}\right):\left(N R V_{0}, N R V_{0}^{\prime}\right) \\ & \left.\left.=\left(\left[L m^{-}\right\rfloor\right]_{i^{\prime}},\left[L m^{+}\right\rfloor\right]_{i^{\prime}}\right) \wedge \bigwedge_{i=1}^{j} N R V_{i} \propto \vartheta_{i} \Rightarrow \\ & \left(\bigwedge_{i=j+1}^{k} N R V_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right) \wedge \rho, \kappa, \psi \models \mathcal{P}\right) \\ & \rho, \kappa, \psi \models \operatorname{decrypt} \varepsilon \text { as }\left\{\left\|\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right\|\right\}_{\varepsilon_{0}}^{u^{\prime}}[\text { check } N R] \text { in } \mathcal{P} \\ & \text { iff } \rho \models \varepsilon: \vartheta \wedge \bigwedge_{i=0}^{j} \rho \models \varepsilon_{i}: \vartheta_{i} \wedge \\ & \forall\left\{\left\|N R V_{1}, \ldots, N R V_{k}\right\|\right]_{N R V_{0}}^{u}[\text { from id }] \propto \vartheta: \end{aligned}$
	$\begin{aligned} & \forall N R V_{0}^{\prime} \propto \vartheta_{0}: \forall m^{+}, m^{-}, i d, i d^{\prime}:\left(N R V_{0}, N R V_{0}^{\prime}\right) \\ & =\left(\left[\left\lfloor m^{+}\right\rfloor\right]_{i d^{\prime}},\left[\left\lfloor m^{-}\right\rfloor\right]_{i^{\prime}}\right) \wedge \bigwedge_{i=1}^{j} N R V_{i} \propto \vartheta_{i} \Rightarrow \\ & \left(\bigwedge_{i=j+1}^{k} N R V_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right) \wedge \rho, \kappa, \psi \models \mathcal{P} \wedge\right. \\ & \forall n r \in N R:\left(i d \neq i d^{\prime} \vee u \neq u^{\prime} \vee\right. \\ & \left.\left.n r \notin\left\{N R V_{j+1}, \ldots, N R V_{k}\right\}\right) \Rightarrow\lfloor n r\rfloor \in \psi\right) \end{aligned}$
(NRANew)	$\rho, \kappa, \psi \models(v n) \mathcal{P}$ iff $\rho, \kappa, \psi \models \mathcal{P}$
(NRAANew)	$\rho, \kappa, \psi \models(v \pm m) \mathcal{P}$ iff $\rho, \kappa, \psi \models \mathcal{P}$
(NRAPar)	$\rho, \kappa, \psi \models \mathcal{P}_{1} \mid \mathcal{P}_{2}$ iff $\rho, \kappa, \psi \models \mathcal{P}_{1} \wedge \rho, \kappa, \psi \models \mathcal{P}_{2}$
(NRARep)	$\rho, \kappa, \psi \models[!P]_{i d}$ iff $\rho, \kappa, \psi \models \mathcal{G}(P, i d)$
(NRANil)	$\rho, \kappa, \psi \models 0$ iff true

Our proof uses three lemmas, defined and proved below. The first and the second show that estimates are resistant to substitution of closed terms for variables, both in the terms and in the processes; the third says that an estimate for an extended process \mathcal{P} is valid for every process congruent to \mathcal{P}.

Lemma 1 (Substitution in expressions). If $\rho \models \varepsilon: \vartheta$ and $\varepsilon^{\prime} \in \rho(x)$ then $\rho \models \varepsilon\left[\varepsilon^{\prime} / x\right]: \vartheta$.
Proof. By structural induction over expressions.
Case (Name). We assume that $\rho \models n: \vartheta$ and $\varepsilon^{\prime} \in \rho(x)$. Since $n=n\left[\varepsilon^{\prime} / x\right]$, it is immediate that also $\rho \models n\left[\varepsilon^{\prime} / x\right]: \vartheta$.
Case (Public key). We assume that $\rho \models\left[m^{+}\right]_{i d}: \vartheta$ and $\varepsilon^{\prime} \in \rho(x)$. Since $\left[\mathrm{m}^{+}\right]_{i d}=\left[\mathrm{m}^{+}\right]_{i d}\left[\varepsilon^{\prime} / x\right]$, it is immediate that also $\rho \models\left[m^{+}\right]_{i d}\left[\varepsilon^{\prime} / x\right]: \vartheta$.
Case (Private key). We assume that $\rho \models\left[m^{-}\right]_{i d}: \vartheta$ and $\varepsilon^{\prime} \in \rho(x)$. Since $\left[m^{-}\right]_{i d}=\left[m^{-}\right]_{i d}\left[\varepsilon^{\prime} / x\right]$, it is immediate that also $\rho \models\left[m^{-}\right]_{i d}\left[\varepsilon^{\prime} / x\right]: \vartheta$.

Case (Variable). We assume that $\rho \models x^{\prime}: \vartheta$ (therefore $\left.\rho\left(x^{\prime}\right) \subseteq \vartheta\right)$ and $\varepsilon^{\prime} \in \rho(x)$. There are two cases:

1. If $\varepsilon \neq x$ then $x^{\prime}=x^{\prime}\left[\varepsilon^{\prime} / x\right]$ and it is immediate that also $\rho \models x^{\prime}\left[\varepsilon^{\prime} / x\right]: \vartheta$.
2. If $\varepsilon=x$ then $x^{\prime}\left[\varepsilon^{\prime} / x\right]=\varepsilon^{\prime}$, by hypothesis we have $\varepsilon^{\prime} \in \rho(x)$ and $\rho\left(x^{\prime}\right) \subseteq \vartheta$, then it holds that $\rho \models \varepsilon^{\prime}: \vartheta$, in which case $\rho \models x^{\prime}\left[\varepsilon^{\prime} / x\right]: \vartheta$.

Case (Encryption). We assume that $\rho \models\left\{\varepsilon_{1}, \ldots, \varepsilon_{k}\right\}_{\varepsilon_{0}}: \vartheta$ and $\varepsilon^{\prime} \in \rho(x)$. By the induction hypothesis it holds that $\rho \models \varepsilon_{0}\left[\varepsilon^{\prime} / x\right]: \vartheta, \ldots, \rho \models \varepsilon_{k}\left[\varepsilon^{\prime} / x\right]: \vartheta$. Therefore, by the rule (NRAAEnc), we have $\rho \models\left\{\varepsilon_{1}, \ldots, \varepsilon_{k}\right\}_{\varepsilon_{0}}\left[\varepsilon^{\prime} / x\right]: \vartheta$.
Case (Asymmetric encryption). We assume that $\rho \models\left\{\left|\varepsilon_{1}, \ldots, \varepsilon_{k}\right|\right\}_{\varepsilon_{0}}^{u}$ [from id] : ϑ and $\varepsilon^{\prime} \in \rho(x)$. By the induction hypothesis it holds that $\rho \models \varepsilon_{0}\left[\varepsilon^{\prime} / x\right]: \vartheta, \ldots, \rho \models \varepsilon_{k}\left[\varepsilon^{\prime} / x\right]: \vartheta$. Therefore, by the rule (NRAEnc), we have $\rho \models\left\{\left|\varepsilon_{1}, \ldots, \varepsilon_{k}\right|\right\}_{\varepsilon_{0}}^{u}[$ from $i d]\left[\varepsilon^{\prime} / x\right]: \vartheta$.
Since both the bases and the inductive steps have been proved, it follows that Lemma 1 holds for all the expressions by structural induction.

Lemma 2 (Substitution in processes). If $\rho, \kappa, \psi \models \mathcal{P}$ and $\varepsilon \in \rho(x)$ then $\rho, \kappa, \psi \models \mathcal{P}[\varepsilon / x]$.
Proof. By structural induction over processes.
Case (Output). We assume

$$
\mathcal{P}=\left\langle\varepsilon_{1}, \ldots, \varepsilon_{k}\right\rangle . \mathcal{P}^{\prime}
$$

By hypothesis we have

- $\rho, \kappa, \psi \models\left\langle\varepsilon_{1}, \ldots, \varepsilon_{k}\right\rangle . \mathcal{P}^{\prime}$
- $\varepsilon \in \rho(x)$

By Lemma 1 and the induction hypothesis on the subprocesses, it holds that

- $\rho \models \varepsilon_{1}[\varepsilon / \chi]: \vartheta, \ldots, \rho \models \varepsilon_{k}[\varepsilon / x]: \vartheta$
- $\rho, \kappa, \psi \models \mathcal{P}^{\prime}[\varepsilon / \chi]$

Therefore, by the rule (NRAOut), we have $\rho, \kappa, \psi \models \mathcal{P}[\varepsilon / x]$.
Case (Input). We assume

$$
\mathcal{P}=\left(\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right) \cdot \mathcal{P}^{\prime}
$$

By hypothesis we have

- $\rho, \kappa, \psi \models\left(\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right) \cdot \mathcal{P}^{\prime}$
- $\varepsilon \in \rho(x)$

By Lemma 1 and the induction hypothesis on the subprocesses, it holds that

- $\rho \models \varepsilon_{1}[\varepsilon / x]: \vartheta, \ldots, \rho \models \varepsilon_{j}[\varepsilon / x]: \vartheta$
- $\rho \models x_{j+1}[\varepsilon / x]: \vartheta, \ldots, \rho \models x_{k}[\varepsilon / x]: \vartheta$
- $\rho, \kappa, \psi \models \mathcal{P}^{\prime}[\varepsilon / x]$

