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1. Introduction

With the growth of Internet applications like e-shopping or e-voting, non-repudiation is becoming increasingly
important, as a protocol property. Our aim is to provide a protocol analysis which checks this property to avoid that a
protocol is used in malicious way. Among the existing techniques that perform the analysis of non-repudiation protocols,
we may cite:

o The CSP (Communicating Sequential Processes) approach [14-16]: it is an abstract language designed specifically for
the description of communication patterns of concurrent system components that interact through message passing.

e The game approach [12]: it considers the execution of the protocol as a game, where each entity is a player; the
protocols are designed finding a strategy, which has to defend an honest entity against all the possible strategies of
malicious parties.

o The Zhou-Gollmann approach [19]: it uses SVO Logic, a modal logic that is composed by inference rules and axioms
which are used to express beliefs that can be analysed by a judge to decide if the service provided the property.

e The inductive approach [1]: it uses an inductive model, a set of all the possible histories of the network that the protocol
execution may produce; a history, called trace, is a list of network events, that can indicate the communication of a
message or the annotation of information for future use.

We follow a different approach, the same as Buchholtz [4] and Gao [7], who show how some security properties can be
analysed using the LYSA [2] process calculus with annotations and a Control Flow Analysis (CFA) to detect flaws in the
protocols. The main idea is to extend LySA with specific annotations, i.e. tags that identify part of the message for which the
property has to hold and that uniquely assigns principal identifiers and session identifiers to encryptions and decryptions.
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The advantages of this proposal are the following:

e The analysis is general enough to check any protocol (even if in few exceptional cases the result can be incorrect).

e The environment in which the protocol is executed can possibly involve infinitely many principals who run infinitely
many sessions.

e The analysis can easily be implemented, providing a user-friendly tool which can automatically check the non-
repudiation property for any specified encoding.

It is interesting to notice that the non-repudiation analysis that we propose easily fits into the CFA framework [13],
yielding a suite of analyses that can be combined in various ways, with no major implementation overload. Since the
analyses share the same framework differing only in the annotations, a combination of them might lead to a result with
less resource consumption. This combination could be easily obtained by generalizing the syntax and turning the
correspondent monitors on in the semantics.

The structure of the paper is the following: Section 2 is a quick overview of LySA; Section 3 presents the CFA framework;
Section 4 shows the new non-repudiation analysis, and its application to the protocols; Section 5 concludes.

2. LySa

LYSA [2] is a process calculus in the m—calculus tradition that models security protocols on a global network. It
incorporates pattern matching into the language constructs where values can become bound to variables. In LySa all the
communications take place directly on a global network and this corresponds to the scenario in which security protocols
often operate. Channels are considered in many process calculi, but they may give a degree of security that there is not in
the common network, where a spy can eavesdrop and forge communications; furthermore, channels are often declared
private and used explicitly as cryptographic keys while in real systems they are extremely problematic. LYSA calculus offers
instead a realistic environment in which there are not channels to protect the exchange of messages among the principals.

2.1. Syntax and semantics

An expression E € Expr may represent a name, a variable or an encryption. The set Expr contains two disjointed subsets,
Name and Var. The elements in the first subset can be identifiers, nonces, symmetric keys, key pairs (m*, m~) for
asymmetric key cryptography (where m™ is the public key and m ™ is the private one), etc., ranged over by n. The elements
in Var are only variables, ranged over by x. The remaining expressions are symmetric and asymmetric encryptions of
k-tuples of other expressions, defined as {Eq, ...,E}g, and {|Eq, ... Ei|}g,, Tespectively, where Eq represents a symmetric or
asymmetric key.

LYSA also allows to construct processes P € Proc, which use the expressions explained above. Processes can have the
following form:

e (Eq,...,E;>.P: the process sends a k-tuple of values onto the global network; when the message has been successfully
sent the process continues as P.

® (E1,....Ejixj+1,....x).P: the process reads the k-tuple of values sent, it checks if the first j values expected are identical to
E,....E;, and, if this succeeds, the remaining k—j values are bound to the variables x;.1,...,X, and the process continues
as P, which is the scope of the variables; notice that a semi-colon is used to distinguish between the expressions used
for matching and the variables.

e decryptE as {Eq, ...,Ej;Xj,1, ....Xk}g, in P: the process denotes the symmetric decryption and it works in a way similar to
the input construct; if the encryption key is identical to Ey, the process decrypts the k-tuple, then it checks if the values
expected are identical to Ey,...,Ej, and, if this succeeds, the remaining k—j values are bound to the variables X;.1,...,X,
and the process continues as P, which is the scope of the variables; a semi-colon distinguishes between the expressions
used for matching and the variables.

o decrypt E as {|Ey, ... ,Ej;Xj,1,....X|}g, in P: the process denotes the asymmetric decryption and it works like symmetric
decryption; the only differences are in Eg and in the key used to encrypt, which have to be a key pair m* and m~; their
order depends on the role of decryption, i.e. if it is used to verify a private key signature or to obtain the original
message after a public key encryption.

e (vn)P: the process generates a new name n and it continues in P, which is the scope of the name.

(v + m)P: the process generates a new Kkey pair, m* and m~, and it continues in P, which is the scope of the key pair.

e P{|P;: the process denotes two processes running in parallel that may synchronize through communication over the
network or perform actions independently.

e P: the process acts as an arbitrary number of processes P composed in parallel.

0: the process is the inactive or nil process that does nothing.

Both expressions and processes are defined in Table 1.
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Table 1
Syntax of LySa calculus.
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5 =

n

X

i

e

{Eq1,..., E}e,

{00000 Exl}e,

P: =

(Ey,....Ex>.P

(Ety o Ejy Xjat-o. Xi)-P
decrypt E as {E;, ..., EjsXir1,-.-s Xi}g, in P

decrypt E as {|Eq, ..., EjsXip1,-..» Xi|}g, in P
(vn)P

Terms

Name

Variable

Public key

Private key

Symmetric encryption
Asymmetric encryption

Processes

Output

Input

Symmetric decryption
Asymmetric decryption
Restriction

v +mP Pair restriction
Py1|P, Parallel composition
P Replication
0 Nil
Table 2
Function fn(P) for free names.
fa(n) % )
fa(m™*) & im+y
fa@m=) f ey
fa®) def
f({Es, ..., Ex}e,) Y f(Eg) U - - - U fi(Er)
fadIEs, ... Exl}g,) Y f(Eg) U - - - U fn(Ey)
i Ciocc 100 Y fEr) U - U fEe) U P
fn((Eq, ..., EjsXji1y ..o Xi).P) déffn(El) U Ufn(E) U fn(P)

fn(decrypt E as {Ey, ...,Ej;Xj,1,....X)g, in P)

Y fn(E) U f(Ee) U -~ U f(E)) U f(P)

fn(decrypt E as {|Eq, ..., EjiXip1,.... Xk|}, in P) dgfn(E) U f(Eg) U - - - U fr(E;) U f(P)

fn((vm)P) © fn(Py\(n)

fa((v + mP) Y Py (m+,m~)
f(PyIP;) Y fn(py) U fn(Py)
fa(P) Ynp)

() g

A binder introduces new names or variables which have scope in the rest of the process. The prefix (vn) in the process
(vn)P and the prefix (v +m) in the process (v + m)P are binders, because they create new keys which have scope in the
process P. Also input and decryption are binders that introduce the variables X;.1,....x. If a name or a variable is not bound
by any binder, it is free; the function fn(P) collects all the free names in the process P and it is defined in Table 2 while the
function fv(P), defined in Table 3, collects the free variables. The bound variables are defined by the function
bv(P)dzefvar(P)\fv(P), where var(P) is the function that defines the set of variables contained in a given protocol P; roughly
speaking, bv(P) provides the set of all the variables that are not free in the protocol P. All these functions are also defined on
the terms, which are part of the processes.

LySA provides a reduction semantics that describes the evolution of a process step-by-step, using a reduction relation
between two processes, written P— P'. If the reduction relation holds then P can evolve into P’ using the rules depicted in
Table 6 that show an inductive definition of the relation by axioms and inference rules.

The structural congruence between two processes, written P=P’, means that P is equal to P’ except for syntactic
aspects, but this does not interfere with the way they evolve. The structural congruence is defined as the smallest relation
satisfying the rules in Table 4, that express the following ideas:

e The reduction relation is an equivalence relation.
e The parallel composition is defined to be commutative, associative, and has 0 as neutral element.
e The order of the processes in the parallel composition is not influential.
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Table 3
Function fv(P) for free variables.

355

fv(m)

fu(m*)

fv(m™)

fvo

fv({Es, ... .Ex}g,)

fv(IEq, . .. Exl}E,)
fu(<{Eq,....Ex>.P)

fo((Eq, .. EjiXj i1, .. X0).P)

oy
“p
“p

Y

Yfy(Eg) U- -+ Ufu(Er)
Yfy(Ee)U- - Ufu(E
YfyE) V- UfuE) Ufu(P)

d
Zu(Er) U - U o) U FUPNXps 1, - )
fv(decrypt E as {Eq, ..., EXim e Xi}g, in P) déffv(Eg) U~ USU(E) U (PN Xy 10 X))
fu(decrypt E as {|Eq, ..., EjsXip1,...s Xi|}g, in P) déffv(Eg) U USU(E) U (PN X4 1 X))
fv((vm)P) (P
fo((v £ m)P) (P
S @lPz) Yfo(py) v foiy)
) “U)
fo(0) afy
Table 4
Structural congruence P=P'.
P=P
P1 = P2 = P2 EP]
Pi=P,AP;=P3; = P =P;
(Eq,..., E >.Py=<Eyq,..., E;>.Py
(Eq, ..., [2580%4 116 0 00 Xi).Py
=(E,..., Ej;Xj+1 ..... Xy ).Py
decrypt E as {Eq, ....Ej; Xj 1, .. - Xk)g, N Py
=decrypt E as {E1, ....Ej;Xj 1, ..., X]E, in Py
Py =P, = { decrypt E as {|Ey, ...,Ej:Xj 1, ....Xk|}g, in Py
=decrypt E as {|Ey, ..., Ej:Xji1,.... Xk}, in Py
(vn)P; = (vn)P,
V+mP; =@ +mP,
P1|P3 =P,|P3
\P; =P,
Py1|P; =P, |Py
(P11P2)|P3 = P1|(P2|P3)
PO=P
IP=P|IP
(vn)0=0

(vnq)(vnz)P = (vnp)(vmy )P

(vn)(P1|P2) = P1|(vn)Py if ngfn(Py)
v+m)0=0

(v£my)(v £ mp)P = (v£my)(v+m)P

(v + m)(Py|Py) =Py |(v + m)P, if m*,m~¢fn(P;)
(v £ m)(vn)P = (vn)(v = m)P

Pi£P, = P =P,

e The replication corresponds to an arbitrary number of process in parallel.
e The restrictions can be simplified under certain assumptions.
e Two processes are structurally equivalent whenever they are «—equivalent.