Therefore, by the rule (NRAInp), we have $\rho, \kappa, \psi \models \mathcal{P}[\varepsilon / x]$.
Case (Symmetric decryption). We assume

$$
\mathcal{P}=\operatorname{decrypt} \varepsilon \text { as }\left\{\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right\}_{\varepsilon_{0}} \text { in } \mathcal{P}^{\prime}
$$

By hypothesis we have

- $\rho, \kappa, \psi \models \operatorname{decrypt} \varepsilon$ as $\left\{\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right\}_{\varepsilon_{0}}$ in \mathcal{P}^{\prime}
- $\varepsilon \in \rho(x)$

By Lemma 1 and the induction hypothesis on the subprocesses, it holds that

- $\rho \models \varepsilon_{1}[\varepsilon / x]: \vartheta, \ldots, \rho \vDash \varepsilon_{j}[\varepsilon / x]: \vartheta$
- $\rho \models x_{j+1}[\varepsilon / x]: \vartheta, \ldots, \rho \models x_{k}[\varepsilon / x]: \vartheta$
- $\rho, \kappa, \psi \models \mathcal{P}^{\prime}[\varepsilon / x]$

Therefore, by the rule (NRADec), we have $\rho, \kappa, \psi \models \mathcal{P}[\varepsilon / x]$.
Case (Asymmetric decryption). We assume

$$
\mathcal{P}=\operatorname{decrypt} \varepsilon \text { as }\left\{\left|\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{\varepsilon_{0}}^{u}[\text { check } N R] \text { in } \mathcal{P}^{\prime}
$$

By hypothesis we have

- $\rho, \kappa, \psi \models \operatorname{decrypt} \varepsilon$ as $\left\{\left|\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{\varepsilon_{0}}^{u}[$ check $N R]$ in \mathcal{P}^{\prime}
- $\varepsilon \in \rho(x)$

By Lemma 1 and the induction hypothesis on the subprocesses, it holds that

- $\rho \models \varepsilon_{1}[\varepsilon / x]: \vartheta, \ldots, \rho \models \varepsilon_{j}[\varepsilon / x]: \vartheta$
- $\rho \models x_{j+1}[\varepsilon / x]: \vartheta, \ldots, \rho \models x_{k}[\varepsilon / x]: \vartheta$
- $\rho, \kappa, \psi \models \mathcal{P}^{\prime}[\varepsilon / x]$

Therefore, by the rule (NRAADec), we have $\rho, \kappa, \psi \models \mathcal{P}[\varepsilon / x]$.
Case (Signature). We assume

$$
\mathcal{P}=\operatorname{decrypt} \varepsilon \text { as }\left\{\left|\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{\varepsilon_{0}}^{u}[\text { check } N R] \text { in } \mathcal{P}^{\prime}
$$

By hypothesis we have

- $\rho, \kappa, \psi \models$ decrypt ε as $\left\{\left|\varepsilon_{1}, \ldots, \varepsilon_{j} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{\varepsilon_{0}}^{u}[$ check $N R]$ in \mathcal{P}^{\prime}
- $\varepsilon \in \rho(x)$

By Lemma 1 and the induction hypothesis on the subprocesses, it holds that

- $\rho \models \varepsilon_{1}[\varepsilon / x]: \vartheta, \ldots, \rho \models \varepsilon_{j}[\varepsilon / x]: \vartheta$
- $\rho \models x_{j+1}[\varepsilon / x]: \vartheta, \ldots, \rho \models x_{k}[\varepsilon / x]: \vartheta$
- $\rho, \kappa, \psi \models \mathcal{P}^{\prime}[\varepsilon / x]$

Therefore, by the rule (NRASig), we have $\rho, \kappa, \psi \models \mathcal{P}[\varepsilon / x]$.
Case (Restriction). We assume

$$
\mathcal{P}=(v n) \mathcal{P}^{\prime}
$$

By hypothesis we have

- $\rho, \kappa, \psi \models(v n) \mathcal{P}^{\prime}$
- $\varepsilon \in \rho(x)$

By the induction hypothesis on the subprocesses, it holds that

- $\rho, \kappa, \psi \models \mathcal{P}^{\prime}[\varepsilon / x]$

Therefore, by the rule (NRANew), we have $\rho, \kappa, \psi \models \mathcal{P}[\varepsilon / x]$.
Case (Pair restriction). We assume

$$
\mathcal{P}=\left(v \pm[m]_{i d}\right) \mathcal{P}^{\prime}
$$

By hypothesis we have

- $\rho, \kappa, \psi \models\left(v \pm[m]_{i d}\right) \mathcal{P}^{\prime}$
- $\varepsilon \in \rho(x)$

By the induction hypothesis on the subprocesses, it holds that

- $\rho, \kappa, \psi \models \mathcal{P}^{\prime}[\varepsilon / x]$

Therefore, by the rule (NRANew), we have $\rho, \kappa, \psi \models \mathcal{P}[\varepsilon / x]$.
Case (Parallel composition). We assume

$$
\mathcal{P}=\mathcal{P}_{1} \mid \mathcal{P}_{2}
$$

By hypothesis we have

- $\rho, \kappa, \psi \models \mathcal{P}_{1} \mid \mathcal{P}_{2}$
- $\varepsilon \in \rho(x)$

By the induction hypothesis on the subprocesses, it holds that

- $\rho, \kappa, \psi \models \mathcal{P}_{1}[\varepsilon / x]$
- $\rho, \kappa, \psi \models \mathcal{P}_{2}[\varepsilon / x]$

Therefore, by the rule (NRAPar), we have $\rho, \kappa, \psi \models \mathcal{P}[\varepsilon / x]$.
Case (Replication). We assume

$$
\mathcal{P}=\left[!P^{\prime}\right]_{i d}
$$

By hypothesis we have

- $\rho, \kappa, \psi \models\left[!P^{\prime}\right]_{i d}$
- $\varepsilon \in \rho(x)$

By the induction hypothesis on the subprocesses, it holds that

- $\rho, \kappa, \psi \models \mathcal{G}\left(P^{\prime}, i d\right)[\varepsilon / x]$

Therefore, by the rule (NRARep), we have $\rho, \kappa, \psi \models \mathcal{P}[\varepsilon / x]$.
Case (Nil). We assume

$$
\mathcal{P}=0
$$

Since $0=0[\varepsilon / x]$ and $\rho, \kappa, \psi \models 0$, trivially it holds $\rho, \kappa, \psi \models \mathcal{P}[\varepsilon / x]$.
Since both the basis and the inductive steps have been proved, it follows that Lemma 2 holds for all the processes by structural induction.

Lemma 3 (Invariance of structural congruence). If $\mathcal{P} \equiv \mathcal{Q}$ and $\rho, \kappa, \psi \models \mathcal{P}$ then $\rho, \kappa, \psi \models \mathcal{Q}$.
Proof. By inspection of the clauses defining $\mathcal{P} \equiv \mathcal{Q}$.
Case ($\mathcal{P} \mid 0 \equiv \mathcal{P}$). We assume $\rho, \kappa, \psi \models \mathcal{P} \mid 0$, then it must be $\rho, \kappa, \psi \models \mathcal{P}$ and $\rho, \kappa, \psi \models 0$, therefore $\rho, \kappa, \psi \models \mathcal{P}$.
Other cases can be proved in a similar way, therefore Lemma 3 holds for all the clauses.
Now, we can prove the correctness of the analysis by the theorem defined below.
Theorem 1 (Correctness of the non-repudiation analysis). If $\rho, \kappa, \psi \models \mathcal{P}$ and $\psi=\emptyset$ then \mathcal{P} ensures static non-repudiation.
Proof. The theorem can be proven by induction in the length of the execution sequences, showing that if $\rho, \kappa, \psi \models \mathcal{P}$ and $\mathcal{P} \rightarrow{ }_{\mathcal{R}} \mathcal{P}^{\prime}$ then $\rho, \kappa, \psi \models \mathcal{P}^{\prime}$ and furthermore if $\psi=\emptyset$ then $\mathcal{P} \rightarrow_{R M} \mathcal{P}^{\prime}$ does not violate the non-repudiation property.

Case (NRNCom). We assume

$$
\rho, \kappa, \psi \models\left\langle\varepsilon_{1}, \ldots, \varepsilon_{k}\right\rangle \cdot \mathcal{P} \mid\left(\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{j}^{\prime} ; x_{j+1}, \ldots, x_{k}\right) \cdot \mathcal{Q}
$$

which amounts to:

1. $\bigwedge_{i=1}^{k} \rho \models \varepsilon_{i}: \vartheta_{i}$
2. $\forall N R V_{1}, \ldots, N R V_{k}: \bigwedge_{i=1}^{k} N R V_{i} \propto \vartheta_{i} \Rightarrow\left\langle N R V_{1}, \ldots, N R V_{k}\right\rangle \in \kappa$
3. $\rho, \kappa, \psi \models \mathcal{P}$
4. $\bigwedge_{i=1}^{j} \rho \models \varepsilon_{i}^{\prime}: \vartheta_{i}^{\prime}$
5. $\forall\left\langle N R V_{1}, \ldots, N R V_{k}\right\rangle \in \kappa: \bigwedge_{i=1}^{j} N R V_{i} \propto \vartheta_{i}^{\prime} \Rightarrow\left(\bigwedge_{i=j+1}^{k} N R V_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right) \wedge \rho, \kappa, \psi \models \mathcal{Q}\right)$
6. $\bigwedge_{i=1}^{j} \varepsilon_{i}=\varepsilon_{i}^{\prime}$
and we have to prove

$$
\rho, \kappa, \psi \models \mathcal{P} \mid \mathcal{Q}\left[\varepsilon_{j+1} / x_{j+1}, \ldots, \varepsilon_{k} / x_{k}\right]
$$

From the hypothesis we obtain:

- $(1) \Rightarrow \bigwedge_{i=1}^{k} \varepsilon_{i} \propto \vartheta_{i}$
- $\bigwedge_{i=1}^{k} \mathrm{fv}\left(\varepsilon_{i}\right)=\emptyset$ and $(2) \Rightarrow\left\langle\varepsilon_{1}, \ldots, \varepsilon_{k}\right\rangle \in \kappa$
- (4) and (6) $\Rightarrow \bigwedge_{i=1}^{j} \varepsilon_{i} \propto \vartheta_{i}^{\prime}$
- (5) $\Rightarrow \bigwedge_{i=j+1}^{k} \varepsilon_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right)$ and $\rho, \kappa, \psi \models \mathcal{Q}$
- Lemma $1 \Rightarrow \rho, \kappa, \psi \models \mathcal{Q}\left[\varepsilon_{j+1} / x_{j+1}, \ldots, \varepsilon_{k} / x_{k}\right]$

Therefore, when $\psi=\emptyset$, we get immediately

$$
\begin{aligned}
& \left\langle\varepsilon_{1}, \ldots, \varepsilon_{k}\right\rangle . \mathcal{P} \mid\left(\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{j}^{\prime} ; x_{j+1}, \ldots, x_{k}\right) \cdot \mathcal{Q} \rightarrow R M \\
& \quad \mathcal{P} \mid \mathcal{Q}\left[\varepsilon_{j+1} / x_{j+1}, \ldots, \varepsilon_{k} / x_{k}\right]
\end{aligned}
$$

Case (NRNDec). We assume

$$
\rho, \kappa, \psi \models \operatorname{decrypt}\left\{\varepsilon_{1}, \ldots, \varepsilon_{k}\right\}_{\varepsilon_{0}} \text { as }\left\{\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{j}^{\prime} ; x_{j+1}, \ldots, x_{k}\right\}_{\varepsilon_{0}^{\prime}} \text { in } \mathcal{P}
$$

which amounts to:

1. $\Lambda_{i=0}^{k} \rho \models \varepsilon_{i}: \vartheta_{i}$
2. $\forall N R V_{0}, \ldots, N R V_{k}: \bigwedge_{i=0}^{k} N R V_{i} \propto \vartheta_{i} \Rightarrow\left\{N R V_{1}, \ldots, N R V_{k}\right\}_{N R V_{0}} \propto \vartheta$
3. $\Lambda_{i=0}^{j} \rho \models \varepsilon_{i}^{\prime}: \vartheta^{\prime}$
4. $\forall\left\{N R V_{1}, \ldots, N R V_{k}\right\}_{N R V_{0}} \propto \vartheta: \bigwedge_{i=0}^{j} N R V_{i} \propto Y_{i}^{\prime} \Rightarrow\left(\bigwedge_{i=j+1}^{k} N R V_{i} \in \rho\left(\left\lfloor X_{i}\right\rfloor\right) \wedge \rho, \kappa, \psi \models \mathcal{P}\right)$
5. $\Lambda_{i=0}^{j} \varepsilon_{i}=\varepsilon_{i}^{\prime}$
and we have to prove

$$
\rho, \kappa, \psi \models \mathcal{P}\left[\varepsilon_{j+1} / x_{j+1}, \ldots, \varepsilon_{k} / x_{k}\right]
$$

From the hypothesis we obtain:

- (1) and $\bigwedge_{i=0}^{k} \mathrm{fv}\left(\varepsilon_{i}\right)=\emptyset \Rightarrow \bigwedge_{i=0}^{k} \varepsilon_{i} \propto \vartheta_{i}$
- (2) $\Rightarrow\left\{\varepsilon_{1}, \ldots, \varepsilon_{k}\right\}_{\varepsilon_{0}} \propto \vartheta$
- (3) and (5) $\Rightarrow \Lambda_{i=0}^{j} \varepsilon_{i} \in \vartheta^{\prime}$
- (4) $\Rightarrow \bigwedge_{i=j+1}^{k} \varepsilon_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right)$ and $\rho, \kappa, \psi \models \mathcal{P}$
- Lemma $1 \Rightarrow \rho, \kappa, \psi \models \mathcal{P}\left[\varepsilon_{j+1} / x_{j+1}, \ldots, \varepsilon_{k} / x_{k}\right]$

Therefore, when $\psi=\emptyset$, we get immediately

$$
\begin{aligned}
& \text { decrypt }\left\{\varepsilon_{1}, \ldots, \varepsilon_{k}\right\}_{\varepsilon_{0}} \text { as }\left\{\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{\dot{\prime}}^{\prime} ; x_{j+1}, \ldots, x_{k}\right\}_{\varepsilon_{0}^{\prime}} \\
& \quad \text { in } \mathcal{P} \rightarrow R M \mathcal{P}\left[\varepsilon_{j+1} / x_{j+1}, \ldots, \varepsilon_{k} / x_{k}\right]
\end{aligned}
$$

Case (NRNADec). We assume

$$
\begin{aligned}
& \rho, \kappa, \psi \models \operatorname{decrypt}\left\{\left.\left|\varepsilon_{1}, \ldots, \varepsilon_{k}\right|\right|_{\varepsilon_{0}} ^{u}\left[\text { from id } d^{\prime}\right]\right. \text { as } \\
& \left.\left\{\left|\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{j}^{\prime} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{\varepsilon_{0}^{\prime}}^{\prime} \text { check } N R\right] \text { in } \mathcal{P}
\end{aligned}
$$

which amounts to:

1. $\wedge_{i=0}^{k} \rho \models \varepsilon_{i}: \vartheta_{i}$
2. $\forall N R V_{0}, \ldots, N R V_{k}: \bigwedge_{i=0}^{k} N R V_{i} \propto \vartheta_{i} \Rightarrow$
$\left\{\left|N R V_{1}, \ldots, N R V_{k}\right|\right\}_{N R V_{0}}^{0}[$ from $i d] \propto \vartheta$
3. $\Lambda_{i=0}^{j} \rho \models \varepsilon_{i}^{\prime}: \vartheta^{\prime}$
4. $\forall\left\{\left|N R V_{1}, \ldots, N R V_{k}\right|\right\}_{N R V_{0}}$ [from $\left.i d\right] \propto \vartheta: \forall N R V_{0}^{\prime} \propto \vartheta_{0}: \forall\left(\left[m^{+}\right]_{d^{\prime}},\left[m^{-}\right]_{]_{d}}\right)$:
$\left(N R V_{0}, N R V_{0}^{\prime}\right)=\left(\left[\left[m^{-}\right]\right]_{i d^{\prime}},\left[\left\lfloor m^{+}\right\rfloor\right]_{i d^{\prime}}\right) \wedge \bigwedge_{i=1}^{j} N R V_{i} \propto Y_{i}^{\prime} \Rightarrow\left(\bigwedge_{i=j+1}^{k} N R V_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right) \wedge \rho, \kappa, \psi \models \mathcal{P}\right)$
5. $\Lambda_{i=1}^{j} \varepsilon_{i}=\varepsilon_{i}^{\prime}$
and we have to prove

$$
\rho, \kappa, \psi \models \mathcal{P}\left[\varepsilon_{j+1} / x_{j+1}, \ldots, \varepsilon_{k} / x_{k}\right] .
$$

From the hypothesis we obtain:

- (1) and $\bigwedge_{i=0}^{k} \mathrm{fv}\left(\varepsilon_{i}\right)=\emptyset \Rightarrow \bigwedge_{i=0}^{k} \varepsilon_{i} \propto \vartheta_{i}$
- (2) $\left.\Rightarrow\left\{\left|\varepsilon_{1}, \ldots, \varepsilon_{k}\right|\right\}\right\}_{0}^{u}$ [from id] $\propto \vartheta$
- (3) and (5) $\Rightarrow \Lambda_{i=0}^{j} \varepsilon_{i} \in \vartheta^{\prime}$
- (4) $\Rightarrow \bigwedge_{i=j+1}^{k} \varepsilon_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right)$ and $\rho, \kappa, \psi \models \mathcal{P}$
- Lemma $1 \Rightarrow \rho, \kappa, \psi \models \mathcal{P}\left[\varepsilon_{j+1} / x_{j+1}, \ldots, \varepsilon_{k} / x_{k}\right]$

Therefore, when $\psi=\emptyset$, we get immediately

$$
\text { decrypt }\left\{\left|\varepsilon_{1}, \ldots, \varepsilon_{k}\right|\right\}_{[m+]_{d i}}^{u}\left[\text { from } i d^{\prime}\right] \text { as }
$$

$$
\left\{\left|\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{j}^{\prime} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{[m]_{l d}}^{u^{\prime}}[\text { check } N R] \text { in } \mathcal{P} \rightarrow R M
$$

$$
\mathcal{P}\left[\varepsilon_{j+1} / x_{j+1}, \ldots, \varepsilon_{k} / x_{k}\right] .
$$