Two processes P; and P, are a—equivalent, written P; = P,, when they are identical except that they may differ in the
choice of bound names. A procedure called a-conversion replaces all the instances of a bound name in a process for another
name. The definition of the equivalence relation is in Table 5. Notice that a substitution P[n; — n,] substitutes all the free

occurrences of n; in P for n,.

Finally, we define values V e Val, which are used in the reduction as expressions without variables x € Var:

Vi=n
Im™*
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Table 5
o—equivalence

=

PEP

P, £ P, implies P, Z P

Py £ P, AP, £ P; implies P; = P;

()P £ (vnp)(P[y ) if nagfn(P)

(v+m)PZ (v + mp)(PIm; —>my ,my —my]) if my,m;éfn(P)

Table 6
Semantics of LySA calculus.

(Com) Ny V=Y
Vi, ..., Vk>P|(V{ ,,,,, Vj/;Xj+1 ,,,,, Xi).P' >
PIP'[Vji1/Xj41, - Vie/Xi]
Joovi=Vv
(Dec) AizoVi=Vi ;
decrypt {Vi,...,Vi}y, as (V],>.>"/j,xj+],---,)(k)v‘; inP-p
PVii1 /X410, Vie/Xi]
(ADec) 11::1 V=i
decrypt {|V1,....Vkllm+ as {IV,....ViXj 1, Xilhm-
in P>grPVii1/X 1, Vi/xk]
. NeoiVi=V
(Asig) decrypt {[V1, . Vellm- s (V5. ViiXjs 1, Kilhm=
in P>gPVii1/Xji1,---s Vie/xk]
P—PRP,
(=) (V)P -z (vi)P’
P— P
(=) v+ mP—>g(v £ mP’
Py - P}
(Par) PiIP,— =P} 1P
P=P AP ->xP' AP =P’
(Congr) PP
|m~
V1, Vidy,
{IVi, .. Vi,

The reduction relation describes how a process may evolve into another and it is defined inductively as the smallest
relation such that the rules in Table 6 are satisfied. A reference monitor is used to check each step before allowing it to be
executed. It can be turned off or on: in the first case there are not requirements that have to be meet; in the other case
some properties are checked at run time and, if the check does not succeed, the process execution is aborted.

A substitution function is used in the reduction rules, written P[V/x]; it substitutes a variable x for a value V in the process
P whenever x becomes bound to V.

The rule (Com) is the parallel composition between an output process and an input process. This means that the
communication between two principals happens only if these two processes run in parallel. Furthermore, the first j values
Vi1,...,V; sent have to be identical to the first j values V7, . SV that the recipient expects. In this case, the variables are
substituted with the values Vj.;,...,Vi. The rules (Dec), (ADec) and (ASig) are used to decrypt messages with a symmetric
key, a private key and a public key, respectively. As before, the first j values Vj,...,V; encrypted have to be identical to the
first j values V7, ... Vi that who decrypts the message expects. In this case, the variables are substituted with the values
Vj+1,...,Vk. The rule (New) and (ANew) restrict the scope of the names created, therefore they are visible only in the
respective processes. The rule (Par) is the parallel composition that can evolve into a new parallel composition where one
of the two processes involved is evolved while the other remains unchanged. The rule (Congr) allows to apply the
reduction relation to any process that is structurally congruent to the process found in the other rules.

2.2. Meta level calculus

The meta level is an extension of LySA that can be used to describe different scenarios in which many principals execute
a protocol at the same time. Thanks to this level the analysis can run in a realistic environment with many initiators and
responders. This is done by running several copies of the processes and renaming each name and each variable using
indexes, added to make them unique.
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Table 7
Syntax of meta level LYSA calculus.

mx:: =x;
ME :: = MTerm
n-
1
mx
m*
i
Ui
{MEq, ...,ME;}mE,
{IME, ... ,MEy|}ume,
MP:: = MProc
liesMP
let X< S in MP
(V5 NG )MP
O 415 Mg)MP
{(MEq,..., ME, >.MP
(ME,4, ..., MEj; mx; 1, ..., mxy).MP
decrypt ME as {ME;, ..., ME;; mx; 4, ..., mX}me, in MP
decrypt ME as {|ME;, ...,ME;:mX; 1, ...,mX|}pg, in MP
(vn;)MP
(v £ m;)MP
MP;|MP,
'MP
0

The syntax of the meta level is defined by the grammar described in Table 7. Its constructs incorporate a countable
indexing set S, which includes a set of variables X.

The meta level terms ME; are identical to the object level terms, i.e. the terms explained before, except that names,
variables and asymmetric keys are indexed. A sequence of indexes i is added as subscript, that is a shorthand for ij,...,i.
The meta level processes are the following:

® |;.sMP: the process describes the parallel composition of instances of the process MP where the index i is an element in
the set S.

e let X = Sin MP: the process declares a set identifier X which has some values of the index set S in the process MP; the set
X can be infinite, so that the meta level process may instantiate to infinitely many processes, specifying arbitrarily large
scenarios.

® (v; s n;)MP: the process describes the restriction of all the names n; @ is a prefix of the index that can be empty.

vV ;55 MmpMP: the process describes the restriction of all the key pairs maii and m=; as above, @ is a prefix of the index

that can be empty.

e (ME,,...,ME,>.MP: the process sends a k-tuple of values onto the global network; when the message has been
successfully sent the process continues as MP.

o (ME;, ... ,ME;;mx;q,...,mx;).MP: the process reads the k-tuple of values sent, it checks if the values expected are
identical to ME;,...,ME;, and, if this succeeds, the remaining k —j values are bound to the variables mx;.1,...,mx;, and the
process continues as MP, which is the scope of the variables; a semi-colon is used to distinguish between the terms used
for matching and the variables, as in the input process seen in the object level (the one described in Section 2.1).

e decrypt ME as {MEy, ...,ME;;mX; 1, ...,mx;}mg, in MP: the process denotes the symmetric decryption,; it checks if the
encryption key is identical to MEy, then the process decrypts the k-tuple, and it checks if the values expected are
identical to MEs,...,ME;, and, if this succeeds, the remaining k —j values are bound to the variables mx;. 1,...,mx, and the
process continues as MP, which is the scope of the variables.

e decrypt ME as {|MEq, ...,ME;;mx; 1, ...,mX|}mg, in MP: the process denotes the asymmetric decryption and it works
like symmetric decryption except that ME, and the key used to encrypt have to be a key pair m* and m~.

e (vn;)MP: the process generates k new names n; i € [1. k], and it continues as MP, which is the scope of the names.

e (v 4+ m;)MP: the process generates k new key pairs, m;" and m;”, and it continues as MP, which is the scope of the key pairs.

e MP{|MP,: the process denotes two meta level subprocesses running in parallel that may synchronize through
communications over the network or perform actions independently.

e !MP: the process acts as an arbitrary number of processes MP composed in parallel.

0: the process is the inactive or nil process that does nothing.

The process let X = S in MP is a binder of X, therefore if X is instantiated to a subset of S then every occurrence of X in the
process MP is instantiated. The process |;csMP is a binder of i and the indexed restrictions are binders of names and key
pairs.
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Table 8
Instantiation relation MP— zP.

(ILet) % ifS' < S

where < g, means finite subset

MPli—a;]=P; - - - MP[i—a;]= Py
(Ea0) lictay,...a ) MP=Py| - - - Py

MP=P
(IINew) Oiear...any Na)MP= (Vag) - (Vg )P
MP=P
(IANew) O s ie@r,.an MaMP=(V £ Mgg)--- (VMgg )P
MP=P
(I0ut) ME;, ..., MEg> MP= (ME;, ... .ME,>.P
MP=P

(Iinp) (ME;, ... .ME;;mX; 1, ....mx) MP=

(MEq, ... ,ME;;mx; 1, ...,mx;).P

MP=P

(IDec) decrypt ME as {ME;, ..., ME;;mx;, 1, ...,MX}yg, in MP=

decrypt ME as {ME;, ...,MEj;mx; . 1, ..., MX}yg, in P

MP=P

(1ADec) decrypt ME as {|MEy, ...,ME;;mx; 1, ...,MX|}yg, in MP=

decrypt ME as {|ME;, ..., MEj; mx;. 4, ..., mxg|}mg, in P
(INew) __ el

(vng)MP= (vng)P

MP=P

g T EmMP= (v £ mg)P
(IRep) %

MP; =P, MP,=P;
e MP; |MP, = P, P,
(INil) 0=0

An instantiation relation, written MP— 7P, is introduced to describe that a process P is an instance of a meta level
process MP, as depicted in Table 8.

The rule (ILet) allows the meta level to instantiate to all the object level processes P that are in some finite subset of the
set S. The rule (IIPar) instantiates the process |;.sMP to be the parallel composition of processes for each of the indexes in
the set S. The rules (IINew) and (IIANew) instantiate the indexed restrictions to the restrictions of the names for all the
values in the set {al,...,ak}. The rules (IOut), (Ilnp), (IDec), (IADec), (INew), (IANew), (IRep), (IPar) and (INil) are
instantiations of their subprocesses.

Example 1. Let us introduce a known non-repudiation protocol, namely the Zhou-Gollmann protocol [17], which is the
following:

A—B:  fxro.BLCNRO
B-A:  furrALNRR
A—TTP: fsup,B.LK,sub_K

B TIP : feon.A.B.LK,con_K
A< TTP : foon,AB.LK,con_K

where:

A is the originator of the non-repudiation exchange;

B is the recipient of the non-repudiation exchange;

TTP is the on-line trusted third party providing network services accessible to the public;
M is the message sent from A to B;

C is the encryption for the message M under a key K;

K is the message key defined by A;

L is a unique label that links all messages of a particular protocol run together;
NRO=Siga(fnro,B,L,C) is the non-repudiation of origin for M;

NRR=Sigs(fnrr,A,L,C) is the non-repudiation of receipt for M;
sub_K=Siga(fsus,B,L,K) is the proof of submission of K;
con_K=Sigirrp(fconA,B,LK) is the confirmation of K issued by TTP;
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e f. is a flag which expresses the aim of the message (the sender wants to give a proof of origin NRO/receipt NRR/
submission SUB/confirmation con_K);

e A—B: X means that principal A sends message X from principal B;
e A~ B: X means that principal A fetches message X from principal B.

The first message of the encoding provides B the encryption C of a message M under a key K; if the message fails to reach
B then the protocol ends without disputes, since B cannot read M yet without the decryption key K. With the second step A
is given the proof that B received the first message. After checking if B’s evidence matches with A’s evidence, A sends the
decryption key K to the trusted third party TTP. Finally the trusted third party stores in a public directory a message
consisting of the key and the proof that it belongs to a particular protocol session run by A and B; the principals can fetch
the key through the fourth and the fifth messages (the order of the last two messages is not important).

Note that L and the proofs in the five messages must always match in order to eventually win a dispute, because they
link the messages belonging to same session of the protocol.
The encoding is the following, where three key pairs (AK * for A, BK* for B, and KTTP * for the trusted third party) and a

symmetric key (SK) are used:

(v + KTTP)(v + AK)(v + BK)(
1(vSK)(vL)(VM)
{fnrosB.L,{M}sk, {fnro, B.L, {M}sk Jak— > -
(fnrrs A, L; XNRR).
decrypt XNRR as{|fnrg,A,L, {M}sk: [}pic+ in
{fsus.B,L,SK {|fsus,B,L.SK }ax~ > -
(fconsA,B,L,SK; xCon).
decrypt xCon as {|fcon.A,B,L,SK; [} rrp+ in O

!(fro,B; XL, XEnMsg,xNRO).

decrypt XNRO as {|fxro,B,XL,XENMSg; |} 5+ in
< fnrr AXL,{[frr,AXLXENMS )} i » -

(fconsA, B XL; xK, xCon).

decrypt xCon as {|fcon.A,B.XLXK; |}gpp+ in
decrypt XEnMsg as {;xMsg} in 0

\(fsus,B; XL, xSK,xSub).
decrypt xSub as {{fsus,BXLXSK: [}y + in
< feonAB.XLXSK {[fcon A BXLXSK ) rrp- -
< feonA.B.XLXSK {|fcon,A,B.XL,XSK |} rrp- ».0
)

where the restrictions (v + KTTP), (v + AK), and (v + BK) define the key pairs used in the scope of the protocol. In particular
the private keys, denoted by a minus, are used only by the subprocess modelling the behavior of the correspondent user; for
example only the subprocess modelling the principal A can use the key AK~. Public keys, denoted by a plus, are known by all
the principals in the network so that all of them can check signatures (or encrypt messages if the protocol requires this).

In this scenario we have modelled only three principals, each one with a specific role, but this is not realistic. In fact, in
the global network there are many principals and this gives chances to an attack. Therefore we have to extend the protocol
above with multiple principals, simply indexing each name, each variable and each parallel composition construct. We
consider a scenario in which there are a trusted third party (an honest principal) and many initiators and responders. The
set X contains both initiators and responders, so each principal can be one or the other. The resulting protocol is the
following:

let X =S in (v 4 jexAK)(v £ KTTP)(

liexljex  (vSKip)(vLij)(vM;;)
{fwrodj Lip AMig}sic; {Unro djo Ly (M} sic ey > -
(Fki Ji.Lij: XNRR;).
decrypt XNRRy; as {Ifnrr.1i L {Mjj}si; 2 ak;+ in
< fsus: 1y Lij, SKij {fsumy Iy Liss SKij D ac; > -
(fCON,I,',Ij,L,'j,SKij;XCOHij).
decrypt xCon;; as {fcon.li»1j,LyjSKij: |} rrp+ in O

liexliex  '(fvro.lj; XLyj, XEnMsg;;, XNROy).
decrypt XNROy as {\fyro.Jj XLij, XENMsgyj; |} g+ in
<SrrolinXLij, {Ufivrr: 1 XL XENMSgs b > -
(feon.Iin I, XLig; XK j5,xCong;).
decrypt xCony as {|fconli.1j,XLij. XKij: | }erpp+ in
decrypt XEnMsg;; as (s xMsg )k, in0

liexljex  '(fsus.Ij; XL, XSK;,xSubyj).
decrypt xSubj; as {|fsus.l;, XLy, XSKij: Na;- in
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< feon 1i 1, XLy, XSKij, {fcon 111, XLyj, XSKi | yierre- > -
{ feon 11, XLi XSKij, { [fcon I 1j XLij XSKij Y rrp- > .0

3. Control flow analysis

In this section we introduce our Control Flow Analysis (CFA) as an extension of [13]. The aim of the CFA is to collect
information about the behavior of a process and to store them in some data structures .4, called analysis components. To be
finite, static analysis is forced to compute approximations rather than exact answers. Therefore the analysis can give false
positives but it has to preserve soundness.

We will use Flow Logic settings for the specification and the proofs. It is a formalism for specifying static analysis and it
focuses on the relationship between an analysis estimate and the process to be analysed, formally:

AP

which is a predicate that holds when A is a description of the behavior of the process P.

CFA abstracts the executions and represents only some aspects of the behavior of a process which can also be infinite.
We will prove the correctness of the analysis by showing that the analysis components .4 are such that the property they
represent also holds when the process evolves. Formally:

AEPAP-P = A=P

The Flow Logic specifications can be of the following formats.

Definition 1 (Verbose Format). A Verbose Flow Logic specification records information about a process globally, by rules of
the form

AP iff a logic formula F holds

that means that the analysis components A are estimates of the process P if and only if the logic formula F holds.

Table 9
Analysis of terms and processes.

(AN) pEN:Y iff |nj €3
(ANp) pEm*t 9 iff  m*| e
(ANm) pEmM- 3 iff I m=] €9
(AVar) pEx:9 iff p(1x)) =3
(AEnc) pE{EL, ... Eidg, 1 9 iff AK_op=Ei: 9iaVUy, ... .U NE_oUi e &
= (U],,..,Ukluu el
(AAEnc) PE{IEL, ... Exllg, : 9 iff AK_op=Ei:9iaVUy, ... .U NE_oUi e 9
= {IU1,...,Ukl}y, €9
(AOut) p.cE=<Ey, .. Eg )P iff A pEE: iaAVUL, .. U NS Ui e 9
= (KU, ...,.Uy> e Knp,k=P)
(Alnp) p.k=Er, ..., EjXji1,- . %0)-P
iff NI, pEi: $iaV{Ur,.. Uy ek N_ Uied;
= (N_j1 Ui € p(xiD) A p.c=P)
(ASDec) p,k= decrypt E as {Eq, ..., EjsXjv1, o0 Xy}, in P
iff p=E:9A N _opEEi: 8 aV{UL, ... Uy, € 9
AN _oUi €9 = (NZji1 Ui € p(xi)) A p,kc=P)
(AADec) p.xE=decrypt E as (|Eq, ... ,Ej;Xj 1, ... Xk|}g, in P
iff pEE:9A N _gp=Ei: 8iaViULL ... .Uplly, € 9
YUy € 99 : V(m*,m™) : (Up,Uy) = (Lm~ |,|m™ |)
AN_ U €% = (ANZj,1 Ui € p(lxi]) ap.c=P)
(AASig) p.ki=decrypt E as {|E;, ... ,Ej; X1, ... . X}, in P
iff pEE:9A N _gpEEi: 8iaViIULL ... .Uplly, € 9
VU € 99 : V(m™*,m™) : (Up,Up) =(lm™ J,lm~])
AN_ U €9 = (NZjy1 Ui € plxi]) A p.c=P)
(ANew) p.KE( n)P iff p,k=P
(AANew) p. k=@ +m)P iff p,k=P
(APar) p,KE=P1|P2 iff p,k=Py Ap,KEP,
(ARep) p.KE=IP iff p,k=P

(ANil) p,KE=0 iff true
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Definition 2 (Succinct Format). A Succinct Flow Logic specification records information about a process locally, by rules of
the form

AP A iff a logic formula F holds

where A’ is an analysis component that holds information only about the process P and it is not known anywhere else in
the analysis.

The analysis components record canonical values from the set |Val| ranged over by U to represent values generated by
the same restriction. The component x € P(|Val|*) collects the tuples of canonical values corresponding to the values
communicated in the global network while p : [Var] —P(|Val]) records the canonical values corresponding to the values
that variables may become bound to. A predicate p,x =P says that p and x are valid analysis results describing the behavior
of P. To analyse the expressions it is used the form p=E: 3 to describe a set of canonical values $ € P(|Val]) that the
expression E may evaluate.

The analysis of terms and processes is described in Table 9. The rules (AN), (ANp) and (ANm) say that names may
evaluate to themselves iff the canonical names are in 3. The rule (AVar) says that variables may evaluate to the values
described by p for the corresponding canonical variable. The rules (AEnc) and (AAEnc) use the analysis predicate
recursively to evaluate all the subexpressions in the encryption and they require 3 to contain all the encrypted values that
can be formed combining the values that subexpressions may evaluate to. The rule (AOut) says that the expressions are
evaluated and it is required that all the combinations of the values found by this evaluation are recorded in . The rule
(Alnp) says that the first j expressions in the input construct are evaluated to be the sets 3; fori=1,...j; if the pattern match
with the values in x is successful, the remaining values of the k-tuple are recorded in p as possible binding of the variables

Table 10
The meta level analysis.