Case (NRNSig). We assume

$\rho, \kappa, \psi \models \operatorname{decrypt}\left\{\left|\varepsilon_{1}, \ldots, \varepsilon_{k}\right|\right\}_{\varepsilon_{0}}^{u}$ from id'\} as
$\left\{\left|\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{j}^{\prime} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{\varepsilon_{0}^{\prime}}^{u^{\prime}}[$ check $N R]$ in \mathcal{P}
which amounts to:

1. $\bigwedge_{i=0}^{k} \rho \models \varepsilon_{i}: \vartheta_{i}$
2. $\forall N R V_{0}, \ldots, N R V_{k}: \bigwedge_{i=0}^{k} N R V_{i} \propto \vartheta_{i} \Rightarrow$ $\left\{\left|N R V_{1}, \ldots, N R V_{k}\right|\right\}_{N R V_{0}}^{u}[$ from id] $\propto \vartheta$
3. $\wedge_{i=0}^{j} \rho \models \varepsilon_{i}^{\prime}: \vartheta^{\prime}$
4. $\forall\left\{\left|N R V_{1}, \ldots, N R V_{k}\right|\right\}_{N R V_{0}}^{u}[$ from $i d] \propto \vartheta: \forall N R V_{0}^{\prime} \propto \vartheta_{0}: \forall\left(\left[m^{+}\right]_{i d^{\prime}},\left[m^{-}\right]_{i d^{\prime}}\right)$:
$\left(N R V_{0}, N R V_{0}^{\prime}\right)=\left(\left[\left\lfloor m^{+}\right\rfloor\right]_{i d^{\prime}},\left[\left\lfloor m^{-}\right\rfloor\right]_{i d^{\prime}}\right) \wedge \bigwedge_{i=1}^{j} N R V_{i} \propto \vartheta_{i}^{\prime} \Rightarrow\left(\bigwedge_{i=j+1}^{k} N R V_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right) \wedge \rho, \kappa, \psi \models \mathcal{P} \wedge \forall n r \in N R:\right.$
$\left.\left(i d \neq i d^{\prime} \vee u \neq u^{\prime} \vee n r \notin\left\{N R V_{j+1}, \ldots, N R V_{k}\right\}\right) \Rightarrow\lfloor n r\rfloor \in \psi\right)$
5. $\bigwedge_{i=1}^{j} \varepsilon_{i}=\varepsilon_{i}^{\prime} \wedge R M\left(i d, i d^{\prime}, u, u^{\prime}, \varepsilon_{j+1}, \ldots, \varepsilon_{k}, N R\right)$
and we have to prove

$$
\rho, \kappa, \psi \models \mathcal{P}\left[\varepsilon_{j+1} / x_{j+1}, \ldots, \varepsilon_{k} / x_{k}\right] .
$$

From the hypothesis we obtain:

- (1) and $\bigwedge_{i=0}^{k} \mathrm{fv}\left(\varepsilon_{i}\right)=\emptyset \Rightarrow \bigwedge_{i=0}^{k} \varepsilon_{i} \propto \vartheta_{i}$
- (2) $\Rightarrow\left\{\left|\varepsilon_{1}, \ldots, \varepsilon_{k}\right|\right\}_{\varepsilon_{0}}^{u}$ [from id] $\propto \vartheta$
- (3) and (5) $\Rightarrow \bigwedge_{i=0}^{j} \varepsilon_{i} \in \vartheta^{\prime}$
- (4) $\Rightarrow \bigwedge_{i=j+1}^{k} \varepsilon_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right)$ and $\rho, \kappa, \psi \models \mathcal{P}$
- Lemma $1 \Rightarrow \rho, \kappa, \psi \models \mathcal{P}\left[\varepsilon_{j+1} / x_{j+1}, \ldots, \varepsilon_{k} / x_{k}\right]$

We observe that $\forall n r \in N R:\left(i d \neq i d^{\prime} \vee u \neq u^{\prime} \vee n r \notin\left\{\varepsilon_{j+1}, \ldots, \varepsilon_{k}\right\}\right) \Rightarrow\lfloor n r\rfloor \in \psi$ follows from (5) and since $\psi=\emptyset$, must be the case that

$$
R M\left(i d, i d^{\prime}, u, u^{\prime},\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}, N R\right)
$$

Thus the condition of the rule (NRNSig) is fulfilled for $\rightarrow_{R M}$.
Case (NRNNew). We assume $\rho, \kappa, \psi \models\left(\begin{array}{ll}v & n) \mathcal{P} \text {, therefore }(v n) \mathcal{P} \rightarrow_{\mathcal{R}}(v n) \mathcal{P}^{\prime} \text { using rule (NRNNew) and the hypothesis } \mathcal{P} \rightarrow_{\mathcal{R}} \mathcal{P}^{\prime} ~\end{array}\right.$
We have to prove $\rho, \kappa, \psi \models\left(\begin{array}{ll}v & n\end{array}\right) \mathcal{P}^{\prime}$.
By the induction hypothesis $\rho, \kappa, \psi \models \mathcal{P}^{\prime}$ and by the rule (NRANew) $\rho, \kappa, \psi \models(v n) \mathcal{P}^{\prime}$ and, when $\psi=\emptyset$, it follows immediately that ($v n$) $\mathcal{P} \rightarrow_{R M}(v n) \mathcal{P}^{\prime}$.
Case (NRNANew). We assume $\rho, \kappa, \psi \models\left(v \pm[m]_{i d}\right) \mathcal{P}$, therefore $\left(v \pm[m]_{i d}\right) \mathcal{P} \rightarrow_{\mathcal{R}}\left(v \pm[m]_{i d}\right) \mathcal{P}^{\prime}$ using rule (NRNANew) and the hypothesis $\mathcal{P} \rightarrow{ }_{\mathcal{R}} \mathcal{P}^{\prime}$.
We have to prove $\rho, \kappa, \psi \models\left(v \pm[m]_{i d}\right) \mathcal{P}^{\prime}$.
By the induction hypothesis $\rho, \kappa, \psi \models \mathcal{P}^{\prime}$ and by the rule (NRAANew) $\rho, \kappa, \psi \models\left(v \pm[m]_{i d}\right) \mathcal{P}^{\prime}$ and, when $\psi=\emptyset$, it follows immediately that $\left(v \pm[m]_{i d}\right) \mathcal{P} \rightarrow R M\left(v \pm[m]_{i d}\right) \mathcal{P}^{\prime}$.

Case (NRNPar). We assume

$$
\rho, \kappa, \psi \models \mathcal{P}_{1} \mid \mathcal{P}_{2}
$$

which amounts to:

1. $\rho, \kappa, \psi \models \mathcal{P}_{1}$
2. $\rho, \kappa, \psi \models \mathcal{P}_{2}$
3. $\mathcal{P}_{1} \rightarrow_{\mathcal{R}} \mathcal{P}_{1}^{\prime}$
and we have to prove

$$
\rho, \kappa, \psi \models \mathcal{P}_{1}^{\prime} \mid \mathcal{P}_{2} .
$$

By the induction hypothesis $\rho, \kappa, \psi \models \mathcal{P}^{\prime}$ and by the rule (NRAPar) $\rho, \kappa, \psi \models \mathcal{P}_{1}^{\prime} \mid \mathcal{P}_{2}$ and, when $\psi=\emptyset$, it follows immediately that $\mathcal{P}_{1}\left|\mathcal{P}_{2} \rightarrow{ }_{R M} \mathcal{P}_{1}^{\prime}\right| \mathcal{P}_{2}$.
Case (NRNCongr). We assume
$\rho, \kappa, \psi \models \mathcal{P}$
which amounts to:

1. $\mathcal{P} \equiv \mathcal{P}^{*}$
2. $\mathcal{P}^{*} \rightarrow_{\mathcal{R}} \mathcal{P}^{* *}$
3. $\mathcal{P}^{* *} \equiv \mathcal{P}^{\prime}$
and we have to prove

$$
\rho, \kappa, \psi \models \mathcal{P}^{\prime} .
$$

By Lemma 3 and (1) we obtain $\rho, \kappa, \psi \models \mathcal{P}^{*}$. By the induction hypothesis $\rho, \kappa, \psi \models \mathcal{P}^{* *}$ and by Lemma $3 \rho, \kappa, \psi \models \mathcal{P}^{\prime}$ and, when $\psi=\emptyset$, it follows immediately that $\mathcal{P} \rightarrow{ }_{R M} \mathcal{P}^{\prime}$.
Case (NRNRep). We assume

$$
\rho, \kappa, \psi \models[!P]_{i d}
$$

which means that $\rho, \kappa, \psi \models \mathcal{G}(P, i d)$; we have to prove $\rho, \kappa, \psi \models \mathcal{G}(P, i d) \mid[!P]_{i^{\prime}}$.
But ψ does not contain information about id s, therefore $\rho, \kappa, \psi \models \mathcal{G}\left(P, i d^{*}\right)$ for all $i d^{*} \in I D$, which means that $\rho, \kappa, \psi \models[!P]_{i d^{\prime}}$. Therefore we get $\rho, \kappa, \psi \models \mathcal{G}(P, i d) \mid[!P]_{i d^{\prime}}$ and, when $\psi=\emptyset$, it follows immediately that $[!P]_{i d} \rightarrow{ }_{R M} \mathcal{G}(P, i d) \mid[!P]_{i d^{\prime}}$.
Since both the basis and the inductive steps have been proved, it follows that Theorem 1 holds for all the rules by induction.