(MLet) pxk=rletX<sSin M iff p,ic= rx—s1M where S’ = 5, I'(S) and |S'] = [I'(S)]
(MIPar) P KErliesM iff Agers)p,kK=rMliral
(MINew) pKkE (Vi sngmM iff p,k=rM
(MIANew) PKEr(V s smpM iff p,k=rM
(MN) pEn Y iff 1] € 9
(MNp) pEm 9 iff (mX | €9
(MNm) pEm: : 9 iff Lm':J =)
(MVar) pEX; Y iff p(1%;1) =9
(MEnc) pEAME, ... ,MEi}yg, : 9 iff AK_o p=ME; : 9; AUy, ...,Uj :
N_oUie %= (Ur,...,.Ugy, €9
(AAEnc) pE{IMEy, ..., MEy }mg, = &
iff \¥_o pE=ME; : 9;AVUp, ..., Uy :
N_oUie % = (1Us,...,.Uglly, € 9
(MOut) p.k=r<{MEy,....ME,>.M iff N*_, pEME; : %AV Uy, ... Uy :
/\;‘:1 Ui e 9= (Uy,....Uy) € KAp,K=ErM
(MInp) p.k=r(ME, ..., MEj; X1, ..., Xi).M
iff NI, p=ME; - 9 AVCUL, ... ,.Up> ek N_ Ui e 9;
= (NZj11 Ui € p(1xi]) A poici= M)
(ASDec) p,k=rdecrypt ME as {MEy, ...,MEj;X; 1, ..., X}mg, i0 M
iff p=ME: 9 Ni_ o p=ME; : 9; n
ViUL, ... Ugdy, € A N _o Ui € 9
= (AF_j1 Ui € p(1xi]) A poici= M)
(AADec) p.k = rdecrypt ME as {|MEy, ..., ME;:X; 1, ....X|}mp, in M
iff pi=rME: 9A N_, pi=rME; : 9i A
v{|Uy, ..., Uiy, €9 :VU) € 99 :
Y(m*,m~) : (Uo,Up) = (Lm~J,Lm™ )
AN_ Uie$i= (/\f'{:j+1 Ui € p(1xi]) A p,kt=rM)
(AASig) p,k=rdecrypt ME as {|MEq, ..., ME;;X; 1, ..., Xk|}mg, in M
iff p=rME: 9A N_ p=ME; : 9; A
V{Ui, ...,Ukl}y, € 9 : YUy € 99 :
v(m*,m™) : (Up,Up) = (Lm™ |,Lm™ )
AN U €9 = (N1 Ui € p(lxid) ap.c=rM)
(ANew) p.KE=r(vn)M iff p,k=rM
(AANew) pKE (v +£m)M iff p,k=rM
(APar) p. K= MMy iff p, =My Ap,KEM,
(ARep) p.k=r!M iff p,k=rM
(ANil) p.KE=r0 iff true
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Table 11
The attacker’s capabilities.

(1) The attacker may learn by eavesdropping
Neea V<V Vid et Ay Vi e pza)
(2) The attacker may learn by decrypting messages with keys already known

e V1L - Vidy, € pzo) Vo € p@) = Af_q Vi € pz.)
M VIV - Vidlme € pz) :m™ € pz.) = Ni_4 Vi € p(z.)

Akt YUV1, - Vil € p@a):mt € pzo) = Af_; Vi € p(z.)
3) The attacker may construct new encryptions using the keys known

Akt WVor - Vi N o Vi € pa) = Vi, ... . Vily, € p(z.)
Nkess, VM V1, Vi emt € pza) A /\f-‘:1 Viep@) = {IVa,....Vkltm+ € p(z.)
Nkean, YN V1, . Ve m™ € pza) A /\f-‘:1 Viep@) = {IVa,....Vikllm- € p(z.)

(4) The attacker may actively forge new communications
Meea Vo Vit N Vi e pz) = Vi, V) e
(5) The attacker initially has some knowledge

{n,m}yUNy < p(z.)

and the continuation process is analysed. The rules (ASDec), (AADec) and (AASig) evaluate the expression E into the set 3
and the first j expressions in the decryption constructs are evaluated to be the sets 3; for i=1,... j; if the pattern match with
the values in k is successful, the remaining values of the k-tuple are recorded in p as possible binding of the variables and
the continuation process is analysed. Notice that the original syntax [4,7] uses only the rule (AADec) to define both
asymmetric decryption and signature while we introduce here two rules imposing an order in the choice of the keys to
make our analysis more efficient. The rules (ANew), (AANew), (APar) and (ARep) require that the subprocesses are
analysed. The rule (ANil) deals with the trivial case.

Whenever the requirements hold, the continuation process is analysed.

The analysis is also defined for the meta level as an extension of the analysis seen so far and it takes the form

p.Kk=ErM

where I" : SetID U P(Indexg,) - P(Indexg,) is a mapping from set identifiers to finite sets of indexes. To solve the problem of
infinite object level processes we use again the canonical representation of the names. The analysis is defined in Table 10,
and the new rules are explained below; the rest of the rules are similar to the ones for analysing object level (the one seen
so far), except that they range over indexed names and variables.

The rule (MLet) updates I" with the mapping X +— S’, where S is required to be finite and it has the same canonical names
as the set S. The rule (MIPar) expresses that the analysis holds for all the processes where the index i is substituted by all
the elements in I'(S). The rules (MINew) and (MIANew) ignore the restriction operators.

3.1. The attacker

The attacker is unique and runs its protocol P, following the Dolev-Yao formula F2Y; [6]. We write Py|P, to show that
an arbitrary attacker controls the whole network while principals exchange messages using the protocol. A protocol
process Psy has type whenever it is close, all its free names are in N7, all the arities of the sent or received messages are in
A, and all the arities of the encrypted or decrypted messages are in Ag,.. These three sets are finite, like V. and X, used to
collect all the names and all the variables, respectively, in the process Psys. The attacker uses a new name, n,¢N¢, and a new
variable, z,¢ X, which do not overlap the names and the variables used by the legitimate principals. It is again considered a
process with finitely many canonical names and variables. A formula F5}; of the type (N, Ax, Aenc), which is capable of
characterizing the potential effect of all the attackers P, of the type (Ny, Ay, Agqc), is defined as the conjunction of the
components in Table 11.

4. Non-repudiation analysis

Non-repudiation guarantees that the principals exchanging messages cannot falsely deny having sent or received the
messages. This is done using evidences [11] that allow to decide unquestionably in favor of the fair principal whenever
there is a dispute. In particular, non-repudiation of origin provides the recipient with proof of origin while non-repudiation
of receipt provides the originator with proof of receipt. Evidences [18] should have verifiable origin, integrity and validity.

The syntax of the process calculus LySA has to be extended to guarantee, given a protocol, the non-repudiation property,
i.e. authentication (only the sender of the message can create it), integrity and freshness. This is done using electronic
signatures and unique identifiers for users and sessions. To this aim, we introduce two sets, used in the body of the
messages to collect information that will be useful to perform the analysis: ID, where id € ID is a unique identifier for a
principal, and NR, where nr € NR says that non-repudiation property is required for that part of the message nr. To include
this sets in our analysis, a redefinition of the syntax of LYSA is required, as shown in Table 12. Observe that, with respect to



M. Bruso, A. Cortesi / Computer Languages, Systems & Structures 36 (2010) 352-377

Table 12
Syntax of LySA calculus extended with principal identifiers.

363

e = Terms
n Name
X Variable
[m™)ia Public key
[m~Jia Private key
{e1,..., Ekley Symmetric encryption
{ler, .., ekllg, Asymmetric encryption
P = Processes
{&1y. &k ). P Output
(T Ei3Xjy sy Xi). P Input
decrypt & as {&1,...,&:Xj11, .. - Xk} IN P Symmetric decryption
decrypt ¢ as {|&1, .. ,&3Xj 41, Xkl}y, D P Asymmetric decryption
(vmP Restriction
(v £ [m]ig)P Pair restriction
P11P2 Parallel composition
['Pliq Replication
0 Nil
Table 13

Functions F and G.

F:ExID-¢

e F(n,idy=n

o F(x,id)=x

o F(mT,id)y=[m" ]y

o F(m,id)=[m" ]y

o F({Eq, ..., Ek}EO.id) = {F(Ey,id), ..., F(Ek,id))f(,;o',ﬂd)

e F({|Eq,... ,Ek\}Eu,id) = {|F(E,id), ... ,}'(Ek,id)\}}(%v,-d)

G:PxID->P

o G(<Eq,..., Ey> . P,id) = { F(Eq,id), ..., F(Ey,id) » .G(P,id)

o G((E1, ..., Ej;Xji 1, . .. Xk).Pyid)

= (F(Ex,id), ..., F(Epid); X4 1, . .. Xk).G(P,id)

o G(decrypt E as {Ej, ... ,Ej;Xj 1, . ... Xk}, in P,id)

=decrypt F(E,id) as {F(Eq,id), ..., F(Ej,id): Xj 11, .. .. Xk} £(gy.id) N G(P,id)
e G(decrypt E as {|Eq, ..., EjiXjy1,.- s Xk|)g, in P,id)

= decrypt F(E,id) as {|F(Ey,id), . .., F(Ej,id); Xj 11, - - - Xi Yo, iy ID G(Pid)
e G((vn)P,id) = (vn)G(P,id)

o G((v £ mP,id) = (v £ [m];)G(P,id)

* G(PIQ,id) = G(P,id)|G(Q,id")

o G('P,id) = [Py

e G(0,id)=0

the LySA calculus in Table 1, a unique identifier u is associated to encryption and decryption and an id € ID is associated to
public and private keys to specify the principal that encrypts a given message. The redefinition is obtained applying the
function G to the processes of the protocol analysed that acts recursively on the subprocesses and redefines subterms using
another function, called . The definition of the functions F and G, that map standard terms and processes into the
extended ones, is shown in Table 13. Notice that the functions provide a new syntax in which:

id s are attached whenever an asymmetric key appears;

a session identifier u is attached to each asymmetric encryption and decryption;

parallel composition assigns a different id to each process, because the two processes belong to a different user;
replication has a particular form that the semantic rules use to create replications of the process with different id s (that
have to be unique).

Notice that we have generalized the approach [7] proposed by Gao to provide freshness property in a protocol. Indeed, the
author defines two functions to attach a session identifier to each statement; then, she redefines the semantics, using the
functions to avoid to redefine the structural congruence. In our analysis, because of the redefinition of the latter, we do not
have to modify significantly the reduction semantics, except that the rule (NRNRep) takes advantage of a particular syntax
that allows to attach different and unique identifiers to each process. Thus has to be removed because the structural
equivalence does not hold in this case. The rule (NRNRep) will appropriately treat the behavior of the replication
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statement, as reported in Table 17. Finally, we have to add the following annotations to the signatures:

o [from id] is associated to encryption and it means that the recipient expects a message from id.

e [check NR] is associated to decryption and it means that for all the elements of the set NR, non-repudiation property
must be guaranteed. It is interesting to notice that the elements in the set NR can specify a part of the message, not
necessarily the whole message, according to the definition of non-repudiation.