4.3. The attacker

In the setup of $\mathcal{P} \mid \mathcal{P}_{\bullet}$, the attacker process \mathcal{P} • has to be annotated with the extended syntax. We will use a unique label u_{\bullet} to indicate the session and a unique label id. to indicate the encryption place used by the attacker. The Dolev-Yao condition has to be redefined to be used for the non-repudiation analysis, as shown in Table 20.

The main enhancement with the usual LySA attacker can be seen in the rule (3) in Table 20: whenever the attacker is able to get an encryption key and generate an encrypted message with that key, the receiver checks the id of the sender, and, in case the latter does not correspond to the intended one, the component ψ becomes non-empty, as a signal of a nonrepudiation violation.

Now we have to prove that the redefined Dolev-Yao condition holds and this is done by the following theorem.
Theorem 2 (Correctness of Dolev-Yao condition). If (ρ, κ, ψ) satisfies $\mathcal{F}_{R M}^{D Y}$ of type $\left(\mathcal{N}_{f}, \mathcal{A}_{\kappa}, \mathcal{A}_{\text {Enc }}\right)$ then $\rho, \kappa, \psi \vDash \bar{Q}$ for all attackers Q of extended type $\left(\left\{z_{\bullet}\right\}, \mathcal{N}_{\mathrm{f}} \cup\left\{n_{\bullet}\right\}, \mathcal{A}_{\kappa}, \mathcal{A}_{\text {Enc }}\right)$.

Proof. By structural induction on \bar{Q}.
Case of (NRAOut). We assume:

$$
\bar{Q}=\left\langle\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{k}\right\rangle . \overline{\mathcal{P}}
$$

and we need to find $\vartheta_{1}, \ldots, \vartheta_{k}$ and show

Table 20
Redefinition of the attacker's capabilities.

> (1) The attacker may learn by eavesdropping
> $\bigwedge_{k \in \mathcal{A}_{k}} \forall\left\langle N R V_{1}, \ldots, N R V_{k}\right\rangle \in \kappa: \bigwedge_{i=1}^{k} N R V_{i} \in \rho\left(z_{\text {. }}\right)$
> (2) The attacker may learn by decrypting messages with keys already known
> $\Lambda_{k \in \mathcal{A}_{E n c}} \forall\left\{N R V_{1}, \ldots, N R V_{k}\right\}_{N R V_{0}} \in \rho\left(z_{\mathbf{0}}\right): N R V_{0} \in \rho\left(z_{\mathbf{0}}\right) \Rightarrow \bigwedge_{i=1}^{k} N R V_{i} \in \rho\left(z_{\mathbf{0}}\right)$
> $\Lambda_{k \in \mathcal{A}_{\text {Enc }}} \forall\left\{\left|N R V_{1}, \ldots, N R V_{k}\right|\right\}_{[m+]_{l d}}^{u}$ [from id'] $\in \rho\left(z_{\mathbf{0}}\right):\left[m^{-}\right]_{\text {dd }} \in \rho\left(z_{\mathbf{0}}\right)$
> $\Rightarrow \bigwedge_{i=1}^{k} N R V_{i} \in \rho\left(z_{\mathbf{e}}\right)$
> $\wedge_{k \in A_{k i c}} \forall\left\{\left.\left|N R V_{1}, \ldots, N R V_{k}\right|\right|_{\left[m-l_{d}\right.} ^{u}\left[\right.\right.$ from $\left.i d^{\prime}\right] \in \rho\left(z_{\mathbf{0}}\right):\left[m^{+}\right]_{\text {ld }} \in \rho\left(z_{\mathbf{0}}\right)$
> $\Rightarrow \bigwedge_{i=1}^{k} N R V_{i} \in \rho\left(z_{\mathbf{*}}\right)$
> The attacker may construct new encryptions using the keys known
> $\Lambda_{k \in A_{E n}} \forall N R V_{0}, \ldots, N R V_{k}: \Lambda_{i=0}^{k} N R V_{i} \in \rho\left(z_{\mathbf{0}}\right) \Rightarrow\left\{N R V_{1}, \ldots, N R V_{k}\right\}_{N R V_{0}} \in \rho\left(z_{\mathbf{0}}\right)$
> $\bigwedge_{k \in \mathcal{A}_{\text {sinc }}} \forall\left[m^{+}\right]_{i d}, N R V_{1}, \ldots, N R V_{k}:\left[m^{+}\right]_{i d} \in \rho\left(z_{\mathbf{0}}\right) \wedge \bigwedge_{i=1}^{k} N R V_{i} \in \rho\left(z_{\mathbf{0}}\right)$
> $\Rightarrow\left\{\left|N R V_{1}, \ldots, N R V_{k}\right|_{\left[m^{+}\right.}^{u} l_{\text {lde }}^{u} \in \rho\left(z_{\mathbf{*}}\right)\right.$
> $\bigwedge_{k \in A_{E n c}} \forall\left[m^{-}\right]_{i d}, N R V_{1}, \ldots, N R V_{k}:\left[m^{-}\right]_{i d} \in \rho\left(z_{\mathbf{o}}\right) \wedge \bigwedge_{i=1}^{k} N R V_{i} \in \rho\left(z_{.}\right)$
> $\Rightarrow\left\{\left|N R V_{1}, \ldots, N R V_{k}\right|\right\}_{\left[m^{-}-l_{\text {lut }}\right.}^{u_{0}} \in \rho\left(z_{0}\right) \wedge$
$\left\{\left|N R V_{1}^{\prime \prime}, \ldots, N R V_{j}^{\prime \prime} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{\left[m^{\prime \prime}+\right]_{d^{\prime \prime}}}^{u^{\prime \prime}}$ [check $\left.N R\right]$ in \mathcal{P} :
$\forall n r \in N R\left(\left(i d^{\prime} \neq i d, \vee u^{\prime \prime} \neq u_{\bullet} \vee\right.\right.$
$\left.\left.n r \notin\left\{N R V_{j+1}^{\prime}, \ldots, N R V_{k}^{\prime}\right\}\right) \Rightarrow\lfloor n r\rfloor \in \psi\right)$
The attacker may actively forge new communications
$\bigwedge_{k \in A_{k}} \forall N R V_{1}, \ldots, N R V_{k}: \Lambda_{i=1}^{k} N R V_{i} \in \rho\left(z_{.}\right) \Rightarrow\left\langle N R V_{1}, \ldots, N R V_{k}\right\rangle \in \kappa$
The attacker initially has some knowledge
$\left\{n_{\bullet},\left[m^{ \pm}\right]_{\text {id. }}\right\} \cup \mathcal{N}_{f} \subseteq \rho\left(z_{\mathbf{*}}\right)$

1. $\bigwedge_{i=1}^{k} \rho \models \bar{\varepsilon}_{i}: \vartheta_{i}$ and for all $N R V_{1}, \ldots, N R V_{k}$ with $\bigwedge_{i=1}^{k} N R V_{i} \propto \vartheta_{i}$ that
2. $\left\langle N R V_{1}, \ldots, N R V_{k}\right\rangle \in \kappa$
3. $\rho, \kappa, \psi \models \overline{\mathcal{P}}$

We choose $\vartheta_{i}(1 \leq i \leq k)$ as the least set such that $\rho \models \bar{\varepsilon}_{i}: \vartheta_{i}$ and prove that $\vartheta_{i} \subseteq \rho\left(z_{\bullet}\right)$. If $\bar{\varepsilon}_{i}$ has free variables z_{1}, \ldots, z_{m} then ϑ_{i} consists of all values $\bar{\varepsilon}_{i}\left[N R V_{1} / z_{1}, \ldots, N R V_{m} / z_{m}\right]$ where $N R V_{l}(1 \leq l \leq m) \in \rho\left(z_{0}\right)$. This proves (1).
(2) is true by definition of κ.

By hypothesis, $\overline{\mathcal{P}}$ has type $\left(\left\{z_{\bullet}\right\}, \mathcal{N}_{f} \cup\left\{n_{\bullet}\right\}, \mathcal{A}_{\mathcal{K}}, \mathcal{A}_{\text {Enc }}\right)$ and (3) is proved by induction hypothesis.
Case of (NRAInp). We assume:

$$
\bar{Q}=\left(\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{j} ; x_{j+1}, \ldots, x_{k}\right) \cdot \overline{\mathcal{P}}
$$

and we need to find $\vartheta_{1}, \ldots, \vartheta_{j}$ and show

1. $\bigwedge_{i=1}^{j} \rho \models \bar{\varepsilon}_{i}: \vartheta_{i}$ and for all $\left\langle N R V_{1}, \ldots, N R V_{k}\right\rangle \in \kappa$ with $\bigwedge_{i=1}^{j} N R V_{i} \propto \vartheta_{i}$ that
2. $\bigwedge_{i=j+1}^{k} N R V_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right)$
3. $\rho, \kappa, \psi \models \overline{\mathcal{P}}$

We choose $\vartheta_{i}(1 \leq i \leq j)$ as the least set such that $\rho \models \bar{\varepsilon}_{i}: \vartheta_{i}$ and prove that $\vartheta_{i} \subseteq \rho\left(z_{\bullet}\right)$. If $\bar{\varepsilon}_{i}$ has free variables z_{1}, \ldots, z_{m} then ϑ_{i} consists of all values $\bar{\varepsilon}_{i}\left[N R V_{1} / z_{1}, \ldots, N R V_{m} / z_{m}\right]$ where $N R V_{l}(1 \leq l \leq m) \in \rho\left(z_{0}\right)$. This proves (1).

Since $\bigwedge_{i=1}^{j} \vartheta_{i} \subseteq \rho\left(z_{0}\right)$, we have $\bigwedge_{i=1}^{j} N R V_{i} \in \vartheta$ and by $\mathcal{F}_{R M}^{D Y}$ we get $\bigwedge_{i=j+1}^{k} N R V_{i} \in \rho\left(z_{\bullet}\right)$ and, since $\left\lfloor x_{i}\right\rfloor=z_{0}$, we have (2).
By hypothesis, $\overline{\mathcal{P}}$ has type $\left(\left\{z_{\bullet}\right\}, \mathcal{N}_{f} \cup\left\{n_{\bullet}\right\}, \mathcal{A}_{K}, \mathcal{A}_{E n c}\right)$ and (3) is proved by induction hypothesis.
Case of (NRADec). We assume:

$$
\bar{Q}=\operatorname{decrypt} \bar{\varepsilon} \text { as }\left\{\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{j} ; x_{j+1}, \ldots, x_{k}\right\}_{\bar{\varepsilon}_{0}} \text { in } \overline{\mathcal{P}}
$$

and we need to find ϑ and $\vartheta_{0}, \ldots, \vartheta_{j}$ and show

1. $\rho \models \bar{\varepsilon}: \vartheta \wedge \bigwedge_{i=0}^{j} \rho \models \bar{\varepsilon}_{i}: \vartheta_{i}$ and for all $\left\{N R V_{1}, \ldots, N R V_{k}\right\}_{N R V_{0}} \propto \vartheta$ with $\bigwedge_{i=0}^{j} N R V_{i} \propto \vartheta_{i}$ that
2. $\bigwedge_{i=j+1}^{k} N R V_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right)$
3. $\rho, \kappa, \psi \models \overline{\mathcal{P}}$

We choose ϑ as the least set such that $\rho \models \bar{\varepsilon}: \vartheta$ and prove that $\vartheta \subseteq \rho\left(z_{0}\right)$. If $\bar{\varepsilon}$ has free variables z_{1}, \ldots, z_{m} then ϑ consists of all values $\bar{\varepsilon}\left[N R V_{1} / z_{1}, \ldots, N R V_{m} / z_{m}\right]$ where $N R V_{i}(1 \leq i \leq m) \in \rho\left(z_{0}\right)$. The same development for $\vartheta_{0}, \ldots, \vartheta_{j}$ proves (1).

Since $\vartheta_{0} \subseteq \rho\left(z_{\bullet}\right)$, we have $N R V_{0} \in \vartheta$ and by $\mathcal{F}_{R M}^{D Y}$ we get $\bigwedge_{i=j+1}^{k} N R V_{i} \in \rho\left(z_{0}\right)$ and, since $\left\lfloor x_{i}\right\rfloor=z_{\bullet}$, we have (2).
By hypothesis, $\overline{\mathcal{P}}$ has type $\left(\left\{z_{\bullet}\right\}, \mathcal{N}_{f} \cup\left\{n_{\bullet}\right\}, \mathcal{A}_{\kappa}, \mathcal{A}_{\text {Enc }}\right)$ and (3) is proved by induction hypothesis.
Case of (NRAADec). We assume:

$$
\left.\bar{Q}=\operatorname{decrypt} \bar{\varepsilon} \text { as }\left\{\left|\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{j} ; x_{j+1}, \ldots, x_{k}\right|\right\}\right\}_{\bar{\varepsilon}_{0}}^{u^{\prime}}[\text { check } N R] \text { in } \overline{\mathcal{P}}
$$

and we need to find ϑ and $\vartheta_{0}, \ldots, \vartheta_{j}$ and show

1. $\rho \models \bar{\varepsilon}: \vartheta \wedge \bigwedge_{i=0}^{j} \rho \models \bar{\varepsilon}_{i}: \vartheta_{i}$ and for all $\left\{\left|N R V_{1}, \ldots, N R V_{k}\right|\right\}_{N R V_{0}}^{u}[$ from $i d] \propto \vartheta: \forall N R V_{0}^{\prime} \propto \vartheta_{0}: \forall\left(m^{+}, m^{-}\right)$:
$\left(N R V_{0}, N R V_{0}^{\prime}\right)=\left(\left[\left[m^{-}\right\rfloor\right]_{i^{\prime}},\left[\left[m^{+}\right\rfloor\right]_{i d^{\prime}}\right)$ with $\bigwedge_{i=1}^{j} N R V_{i} \propto \vartheta_{i}$ that
2. $\bigwedge_{i=j+1}^{k} N R V_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right)$
3. $\rho, \kappa, \psi \models \overline{\mathcal{P}}$

We choose ϑ as the least set such that $\rho \models \bar{\varepsilon}: \vartheta$ and prove that $\vartheta \subseteq \rho\left(z_{\bullet}\right)$. If $\bar{\varepsilon}$ has free variables z_{1}, \ldots, z_{m} then ϑ consists of all values $\bar{\varepsilon}\left[N R V_{1} / z_{1}, \ldots, N R V_{m} / z_{m}\right]$ where $N R V_{i}(1 \leq i \leq m) \in \rho\left(z_{0}\right)$. The same development for $\vartheta_{0}, \ldots, \vartheta_{j}$ proves (1). Since $\vartheta_{0} \subseteq \rho\left(z_{\bullet}\right)$, we have $N R V_{0} \in \vartheta$ and by $\mathcal{F}_{R M}^{D Y}$ we get $\bigwedge_{i=j+1}^{k} N R V_{i} \in \rho\left(z_{\bullet}\right)$ and, since $\left\lfloor x_{i}\right\rfloor=z_{\bullet}$, we have (2). By hypothesis, $\overline{\mathcal{P}}$ has type $\left(\left\{z_{\bullet}\right\}, \mathcal{N}_{f} \cup\left\{n_{\bullet}\right\}, \mathcal{A}_{K}, \mathcal{A}_{\text {Enc }}\right)$ and (3) is proved by induction hypothesis.
Case of (NRASig). We assume:

$$
\bar{Q}=\operatorname{decrypt} \bar{\varepsilon} \text { as }\left\{\left|\bar{\varepsilon}_{1}, \ldots, \bar{\varepsilon}_{j} ; x_{j+1}, \ldots, x_{k}\right|\right\}_{\bar{\varepsilon}_{0}}^{u^{\prime}}[\text { check } N R] \text { in } \overline{\mathcal{P}}
$$

and we need to find ϑ and $\vartheta_{0}, \ldots, \vartheta_{j}$ and show

1. $\rho \models \bar{\varepsilon}: \vartheta \wedge \bigwedge_{i=0}^{j} \rho \models \bar{\varepsilon}_{i}: \vartheta_{i}$ and for all $\left\{\left|N R V_{1}, \ldots, N R V_{k}\right|\right\}_{N R V_{0}}^{u}[$ from $i d] \propto \vartheta: \forall N R V_{0}^{\prime} \propto \vartheta_{0}: \forall m^{+}, m^{-}, i d, i d^{\prime}:$
$\left.\left(N R V_{0}, N R V_{0}^{\prime}\right)=\left(\left[L m^{+}\right\rfloor\right]_{i d^{\prime}},\left[\left\lfloor m^{-}\right\rfloor\right]_{i d^{\prime}}\right)$ with $\bigwedge_{i=1}^{j} N R V_{i} \propto \vartheta_{i}$ that
2. $\bigwedge_{i=j+1}^{k} N R V_{i} \in \rho\left(\left\lfloor x_{i}\right\rfloor\right)$
3. $\rho, \kappa, \psi \models \overline{\mathcal{P}}$
4. $\forall n r \in N R:\left(\neg R M\left(i d, i d^{\prime}, u, u^{\prime},\left\{N R V_{j+1}, \ldots, N R V_{k}\right\},\{n r\}\right) \Rightarrow\lfloor n r\rfloor \in \psi\right)$

We choose ϑ as the least set such that $\rho \models \bar{\varepsilon}: \vartheta$ and prove that $\vartheta \subseteq \rho\left(z_{0}\right)$. If $\bar{\varepsilon}$ has free variables z_{1}, \ldots, z_{m} then ϑ consists of all values $\bar{\varepsilon}\left[N R V_{1} / z_{1}, \ldots, N R V_{m} / z_{m}\right]$ where $N R V_{i}(1 \leq i \leq m) \in \rho\left(z_{0}\right)$. The same development for $\vartheta_{0}, \ldots, \vartheta_{j}$ proves (1).
Since $\vartheta_{0} \subseteq \rho\left(z_{0}\right)$, we have $N R V_{0} \in \vartheta$ and by $\mathcal{F}_{R M}^{D Y}$ we get $\bigwedge_{i=j+1}^{k} N R V_{i} \in \rho\left(z_{0}\right)$ and $\forall n r \in N R:\left(\neg R M\left(i d, i d^{\prime}, u, u^{\prime}\right.\right.$, $\left.\left.\left\{N R V_{j+1}, \ldots, N R V_{k}\right\},\{n r\}\right) \Rightarrow\lfloor n r\rfloor \in \psi\right)$. Since $\left\lfloor x_{i}\right\rfloor=z_{\text {。 }}$, we have (2) and (4).