The syntax of asymmetric encryption and decryption becomes:

® {l&1, ..., &}y [from id]
e decrypt ¢ as {lé1,...,&; X1, .- X}, [check NR] in P

Notice that the annotation [from id] and the label u have a different role in the analysis. The first says that the principal
who encrypted the message must be the same specified in the label associated to the private key used, while the second
expresses that the message has to belong to a particular session.

In practice, when there is a violation due to the id s, it means that the attacker encrypted a message and sent it to a
principal who expected it from another principal (remember that the attacker can even use a key known different from his
key). Instead, when there is a violation due to the labels u, it means that the attacker made a replay attack using a message
exchanged in a previous session.

4.1. Dynamic property

To guarantee the dynamic property, the values have to be redefined into NRVal, attaching the identifiers to the
asymmetric key pairs and the annotations in the encryption constructs as shown below:

NRV :: =n
(m™* i
M~ iq

[{NRV1, ...,NRV}nry,
{(INRV, ... ,NRV |}y, [from id]

Furthermore, our extension involves redefinition of the semantics, of free names, of structural congruence, and of
a—equivalence, as described in Tables 17, 14, 15, 16, respectively.
Notice that there are the following differences between the previous semantics and the one used in the analysis:

e The asymmetric encryption and decryption are redefined adding a session identifier u, an identifier that shows who has
encrypted a given cipher message, and the annotations above.

e New terms ¢ and processes P are used instead of the previous, E and P, which do not carry annotations.

e The process !P is not structurally equivalent to P|!P, because of the recursive definition of the function G.

Table 14
Redefinition of the function fn(P).

fn(n) def

={n}
fa([m*Jia) Y (m* 1)
f([m~ Jia) dg([mf]ia}
fx) Yy
Fa(en .« 8y Y f(eo) U - - - U fn(er)
faller, ..., &) [from id]) Y o) U - - - U fn(er)
fa(<er,....e>.P) Ynee)U- - Ufiger) Ufa(P)
(e, ..., EiiXjt 1,y Xi).P) YU .- U f(gj) U fn(P)
fn(decrypt ¢ as {eq, ..., EiiXjy 1y .- 0o Xi)g, iN P) d;ffn(g) U fii(eo) U - - - U fn(g) U fa(P)
fn(decrypt & as {|e1, ...,8 Xj 1. - - . Xkl}g, [Check NR] in P) Y fine) U fn(eo) U - - - U fia(e;) U fn(P)
fa(nyP) Y fncp)\iny
fa(@ + [mlig)P) Y fa(P)\Im* T I Ta)
fa(P11P2) Y fn(P1) Ufn(Py)
a(Pla) Y f(G(P,id))

fn(0) d:ef(;)
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Table 15
Redefinition of the structural congruence P=P'.

P=P

P1=Pr=>Pr=P;

P1=PaAPy=P3 = P1=Ps3

<81,..,,8k>.771 E <81'.u,8k>,P2

(1085 X541, - Xk)P1 = (81, .- 815X 4 1, - - - Xk). P2
decrypt & as {1, ...,&j: Xj11,-- -+ Xi)e, N Py

=decrypt ¢ as {¢1, ..., Ei3 X150 Xi}g IN Po

Py =P, = { decrypt ¢ as {lég, ..., Ei3Xjt1r .- ns Xilly, [check NR]in Py
=decrypt ¢ as {l¢1, ..., Ei3Xjp 1y ns XklY, [check NR]in 7P,
P = ()P,

v £ [m)ig)P1 = (v £ [m]ig)) P2

P1|P3 =P2|P3

P =P, = ['P1]jq =[!P2]iq if both P; and P, are annotated with the same id
P1|P2=P2|P1

(P11P2)IP3 = P11(P21P3)

PIO=P

(vn)0=0

(vm)(vnz)P = (vnp)(viny )P

(v)(P1|P2) = P11(v)Py if ngfn(Pr)

(v£[m])0=0

O £ [M i)V £ [M2]i))P = (v £ [M2]ig)(V = [M1];g)P

(v £ [Mli)(P11P2) =P11(v £ [Mli)P2  if [m* Jig,[m~Jiggf(P1)

v £ [m]ig)(vm)P = (va)(v £ [m];g)P

P1 < Pr=P1=P2

Table 16
Redefinition of the «—equivalence.

PLp

P1 = P, implies P, Z P,

P1 =P, and P, £ P; implies P; £ P5

()P £ (vp)(PImy - mp]) i nagfn(P)

O £ [Mlig)P £ (v £ [Malig)(P[Im I > [ma)if [ma Jg — [malig))
if [my] [m2Jiagfn(P)

e The rule (NRNRep) in Table 17 assures that each process has a different id; starting from a replication process tagged
with an identifier, the rule spawns a new process with the same identifier in parallel with another replication process
associated now to a fresh unique identifier id'.

We use the reference monitor semantics (—gy), an extension of the standard semantics (— %), to check the non-
repudiation property. Taking advantage of annotations, it forces some requirements and, if they are not meet, the process
execution is aborted.

The reference monitor semantics P— gy P’ takes annotations into account and defines RM as

RM(id,id’,u,u/,{NRV1, ...,NRV,},NR)
=({d=id Au=u Avnr e NR:nr e {NRV4,...,NRV,;})

where {NRVj,...,NRV, } is a set of redefined values for non-repudiation analysis. When the reference monitor is turned on,
the reduction relation — » checks if the requirements are met; otherwise R is considered true, i.e. the execution cannot be
aborted for the requirements above, it verify only the assumptions of the standard rules.

Intuitively, we verify if the message received is encrypted by the correct sender and if it is a fresh message.

The main difference between the standard semantics and the redefined semantics is expressed by the rule used to verify
a signature. In fact, when the reference monitor is turned on, the rules (NRNSig) ensure that the non-repudiation property
holds for the elements specified by the annotations.

Definition 3 (Dynamic non-repudiation). A process P ensures dynamic non-repudiation property if for all the executions
P—*P —pyP’

id=id and u=u’ and vnr € NR : nr € {NRVy, ...,NRV,} when P —gyP" is derived using (ASig) on
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Table 17
Redefinition of the semantics of LySaA calculus.

N _, NRV; = NRV;

(BRNCom) CNRV:, . NRVi > PINRV], . NRV}:%j 11, %) P =

PIPINRV 1 /%41, - - .NRVi /%]
J_ NRV; =NRV;

(LURDDES) decryf)\tl IISIva , l .. ,NRVIk}NRVU
as {NRVY, ... ,NRV};X; 1, . .. Xk Ingyv, [check NR]
in P—zPINRV} 1 /Xj 11, - .- NRV}./Xi]

N _ NRV; = NRV}

(NRNADec) decrypt {INRV;, ..., NRVi|}ify-, [from id] as
{INRVY, ... ,NRV[:X; 1, ... Xil} iy, [check NR] in
P—-rPINRV; 1 /Xj+1,....,NRV/X]

— Ni_, NRV; =NRV; /\RM(id,id',u,u/,u (NRV..1, . .,,NRVk},NR)

decrypt {INRV1,... NRV Y-, [from id'] as

{INRVY, ..., NRV:Xj q,. .., X I} +1,, [check NR] in
P—gPINRVj 4 1/Xi41, - . .NRV /]

(NRNNew) %
(vn)P -z (vn)P

(NRNANew) PorP
v+ [m)ig)P— = (v £ [M]ig)) P’

’P] —>73P’1

(NRNPar) PilPy =P P2
P=P AP -zP AP =P

(NRNCongr) PP

(NRNRep) [!Plig = = G(P,id)I[!P)iq

Table 18

Non-repudiation analysis of terms p - ¢: 9.

(NRAN) pENn: Y iff [n] € 9
(NRANp) pEM* g9 iff [[m™* [Jigoc &
(NRANmM) pEM g : 3 iff [[m™ |Jjgocd
(NRAVar) pEx:3 iff p(lx)) <=9
(NRAEnCc) pPELer, ey 1 9 iff Af_opEei:9in

VNRVy, ...,NRV; : A¥_ NRV; < 9; =
{NRV1, ...,NRV :}ngy, o 9

(NRAAENC) pEfler, . ..,ak\)gu[from id]: 9
iff AK_opEei:9in
VNRVo, ...,NRV; : A*_ NRV; oc 9; =
(INRV1, ... .NRV}iry,,.. [from id]oc 8

decrypt {INRV1, ...,NRV}{i,-, [from id] as

{INRV}, ... ,NRV:;X; 1, ... Xil}ff+, [check NR] in P

Definition 3 says that an extended process P ensures non-repudiation property if there is no violation in any of its
execution.

4.2. Static property

A component iy = P(NR) will collect all the labels nr such that the non-repudiation property for the element nr is
possibly violated.
The oc operator is introduced to ignore the extension of the syntax and is defined as

NRV oc 3 iff there exists V e Val such that NRV =V and V € 9

where the relation NRV=V is defined to be the least equivalence between an element in NRVal and an element in Val that
inductively ignores the identifiers and the annotations.

The analyses of the terms and of the processes are shown in Tables 18 and 19. The rule (NRASig) checks the non-
repudiation property whenever a signature is verified.

To prove the correctness of our analysis we must prove that it respects the extended operational semantics of LYS4, i.e. if
p.Kk, =P then the triple (p,x,) is a valid estimate for all the states passed through in a computation of P. Furthermore, we
prove that when / is empty, then the reference monitor is useless.
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Table 19
Non-repudiation analysis of processes p,k, iy ="P.