By hypothesis, $\overline{\mathcal{P}}$ has type $\left(\left\{z_{\bullet}\right\}, \mathcal{N}_{f} \cup\left\{n_{\bullet}\right\}, \mathcal{A}_{\mathcal{K}}, \mathcal{A}_{\text {Enc }}\right)$ and (3) is proved by induction hypothesis.
Case of (NRANew). We assume:

$$
\bar{Q}=(v n) \overline{\mathcal{P}}
$$

and we need to show $\rho, \kappa, \psi \models \overline{\mathcal{P}}$. But this is true by induction hypothesis.
Case of (NRAANew). We assume:

$$
\bar{Q}=(v \pm m) \overline{\mathcal{P}}
$$

and we need to show $\rho, \kappa, \psi \models \overline{\mathcal{P}}$. But this is true by induction hypothesis.

Case of (NRAPar). We assume:

$$
\bar{Q}=\overline{\mathcal{P}}_{1} \mid \overline{\mathcal{P}}_{2}
$$

and we need to show

1. $\rho, \kappa, \psi \models \overline{\mathcal{P}}_{1}$
2. $\rho, \kappa, \psi \models \overline{\mathcal{P}}_{2}$

But this is true by induction hypothesis.
Case of (NRARep). We assume:

$$
\bar{Q}=[!\bar{P}]_{i d}
$$

and we need to show $\rho, \kappa, \psi \models \mathcal{G}(\bar{P}, i d)$. But $\mathcal{G}(\bar{P}, i d)$ has the same type of $[!\bar{P}]_{i d}$, therefore $\rho, \kappa, \psi \models \mathcal{G}(\bar{P}, i d)$ by induction hypothesis.
The case (NRANil) is trivial.
Since both the basis and the inductive steps have been proved, it follows that Theorem 2 holds for all the rules of the analysis by structural induction.

Theorem 3. If \mathcal{P} guarantees static non-repudiation then \mathcal{P} guarantees dynamic non-repudiation.
Proof. If $\rho, \kappa, \emptyset \models \mathcal{P}_{\text {sys }}$ and $(\rho, \kappa, \emptyset)$ satisfies $\mathcal{F}_{R M}^{D Y}$ then, by Theorems 1 and $2, R M$ does not abort $\mathcal{P}_{\text {sys }} \mid \bar{Q}$ regardless of the choice of attacker Q.

4.4. Meta level analysis

The analysis seen so far only deals with one session. In order to get a more realistic analysis, it has to be enhanced to a meta level, like in [4,7]. We have to add indexes to names and variables, as explained in Section 2, so a scenario with multiple principals can be modelled. The meta level non-repudiation analysis takes the form $\rho, \kappa, \psi \models{ }_{\Gamma} M$.
Example 2. Let us now consider the protocol seen in Example 1, namely the Zhou-Gollmann protocol [17]. The whole protocol has been extended using the annotations and the functions \mathcal{F} and \mathcal{G}. The resulting protocol is the following:

$$
\begin{aligned}
& \text { let } X \subseteq S \text { in }\left(v_{ \pm i \in X}\left[A K_{i}\right]_{l_{i}}\right)\left(v \pm[T T P]_{T T P}\right)(\\
& \left.\left.\right|_{i \in X}\right|_{j \in X} \quad!\left(v S K_{i j}\right)\left(v L_{i j}\right)\left(v M_{i j}\right) \\
& \left\langle f_{N R O}, I_{j}, L_{i j},\left\{M_{i j}\right\}_{S K_{i j}},\right. \\
& \left.\left\{\left|f_{N R O}, I_{j}, L_{i j},\left\{M_{i j}\right\}_{S K_{i j}}\right|\right\}_{\left[A K_{i}^{-}\right]_{i}}^{u_{i}}\left[\text { from } I_{i}\right]\right\rangle \text {. } \\
& \left(f_{N R R}, I_{i}, L_{i j} ; x N R R_{i j}\right) \text {. } \\
& \text { decrypt } x N R R_{i j} \text { as }\left\{\left[f_{N R R}, I_{i}, L_{i j},\left\{M_{i j}\right\}_{S_{i j}} ; \mid\right\}_{\left[A K_{j}^{+} l_{j j}\right.}^{u_{i j}}\right. \\
& {\left[\text { check } f_{N R R}, I_{i}, L_{i j},\left\{M_{i j}\right\}_{S K_{i j}}\right] \text { in }} \\
& \left\langle f_{S U B}, I_{j}, L_{i j}, S K_{i j},\left\{\left|f_{S U B}, I_{j}, L_{i j}, S K_{i j}\right| u_{\left.\left[A K_{i}^{-}\right]\right]_{i}}\left[\text { from } I_{i}\right]\right\rangle\right. \text {. } \\
& \left(f_{\text {CON }}, I_{i}, I_{j}, L_{i j}, S K_{i j} ; x \text { Con }_{i j}\right) \text {. } \\
& \text { decrypt } x \operatorname{Con}_{i j} \text { as }\left\{\left[f_{C O N}, I_{i}, I_{j}, L_{i j}, S K_{i j} ;\right\}_{\left[K T T P^{+}\right.}^{u_{T T P}}\right. \\
& \text { [check } \left.f_{\text {CON },} I_{i}, I_{j}, L_{i j}, S K_{i j}\right] \text { in } 0 \\
& \begin{array}{ll}
\|\left._{i \in X}\right|_{j \in X} \quad & !\left(f_{N R O}, I_{j} ; x L_{i j}, x E n M s g_{i j}, x N R O_{i j}\right) . \\
& \text { decrypt } x N R O_{i j} \text { as }\left\{\left|f_{N R O}, I_{j}, x L_{i j}, x E n M s g_{i j} ;\right|\right\}_{\left[A K_{i}^{+}\right]_{i}}^{u_{i j}} \\
& {\left[\text { check } f_{N R O,}, I_{j}, x L_{i j}, x E n M s g_{i j}\right] \text { in }}
\end{array}
\end{aligned}
$$

```
\(\left\langle f_{N R R,}, I_{i}, x L_{i j},\left\{\left|f_{N R R}, I_{i}, x L_{i j}, x E n M s g_{i j}\right|\right\}_{\left[A K_{j}^{-}\right]_{j}}^{u_{j}}\left[\right.\right.\) from \(\left.\left.I_{j}\right]\right\rangle\).
\(\left(f_{\text {CON }}, I_{i}, I_{j}, x L_{i j} ; x K_{i j}, x \operatorname{Con}_{i j}\right)\).
decrypt \(x \operatorname{Con}_{i j}\) as \(\left\{\left[f_{C O N}, I_{i}, I_{j}, x L_{i j}, x K_{i j} ; \mid\right\}_{\left[K T T P{ }^{+}\right]_{l_{T T P}}}^{u_{i j}}\right.\)
[check \(f_{\text {CON }}, I_{i}, I_{j}, x L_{i j}, x K_{i j}\) ] in
decrypt \(x E n M s g_{i j}\) as \(\left\{; x M s g_{i j}\right\}_{x K_{i j}}\) in 0
\(\|\left._{i \in X}\right|_{j \in X} \quad!\left(f_{S U B}, I_{j} ; x L_{i j}, x S K_{i j}, x S u b_{i j}\right)\) decrypt \(x S u b_{i j}\) as
\(\left\{\left|f_{S U B}, I_{j}, x L_{i j}, x S K_{i j} ;\right|\right\}_{\left[A K_{i}^{+}\right]_{i}}^{u_{i j}}\) [check \(\left.f_{S U B,}, I_{j}, x L_{i j}, x S K_{i j}\right]\) in
\(\left\langle f_{\text {CON }}, I_{i}, I_{j}, x L_{i j}, x S K_{i j}\right.\),
\(\left\{\left|f_{\text {CON }}, I_{i}, I_{j}, x L_{i j}, x S K_{i j}\right|\right\}_{\left[K T T P^{-}\right] \text {TTP }}^{u_{i j}}[\) from TTP] \(\rangle\).
\(\left\langle f_{\text {CON }}, I_{i}, I_{j}, x L_{i j}, x S K_{i j}\right.\),
\(\left\{\left\{f_{\text {CON }}, I_{i}, I_{j}, x L_{i j}, x S K_{i j} \mid\right\}_{\left[K T T P^{-}\right.}\right]_{\text {TTP }}[\) from TTP] \(\rangle .0\)
```

)

After completing the analysis the component ψ is an empty set, i.e. the protocol guarantees non-repudiation even under attack. In fact, the attacker cannot create new encryptions because he has not knowledge about the private keys and he cannot make a replay attack because there is a unique label that identifies the session.

4.5. Over-approximation

When the analysis checks a protocol, we could expect that if the component ψ is empty then the protocol is correct, else the protocol does not guarantee the non-repudiation protocol. But the analysis cannot be precise, because of the infinitely many possible scenarios in which a protocol can be executed and the additional assumptions that can be made. Because of the over-approximation, our analysis can give sometimes a false positive, i.e. the component ψ is non-empty but the protocol is correct. It is important that the analysis does not mistake in the opposite direction, and this is what happens in practice, because the analysis says that the property holds if the protocol behaves as expected, therefore it never says that a protocol is correct even if it does not guarantee the non-repudiation property. Intuitively, when a protocol guarantees authentication, freshness and integrity of the messages, it should guarantee even non-repudiation.

An example of false positive is given by the protocol described in [5] by Cederquist et al. In fact it does not use labels to identify sessions, and this is why our analysis says that this protocol does not guarantee non-repudiation property. However, the protocol is correct, because it distinguishes session runs thanks to the usage of fresh keys per-session. Our analysis requires a session identifier, but there is not any element that is used in each message of the protocol, so a principal cannot verify if a message belongs to a particular session or not; indeed, without the assumption of the unique keys, an attacker could pretend to be another principal, starting the protocol after eavesdropping a protocol run. The main protocol is the following:

```
A->B:{M\mp@subsup{}}{K}{},EOO
B}->\textrm{A}:EO\mp@subsup{R}{M}{\prime}\mathrm{ for EOR M}=\mp@subsup{\operatorname{sig}}{B}{}(EO\mp@subsup{O}{M}{}
A}->\textrm{B}:
B}->\textrm{A}:EO\mp@subsup{R}{K}{}\mathrm{ for EOR
```

where $H=h\left(\{M\}_{K}\right)$ and h is a hash function. There are other two subprotocols used in case of dispute, i.e. when a principal does not finish the protocol execution, but we are interested only in the main protocol.

The encoding with annotation is the following:

```
let \(X \subseteq S\) in \(\left(v_{ \pm i \in X}\left[A K_{i}\right]_{l_{i}}\right)(v \pm K T T P)(\)
    \(\left.l_{i \in X}\right|_{j \in X} \quad!\left(v S K_{i j}\right)\left(v H_{i j}\right)\left(v M_{i j}\right)\)
        \(\left\langle\left\{M_{i j}\right\}_{S K_{i j}},\left\{\mid I_{j}, T T P, H_{i j},\left\{\left|S K_{i j}, I_{i}\right|\right\}_{\left[K T T P^{+}\right.}^{u_{T T T P}}[\text { from TTP }] \mid\right\}_{\left[A K_{i}^{-}\right.}^{u_{i j}}\right]_{i}\)
                                [from \(\left.\left.I_{i}\right]\right\rangle\).; \(; x E O R M_{i j}\) ).
                        decrypt \(x E O R M_{i j}\) as \(\left\{\mid\left\{\mid I_{j}, T T P, H_{i j}\right.\right.\),
                        \(\left\{\left|S K_{i j}, I_{i}\right|\right]_{\left[K T T P^{+}\right]_{\text {TTP }}}^{u_{j}}[\) from TTP \(\left.] \mid\right\}_{\left[A K_{i}^{-}\right] l_{i}}^{u_{i j}}\left[\right.\) from \(\left.I_{i}\right]| |_{\left[A K_{j}^{+}\right]_{j}}^{u_{j j}}\)
                        [check \(\left\{\mid I_{j}, T T P, H_{i j},\left\{\left|S K_{i j}, I_{i}\right|\right\}_{[K T T P}{ }^{u_{i j}}{ }_{\text {]TTP }}\right.\) [from TTP] \(\left.\left.]\right\}\right]\) in
            \(\left\langle S K_{i j}\right\rangle\).(;xEORK \({ }_{i j}\) ).
            decrypt \(x E O R K_{i j}\) as \(\left\{I I_{i}, H_{i j}, S K_{i j} ;\right\}_{\left[A K_{j}^{+}\right]_{j}}^{u_{i j}}\)
                        [check \(H_{i j}, S K_{i j}\) ] in 0
    \(\left.\left.\right|_{i \in X}\right|_{j \in X} \quad!\left(; x E n M s g_{i j}, x E O O M_{i j}\right)\).
                        decrypt \(x E O O M_{i j}\) as \(\left\{\left|I_{j}, T T P ; x H_{i j}, x T T P\right|\right]_{\left[A K_{i}^{+}\right]_{i}}^{u_{i j}}\)
                [check \(x H_{i j}\) ] in
            \(\left\langle\left\{\left|x E O O M_{i j}\right|\right\}_{\left[A K_{j}^{-}\right]_{j}}^{u_{j}}\right.\) [from \(\left.\left.I_{j}\right]\right\rangle\).
            (; \(x S K_{i j}\) ).
```

```
decrypt \(x E n M s g_{i j}\) as \(\left\{x M s g_{i j}\right\}_{\chi S K_{i j}}\) in
\(\left\langle\left\{\left|I_{i}, x H_{i j}, x S K_{i j}\right|\right\}\right\rangle .0\)
```

)

Because of the lack of labels, the result of the analysis shows that a possible flaw may arise. The component ψ contains all the elements that are also in $N R$ when $|S| \geq 2$. In fact, it does not use labels to identify the session, and this is why our analysis says that this protocol does not guarantee non-repudiation property. However, the protocol is correct, because of an implicit additional assumption on the uniqueness of the keys, which prevents from replay attacks.

5. Conclusions and future works

This paper extends the work by Buchholtz and Gao who defined a suite of analyses for security protocols, namely authentication, confidentiality [10], freshness [9], simple [3] and complex [8] type flaws. The annotations we introduce allow to express non-repudiation also for part of the message: this allows to tune the analysis focussing on relevant components. It results that the CFA framework developed for the process calculus LySA can be extended to security properties by identifying suitable annotations, thus re-using most of the theoretical work.

Acknowledgments

Work partially supported by MIUR Project PRIN 2007 "SOFT" and by RAS Project TESLA—Tecniche di enforcement per la sicurezza dei linguaggi e delle applicazioni.

References

[1] Bella G, Paulson LC. Mechanical proofs about a non-repudiation protocol. In: TPHOL'01, Lecture notes in computer science, vol. 2152. Berlin, Germany: Springer; 2001. p. 91-104.
[2] Bodei C, Buchholtz M, Degano P, Nielson F, Nielson HR. Static validation of security protocols. J Comput Security 2005;347-90.
[3] Bodei C, Degano P, Gao H, Brodo L. Detecting and preventing type flaws: a control flow analysis with tags. In: Proceedings of 5th international workshop on security issues in concurrency, Lisboa, Portugal, 2007.
[4] Buchholtz M, Lyngby K. Automated analysis of security in networking systems. PhD thesis proposal. Available from <http://www.imm.dtu.dk/mib/ thesis >. Technical Report; 2004.
[5] Cederquist J, Corin R, Torabi Dashti M. On the quest for impartiality: design and analysis of a fair non-repudiation protocol. In: ICIS, Lecture notes in computer science, 2005.
[6] Dolev D, Yao AC. On the security of public key protocols. Technical Report, Stanford, CA; 1981.
[7] Gao H. Analysis of protocols by annotations. PhD thesis, Informatics and Mathematical Modelling, Technical University of Denmark; 2008.
[8] Gao H, Bodei C, Degano, P. A formal analysis of complex type flaw attacks on security protocols. In: Proceeding of 12 th international conference on algebraic methodology and software technology (AMAST'08), USA, 2008.
[9] Gao H, Degano P, Bodei C, Nielson HR. A formal analysis for capturing replay attacks in cryptographic protocols. In: Proceeding of 12th annual asian computing science conference: focusing on computer and network security (ASIAN'07), Doha, Qatar, 2007.
[10] Gao H, Nielson HR. Analysis of lysa-calculus with explicit confidentiality annotations. In: Proceedings of 20th international conference on advanced information networking and applications (AINA 2006), Vienna, Austria. Los Alamitos, CA, USA: IEEE Computer Society; 2006.
[11] Gollmann D. Computer security. New York, NY, USA: John Wiley \& Sons, Inc.; 1999.
[12] Kremer S, Raskin JF. A game-based verification of non-repudiation and fair exchange protocols. J Comput Security 2001:551-65.
[13] Nielson F, Nielson HR, Hankin C. Principles of program analysis. New York: Springer-Verlag, LLC; 1999.
[14] Schneider S. Formal analysis of a non-repudiation protocol. In: 11th IEEE computer security foundations workshop, 1998 . p. 54.
[15] Schneider S, Holloway R. Modelling security properties with csp. Technical Report; 1996.
[16] Schneider S, Holloway R. Security properties and csp. In: IEEE symposium security and privacy. Los Alamitos, CA, USA: IEEE Computer Society Press; 1996. p. 174-87.
[17] Zhou J, Gollmann D. A fair non-repudiation protocol. IEEE Computer Society Press; 1996.
[18] Zhou J, Gollmann D. Evidence and non-repudiation. J Network Comput Appl 1997;20(3):267-81 doi:http://dx.doi.org/10.1006/jnca.1997.0056.
[19] Zhou J, Gollmann D. Towards verification of non-repudiation protocols. In: Proceedings of international refinement workshop and formal methods pacific. Berlin, Germany: Springer-Verlag; 1998.

[^0]: * Corresponding author. Tel.: +393474414010; fax: +39041 2348419.

 E-mail address: cortesi@dsi.unive.it (A. Cortesi).