(NRAOut) P (e, ., &> P
iff AK_, pEei 9in
VNRV1,...,NRV, : A_| NRV;oc 9; =
({NRV1,...,NRV\> € KA p,ic, =P)

(NRAInp) Py E(E, .., EiiXjy1r--es Xi)- P
iff Nl_,pFei:9ina
V{NRVy,....NRV;> e i : Ni_ | NRV;oc ; =
(AiZjs1 NRV; € p(I%i]) AP =P)

(NRADec) p.Ky=decrypt & as {e1, ..., X1, ... Xk}g, NP
iff piee: 9a Ni_gprei: in
V{NRV1,....NRVi)ngy, <9 A Ni_ o NRV;oc 9; =
(NEZj 1 NRV; € p(1%i]) A poic, Yy =P)

(NRAADec) p.c,p=decrypt € as {|eq, ...,8; Xj 41, - . Xkl}i [check NR] in P
iff p=e:9A /\{Zopl:ci BRI
V{INRVq, ..., NRV,A)K,RVU [from id]oc 9 :

VNRV{yoc 9g : Y(m+,m™) : (NRV,NRV}y)
=([Lm JTig Tlm* i) A Ny NRV;oc 8 =
(ANf—j+1 NRV; € p(1%:]) A poIcY =P)

(NRASig) o,y =decrypt € as {l¢1, . .., &:Xj41, .. - Xkl}i [check NR] in P
iff p=e: YA /\{::0p|:£i HEION
V{INRV1, ..., NRV i [}jgy, [from id]oc § :

VNRV{ oc 99 : Ym+,m~,id,id" : (NRV,NRV )
=([Lm™* g [Lm~ Tig)A Nl _; NRV;oc & =
(NiZji1 NRV; € p(1%i]) A poic, =P A

vnr € NR: (id#id vu#u'v

nré{NRV;_ 1, ....,NRV;}) = |nr| € })

(NRANew) p. =P Iff pyEP

(NRAANew) p Y= +£mPiff pk, =P

(NRAPar) P EPLPy iff pk Yy EPApKYEP,
(NRARep) P, =[Py iff p,c, Y= G(P,id)

(NRANIl) p.K =0 iff true

Our proof uses three lemmas, defined and proved below. The first and the second show that estimates are resistant to
substitution of closed terms for variables, both in the terms and in the processes; the third says that an estimate for an
extended process P is valid for every process congruent to P.

Lemma 1 (Substitution in expressions). If p=¢: 9 and ¢ € p(x) then pE=eg[e'/x] : 3.

Proof. By structural induction over expressions.

Case (Name). We assume that p=n: 3 and ¢ € p(x). Since n=n[¢'/x], it is immediate that also p=n[e'/x] : 9.

Case (Public key). We assume that p=[m*];;: 9 and & € p(x). Since [m* ],y =[m™*];4[¢//x], it is immediate that also
pEIm*1gle’ /x]: 9.

Case (Private key). We assume that p=[m~];; : 3 and ¢ € p(x). Since [m~];; = [m~]yle'/x], it is immediate that also
pE[m lyle' /4 - 9.

Case (Variable). We assume that p=x’ : 3 (therefore p(x') = 3) and ¢ € p(x). There are two cases:

1. If e#x then X' =X/[¢//x] and it is immediate that also p=x[e//x] : 3.
2. If e=x then x'[¢//x] = ¢, by hypothesis we have ¢ € p(x) and p(x') = 9, then it holds that p=¢’ : 9, in which case
PEXTE/X]: I

Case (Encryption). We assume that pk{eq,...,&¢), : 3 and & € p(x). By the induction hypothesis it holds that
pEele'/X]: 3, ... ,pEgle /] : 9. Therefore, by the rule (NRAAENc), we have pi={eq, ..., € /X] : 9.

Case (Asymmetric encryption). We assume that p={leq, .../} [from id]: § and & € p(x). By the induction hypothesis
it holds that p=eole’/x]: 3, ...,p=ele'/X] : 9. Therefore, by the rule (NRAEnc), we have p={ley, ... &/}, [from id][e’ /x] : 3.

Since both the bases and the inductive steps have been proved, it follows that Lemma 1 holds for all the expressions by
structural induction. O
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Lemma 2 (Substitution in processes). If p,k, =P and ¢ € p(x) then p,k,\y =P[e/X].

Proof. By structural induction over processes.
Case (Output). We assume

P = e, ...,8k>.,P/
By hypothesis we have

® pIYEE,...,& > P
® e pX)

By Lemma 1 and the induction hypothesis on the subprocesses, it holds that

o pEefe/x]: S, ... ,p=gle/X] 9
o p, K E=P[e/X]

Therefore, by the rule (NRAOut), we have p,x,}="P[e/x].
Case (Input). We assume

P= (81, - ,Sj;Xj+1, . ,Xk).Pl
By hypothesis we have

® PRYEEL &3 X p 1, X) TP
® cep(X)

By Lemma 1 and the induction hypothesis on the subprocesses, it holds that

o p=eile/x]: 3, ...,pFgle/X]: 9
o pEXi1[e/X]: 9, .., p=xX[e/X] 1 8
® 0K YEP[e/X]

Therefore, by the rule (NRAInp), we have p,x,\y ="P[e/x].
Case (Symmetric decryption). We assume

P=decrypt ¢ as {&1, ..., Xj11,....X}g IN P
By hypothesis we have

o p,icyi=decrypt € as {e, ..., Xj 11, . - - Xk}, ID P
® cepX)

By Lemma 1 and the induction hypothesis on the subprocesses, it holds that

o pEee/x]:9,...,p=¢le/x]: 9
o pE=Xj1[e/x]: 3, ..., pEX[e/x] 1 8
o p, K E=P[e/X]

Therefore, by the rule (NRADec), we have p,x,}y =P[e/x].
Case (Asymmetric decryption). We assume

P =decrypt ¢ as {l&1,...,&;Xj 41, - - - Xkl [Check NR] in P’

By hypothesis we have

o p,icyi=decrypt € as {|e1, ..., & Xj 1, .- -, X |}z, [check NR] in P/
® cep(x)

By Lemma 1 and the induction hypothesis on the subprocesses, it holds that
o p=eile/x]: 3, ...,pFgle/X]: 9

® pEXji1[e/X]: 9, .., p=X[e/X] 1 §
o p, K E=Pe/X]
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Therefore, by the rule (NRAADec), we have p,x,\ =P[e/x].
Case (Signature). We assume

P=decrypt & as {|&1, ..., Xj 4 1, - - - Xil} g, [check NR] in P/

By hypothesis we have

e p,Ky=decrypt ¢ as {|&q, .. .,&;Xj 41, - - - Xel}y, [check NR] in P’
® cepX)

By Lemma 1 and the induction hypothesis on the subprocesses, it holds that

o pEele/x]: 9, ...,p=ge/x] 8
o pEXj1[e/X]: 9, ... .pEx[e/X] : I
® p,KYEP[e/X]

Therefore, by the rule (NRASig), we have p,k,y =P[e/X].
Case (Restriction). We assume

P=(nP
By hypothesis we have

® oK Yy=(vn)P’
® e pX)

By the induction hypothesis on the subprocesses, it holds that
® p,KYE=Pe/X]

Therefore, by the rule (NRANew), we have p,x,\y ="P[g/x].
Case (Pair restriction). We assume

P =+ [mlipP
By hypothesis we have

o PPV £ [mg)P’
® cecpX)

By the induction hypothesis on the subprocesses, it holds that
® p,KYE=Pe/X]

Therefore, by the rule (NRANew), we have p,x,\y ="P[g/x].
Case (Parallel composition). We assume

P=P1IP2
By hypothesis we have

) p,K,lp|='P1|732
® &ecpX)

By the induction hypothesis on the subprocesses, it holds that

® p,K,WE=P1le/X]
® 0, K YE=Pole/X]

Therefore, by the rule (NRAPar), we have p,x,}y =P[e/x].
Case (Replication). We assume

P=["Piq

369
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By hypothesis we have

o p. 1Y =[P g
® e pX)

By the induction hypothesis on the subprocesses, it holds that
e p,i =GP id)[e/X]

Therefore, by the rule (NRARep), we have p,x,\ =P[e/x].
Case (Nil). We assume

P=0

Since 0= 0[¢/x] and p,x, =0, trivially it holds p,x, =P[e/x].
Since both the basis and the inductive steps have been proved, it follows that Lemma 2 holds for all the processes by
structural induction. O

Lemma 3 (Invariance of structural congruence). If P= Q and p,x,\y =P then p,k, = Q.

Proof. By inspection of the clauses defining P = Q.
Case (P|0 = P). We assume p,k, iy =P|0, then it must be p,x,)y =P and p,k, =0, therefore p,x, ) =P.
Other cases can be proved in a similar way, therefore Lemma 3 holds for all the clauses. O

Now, we can prove the correctness of the analysis by the theorem defined below.
Theorem 1 (Correctness of the non-repudiation analysis). If p,i,\y="P and y = 0 then P ensures static non-repudiation.

Proof. The theorem can be proven by induction in the length of the execution sequences, showing that if p,x,y =P and
P—xP then p,k,y=P and furthermore if y =@ then P— gy P does not violate the non-repudiation property.
Case (NRNCom). We assume

p'Kvl//’: <S],...,8k>.7)|(£fl,...,8};Xj+],...,Xk).Q

which amounts to:

1. /\{-(:1 PEE: 9,‘

2. VNRV4,....NRV; : AK_| NRV;oc 9; = (NRVy,....NRV}> € K

3. p.KYEP

4. N_ p=e: 9 ‘ ;

5. ¥(NRV1,....NRVy> € k2 N _  NRVioc 8 = (AF_;, 1 NRV; € p(1%i]) A p. i,y = Q)
6. Nl_,8=¢

and we have to prove
P'K,lﬁ’:PlQ[ng/XjH, o€ /Xe]

From the hypothesis we obtain:

o ()= Nf_qaich

o Af_ fu(en=0and (2) = (er,....e)> €K
e (4)and (6) = Al_,&x9;

e (5)= /\ﬁ‘:j+1 & € p(1x;)) and p, K, =Q

e Llemma 1 = p,K, Y= Q[g1/Xj 11, - - Ek/Xk]

Therefore, when = 0, we get immediately

(€. ..8k>.7)|(8/], .. .,Sj/-;XjJr]. c o Xk). Qo RM
PlQI&+1/Xj 110 - - 1€k /Xi]

Case (NRNDec). We assume

P, =decrypt {e1, ... &klg, as (&), .. &5 Xjpn, - Xice, in P
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which amounts to:

?:O PEE: 9,‘

. VNRVO, e ,NRVk : /\:C: 0 NRVI'OCSI' = {NRVl, e vNRVk}NRVO ocd

N _opEg Y ' / /

4. V{NRVl, .. YI\IR‘/k})\]R\/0 ocd: /\-;=O NRV,OCSI = (/\i<:j+1 NRV; e p(LXiJ)/\p,K,lp':'P)
5. N _p&i=¢§

WN =

and we have to prove
PR EPIE L 1/Xj 1, 8k /Xk]

From the hypothesis we obtain:

o (1) and Af_ofve) =0 = A{_q&iocd;

[ (2) = {&1, ..A,Sk};;OOCQ

e (3)and (5) = N_,&€¥

o (4) = Ai_j 1 € p(lx)) and p,icy =P

o lemma 1 = p,K,WEP[gj1/Xj11, - - -18k/Xk]

Therefore, when y = ), we get immediately
decrypt {&1,...,&k}e, aS (€, -+ &3 Xj 10 - Xihey
in P—grmPlejr1/Xj11, - - - 8k/Xk]

Case (NRNADec). We assume
p.ic. W =decrypt {leq, ...,&l}y [from id] as
{I€hs - & Xj 1 ,x,<|};f£;[check NR] in P

which amounts to:

1. /\iF:O[ﬂ:Si : 19,'
2. VNRV, ... ,NRV) : A¥_ yNRV;oc 9; =
_{INRVy, ... ,NRV [}y, [from id]oc §
3N _opEE Y
4. V{INRV1, ...,NRV[}nry,[from id]oc & : VNRV{yoc 9g : V(Im T iy, [m~ 1)

(NRVo,NRV) = ([lm™ Jig-[Lm™* [lig) A N _{ NRV;oc 9 = (Aij+1 NRVi € p(lxi)) A p, K =P)

j
5. Ni_18=¢

and we have to prove
O KW EPE 4 1/Xj 110 - - 18k /Xi]-

From the hypothesis we obtain:

o (1)and AF_ fv(en=0=> A\*_,eic®;

o (2) = {le1, .. ..} [from id]oc &

e (3)and (5) = N_,&€¥

o (4)=> /\f‘:Hl & € p(1x:)) and p,Kk, =P

e lemma 1 = p,KWEPIE 1 1/Xj11, - - Ek/Xk]

Therefore, when = ), we get immediately
decrypt {[e1, .. ., &I}y, [from id] as

{167, - &5 X1, - XilY -y, [check NR] in P — gy
PLEj11/Xj 15 - - - €k /Xi)-

Case (NRNSig). We assume
P,k =decrypt {leg, ... &)y [from id'] as
{1€hs - B X 1 ,xkl}lg(;[check NR] in P

371
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which amounts to:

—

. /\?:Op|=8i : 9
2. VNRV, ... ,NRV} : A¥_ o NRV;oc 9; =
) {|NRV1,...,NRV,< YNry, [from id]oc§
3N _opEe Y
4. V{INRV7, ... ,NRV |} gy, [from id]oc 9 : VNRV o § : V(M g, ML)
(NRVO,NRVO)_([Lm+J o (LM~ 1lig) A N _{ NRV;oc & = (/\1 i1 NRVi € p(1x;i]) A p, Ky =P AVNr € NR:
(id#id vu#u vnré¢{NRVj,,...,.NRV}) = |nr] € lp)
5. Nl _ 8 =& ARM(d,id ,u,u,& 1, ...,&.NR)

and we have to prove
PR EPLE L 1/Xj 1, - 8 /X

From the hypothesis we obtain:

e (1)and AF_ofvie) =0 = AF_geicd;

® (2) = {le1, ... &}y [from id]oc §
o(3)and() SN _geied

e (4)= /\, —j+18 € p(Lx,J) and p,Kk, =P

e Lemma 1 = p,K,YEPlEj1/Xj1 1, - 8k/Xk]

We observe that vnr € NR : (id #id vuu' vnré{g 1, ...,&}) = |nr] € y follows from (5) and since = §, must be the case
that

RM(id,id’,u,u’,{&1, . . .,&n},NR)

Thus the condition of the rule (NRNSig) is fulfilled for — gy.

Case (NRNNew). We assume p, k., = (v n)P, therefore (vn)P — z(vn)P" using rule (NRNNew) and the hypothesis P—zP".

We have to prove p,k, = n)P'.

By the induction hypothesis p,x,y =" and by the rule (NRANew) p,x, s =(vn)P" and, when i = §, it follows immediately
that (yn)P— gru(VIM)P".

Case (NRNANew). We assume p,k, = (v + [m];q)P, therefore (v + [m];y)P — (v + [m];y)P using rule (NRNANew) and the
hypothesis P—zP'.

We have to prove p,k, = (v + [m];))P'.

By the induction hypothesis p,x,)y=7" and by the rule (NRAANew) p,k, /= (v + [m];y)P and, when y =0, it follows
immediately that (v + [m]ig)P — gm(v &+ [M];9)P'.

Case (NRNPar). We assume

P EP1IP2

which amounts to:

1. p kY E=Py
2. Y EP,
3. P HRP/]

and we have to prove
P =P Ps.

By the induction hypothesis p,x, )y =P and by the rule (NRAPar) p,x,y =P;|P, and, when y =, it follows immediately
that 77] |P2 "RM,PE |P2.
Case (NRNCongr). We assume

DKW EP
which amounts to:
1. P=P*

2. Pr P
3. P =P
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and we have to prove
pYETP.

By Lemma 3 and (1) we obtain p,x,y =P*. By the induction hypothesis p,x,y =P** and by Lemma 3 p,x,y =P and, when
Y =0, it follows immediately that P— gy P’.
Case (NRNRep). We assume

P =[Pl

which means that p,x, =G(P,id); we have to prove p,x, =G(P,id)|[!Pliy -

But y does not contain information about id s, therefore p,x,} =G(P,id") for all id* < ID, which means that p,x,)y =[!P];;.
Therefore we get p,x,=G(P,id)|[!Pl;y and, when ¥ =0, it follows immediately that [!P];; - rmG(P,id)[[!Pl;gy -

Since both the basis and the inductive steps have been proved, it follows that Theorem 1 holds for all the rules by
induction. O

4.3. The attacker

In the setup of P|P., the attacker process P, has to be annotated with the extended syntax. We will use a unique label u,
to indicate the session and a unique label id, to indicate the encryption place used by the attacker. The Dolev-Yao
condition has to be redefined to be used for the non-repudiation analysis, as shown in Table 20.

The main enhancement with the usual LYSA attacker can be seen in the rule (3) in Table 20: whenever the attacker is
able to get an encryption key and generate an encrypted message with that key, the receiver checks the id of the sender,
and, in case the latter does not correspond to the intended one, the component 1y becomes non-empty, as a signal of a non-
repudiation violation.

Now we have to prove that the redefined Dolev-Yao condition holds and this is done by the following theorem.

Theorem 2 (Correctness of Dolev-Yao condition). If (p,x,\) satisfies FRY of type (N, Ax, Agnc) then p,ic,yr=Q for all attackers
Q of extended type ({z.},Nt U {n,}, A, Agnc)-

Proof. By structural induction on Q.
Case of (NRAOut). We assume:

Q=<%1,...5>.P

and we need to find 9, ...,9 and show

Table 20
Redefinition of the attacker’s capabilities.

(1) The attacker may learn by eavesdropping
Akea V<NRV1,....NRV> € 1c: AF_1 NRV; € p(z.)
(2) The attacker may learn by decrypting messages with keys already known

Nket VINRVY, ..., NRV i }ngy, € P(2.) : NRVg € p(z,) = /\f-;, NRV; € p(z.)
Akesg VINRVY, . NRV |}, [from id'] € p(z.) : [m~Jig € p(z.)

= Af_1 NRV; € p(z.)

Akesg, VINRVY, ..., NRV |}y, [from id] € p(z.) : [m™ g € p(z.)

= AK_| NRV; € p(z.)

(3) The attacker may construct new encryptions using the keys known
ke, VNRV, ... .NRV : A¥_ o NRV; € p(z.) = (NRV1, ....NRV }ngy, € P(Z.)
ke, YIM*1ia.NRV1, ... NRV. : [m* Jig € p(z.) A Nf_1 NRV; € p(z.)
= {INRVy, ..., NRVkUFr?w],,. € p(z.)
ke, YIM 1a:NRV1, ... ,NRVy : [m~ Ty € p(z.) A Nf_1 NRV; € p(z.)
= {INRVy, ... ,NRV, [} | € p(z.) A
vdecrypt {INRV, ... ,NRVLHﬁ;r]m
(INRV},....NRV} X, 1,..., xk|}f‘,;;+]m” [check NR] in P :
vnr e NR((id #id, vu' #u, v
nr¢(NRV]’v+1 ..... NRV,}) = |nr] € §)

[from id'] as

(4) The attacker may actively forge new communications
Mrkea YNRV1, ... ,NRV : AC_ I NRV; € p(z.) = (NRV,...,NRV, > € K
(5) The attacker initially has some knowledge

{na,[m* g} UN} = p(z.)
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1. A¥_, p=%;: 9; and for all NRV1, ...,NRV, with A¥_, NRV;oc 9; that
2. (NRVy,...,NRV}> € K
4. pKY=P

We choose 9;(1 <i < k) as the least set such that p=¢g; : 3; and prove that 3; < p(z.). If &; has free variables z,,...,z;,, then 9
consists of all values €;[NRV, /zy,...,NRV\,/z] where NRV (1 <1< m) € p(z.). This proves (1).

(2) is true by definition of x.

By hypothesis, P has type ({z.},Af U {n.},Ax,Agc) and (3) is proved by induction hypothesis.

Case of (NRAInp). We assume:

Q=G1,....8;;Xj41,....X). P

and we need to find 84, ...,9; and show

1. /\1::l pEg;: 9 and for all (NRVy,...,NRV; > € Kk with /\JIZ: 1 NRV;oc §; that
2. Ni—j+1NRV; € p(Ixi])
3. p.KWEP

We choose 3;(1 <i<j) as the least set such that p=¢; : 9; and prove that 9; < p(z.). If &; has free variables z;,...,z,, then 9;
consists of all values ;[NRV/zy,...,NRV\,/zm] where NRV (1 <1< m) € p(z.). This proves (1).
Since A/, 9 = p(z.), we have A}, NRV; € § and by FRY; we get Af_; | NRV; € p(z.) and, since |x;| =z., we have (2).
By hypothesis, P has type ({z.},N U {n.}, A, Agnc) and (3) is proved by induction hypothesis.
Case of (NRADec). We assume:

Q =decrypt € as {€1,....Ej; X1 1, ... X}z, IN P

and we need to find § and 8, ...,9; and show

1. p=g:9A N_,p=E : 9 and for all {NRVy,...,NRV}ngy, oc & with A} _ o NRV;oc §; that
2. AfZj 1 NRV; € p(1xi])
3. p,KYEP

We choose 9 as the least set such that pi=% : 9 and prove that 3 = p(z,). If € has free variables zy,...,z,;, then 3 consists of all
values g[NRV1/zy, ...,NRVy,/zm] where NRV;(1 <i<m) e p(z,). The same development for 9y, ...,9; proves (1).

Since 99 = p(z.), we have NRV, € 9 and by F5Y, we get /\f:j+1 NRV; € p(z.) and, since |x;] = z., we have (2).

By hypothesis, P has type ({z.},Af U {n.}, A, Agqc) and (3) is proved by induction hypothesis.

Case of (NRAADec). We assume:

Q =decrypt & as {[&1, .. .,&j;Xj+1, . . . X[} [check NR] in P

and we need to find § and 8, ...,9; and show

1. p=€:9A /\{:Op|=§,- :9; and for all {INRV, ..., NRV[}Ngy,[from id]ec VNRVyoc 3o : V(m™,m™) :
(NRV,NRV{) = ([Lm™ Jlig.[Lm™* Jli¢) with A}_, NRV;oc 9; that

2. Af_j1 NRV; € p(1xi))

3. pKYEP

We choose 9 as the least set such that p=¢ : 9 and prove that 3 = p(z,). If € has free variables zy,...,z,, then 3 consists of all
values g[NRV1/zy, ...,NRV, /zm] where NRV;(1 <i<m) e p(z,). The same development for 9, ...,9; proves (1).

Since 9o = p(z.), we have NRV, € § and by FBY, we get /\f»‘zj+l NRV; € p(z.) and, since |x;] = z,, we have (2).

By hypothesis, P has type ({z.},Af U {n.}, A, Agrc) and (3) is proved by induction hypothesis.

Case of (NRASig). We assume:

Q =decrypt & as {[z1, .. .,&j;Xj+1, - - - Xk |}s [check NR] in P

and we need to find § and 9y, ...,9; and show

1. p=€: A /\11::0,0’:51‘ :9; and for all {INRV, ... ,NRV|}§ry, [from id]oc 3 : VNRV{oc 3 : vm*,m-,id,id" :
(NRVo,NRV) = ([Lm™* [lig.[Lm~ []i¢) With Al_ | NRV;cc9; that

2. NiZj o1 NRV; € p(1xi])

3. p,KYEP

4. vnr e NR : (-RM(id,id’,u,u’,{NRVj , 1, ..., NRV, },{nr}) = |nr] € )
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We choose 9 as the least set such that p=2 : 3 and prove that 9 < p(z.). If € has free variables zy,...,z,, then 9 consists of
all values g[NRV/z;, ...,NRV/zm] where NRV(1 <i<m) € p(z,). The same development for §, ...,9; proves (1).

Since 9p = p(z.), we have NRVoe 9 and by FRY we get /\f:jﬂ NRV; € p(z,) and Vvnr e NR : (=RM(id,id’,u,u’,
{NRVj_1,...,NRV, },{nr}) = |nr] € ). Since |x;| =z,, we have (2) and (4).

By hypothesis, P has type ({z.},Nf U {n.}, Ay, Agnc) and (3) is proved by induction hypothesis.

Case of (NRANew). We assume:

a=omp

and we need to show p,x,y =7P. But this is true by induction hypothesis.
Case of (NRAANew). We assume:

Q=(v+mP

and we need to show p,k,/=7P. But this is true by induction hypothesis.
Case of (NRAPar). We assume:

Q=P1IP2

and we need to show

1. p,KY =P,
2. pKYEP,

But this is true by induction hypothesis.
Case of (NRARep). We assume:

Q =['Plq
and we need to show p,k,y=G(P,id). But G(P,id) has the same type of [!P],;, therefore p,i,=G(P,id) by induction
hypothesis.
The case (NRANil) is trivial.

Since both the basis and the inductive steps have been proved, it follows that Theorem 2 holds for all the rules of the
analysis by structural induction. O

Theorem 3. If P guarantees static non-repudiation then P guarantees dynamic non-repudiation.

Proof. If p,i,0 =Py and (p,k,0) satisfies FRY, then, by Theorems 1 and 2, RM does not abort Pss|Q regardless of the choice
of attacker Q. O

4.4. Meta level analysis

The analysis seen so far only deals with one session. In order to get a more realistic analysis, it has to be enhanced to a
meta level, like in [4,7]. We have to add indexes to names and variables, as explained in Section 2, so a scenario with
multiple principals can be modelled. The meta level non-repudiation analysis takes the form p,x, =M.

Example 2. Let us now consider the protocol seen in Example 1, namely the Zhou-Gollmann protocol [17]. The whole
protocol has been extended using the annotations and the functions F and g. The resulting protocol is the following:

let X =Sin (v 1 iex[AKi], (v = [TTPlpp)(

liex ljex (vSKi) (VL) (VM)
{farodj Lig AMig} s
{Ufiwordjo Ly tMigdsi, Iy, [from 11
(fnrroJisLij; XNRRy).
decrypt xNRR;; as {[fvrr.JiLij, {Mjj}sk 5 ”;XK*]

I

[check fygg.di,Lyj, (Mj}si;] in
<fSUBvavLij-SKijr{MSUBvavLij-SKij”quUK‘*], [from [;]>.
(feon.din1;,Lij,SKij; xConj).
decrypt xCon;; as {|fcon.Ji.l;.Lij,SKij;
[check fCON,I,‘,Ij,L,'j,SKU‘] in0

i
i

ujj
Bierre 1

liex ljex '(fros1j; XLij, XEnMsg;;, xNRO).
decrypt XNROj; as {|fnro.ljXLij, XEnMsg;;; \);’K’. b
[check firo,lj.XLyj,XEnMsgy] in
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”u

<fNRR,I,»,xL,»j,([fNRR,Ii,xL,»j,xEnMsgu [AK; ] [fl'OlTl lj]>
(feon.Iin I, XLij; XK 5, xConyy).

u
decrypt xCony; as {lfcon.1i-j,XLij XKij: Y erpp -
[check feon. ;. Ij, XLy, xK ;5] in
decrypt xEnMsgj; as {; xMsgj}x, in 0

liex ljex '(fsus.lj: XLyj,xSK 5, xSubjj).decrypt xSub;; as
{Ifsus 1. XLij XSKj: I}[AK,* ) [check fsup,I;,xL;j,xSK;j] in
feonIinIj XL, XSK i,
{\feon 1Ty XLig XSKij ) érrp-y, . [from TTP]>.
{ feondisIj,XLyj, xSK j,
{Ufeon:Ii. ;XL XSKj irrp-. . [from TTP] .0

After completing the analysis the component y is an empty set, i.e. the protocol guarantees non-repudiation even under
attack. In fact, the attacker cannot create new encryptions because he has not knowledge about the private keys and he
cannot make a replay attack because there is a unique label that identifies the session.

4.5. Over-approximation

When the analysis checks a protocol, we could expect that if the component i/ is empty then the protocol is correct, else
the protocol does not guarantee the non-repudiation protocol. But the analysis cannot be precise, because of the infinitely
many possible scenarios in which a protocol can be executed and the additional assumptions that can be made. Because of
the over-approximation, our analysis can give sometimes a false positive, i.e. the component  is non-empty but the
protocol is correct. It is important that the analysis does not mistake in the opposite direction, and this is what happens in
practice, because the analysis says that the property holds if the protocol behaves as expected, therefore it never says that a
protocol is correct even if it does not guarantee the non-repudiation property. Intuitively, when a protocol guarantees
authentication, freshness and integrity of the messages, it should guarantee even non-repudiation.

An example of false positive is given by the protocol described in [5] by Cederquist et al. In fact it does not use labels to
identify sessions, and this is why our analysis says that this protocol does not guarantee non-repudiation property.
However, the protocol is correct, because it distinguishes session runs thanks to the usage of fresh keys per-session. Our
analysis requires a session identifier, but there is not any element that is used in each message of the protocol, so a
principal cannot verify if a message belongs to a particular session or not; indeed, without the assumption of the unique
keys, an attacker could pretend to be another principal, starting the protocol after eavesdropping a protocol run. The main
protocol is the following:

A-B: {M}, EOOy for EOOy = sig4(B,TTP,H,{|K,Al}r1p)
B—A: EORy for EOR);=sigg(EOOy,)

A-B: K

B—A: EORk for EORy=sigp(A, H, K)

where H=h({M}k) and h is a hash function. There are other two subprotocols used in case of dispute, i.e. when a principal
does not finish the protocol execution, but we are interested only in the main protocol.
The encoding with annotation is the following:

let X =S in (v 4 jex[AK;];, )(v + KTTP)(
liex ljex 1(vSK;;)(vH) (v M)
Mydsic, (1L, TTP,Hy (1K it} -, [from TTP]\);;K”,‘
[from I;]>.(: XEORM).
decrypt XEORM; as {|{|I;,TTP,Hy;,

ujj uy Uj
(1K i grrp+ ., lfrom TP (from K

[check {|I;, TTP,Hy;,{|SK;; [from TTP]|}] in
{SKj; > .(:XEORK ).
decrypt XEORK; as {|I;,H;,SK;:

[check Hy;,SKj] in O

.Iil}[,m,,+ -

}[AK Iy

liexljex !(; XEnMsg;;, xEOOM).

decrypt XEOOM; as {|I;,TTP; xHu,xTTP|}[AK

[check xHj;] in
<{\xEOOM,,\)‘j;!K ) [from [;]>.

(; xSKj).
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decrypt XEnMsg;; as {(xMsgjjhask; in
{{Il;,xH;;,xSK;;1} > .0
)

Because of the lack of labels, the result of the analysis shows that a possible flaw may arise. The component iy contains all
the elements that are also in NR when |S| > 2. In fact, it does not use labels to identify the session, and this is why our
analysis says that this protocol does not guarantee non-repudiation property. However, the protocol is correct, because of
an implicit additional assumption on the uniqueness of the keys, which prevents from replay attacks.

5. Conclusions and future works

This paper extends the work by Buchholtz and Gao who defined a suite of analyses for security protocols, namely
authentication, confidentiality [10], freshness [9], simple [3] and complex [8] type flaws. The annotations we introduce
allow to express non-repudiation also for part of the message: this allows to tune the analysis focussing on relevant
components. It results that the CFA framework developed for the process calculus LySA can be extended to security
properties by identifying suitable annotations, thus re-using most of the theoretical work.
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