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a b s t r a c t

This work introduces a formal analysis of the non-repudiation property for security

protocols. Protocols are modelled in the process calculus LySa, using an extended syntax

with annotations. Non-repudiation is verified using a Control Flow Analysis, following

the same approach of Buchholtz and Gao for authentication and freshness analyses.

The result is an analysis that can statically check the protocols to predict if they are

secure during their execution and which can be fully automated.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

With the growth of Internet applications like e-shopping or e-voting, non-repudiation is becoming increasingly
important, as a protocol property. Our aim is to provide a protocol analysis which checks this property to avoid that a
protocol is used in malicious way. Among the existing techniques that perform the analysis of non-repudiation protocols,
we may cite:
�
 The CSP (Communicating Sequential Processes) approach [14–16]: it is an abstract language designed specifically for
the description of communication patterns of concurrent system components that interact through message passing.

�
 The game approach [12]: it considers the execution of the protocol as a game, where each entity is a player; the

protocols are designed finding a strategy, which has to defend an honest entity against all the possible strategies of
malicious parties.

�
 The Zhou–Gollmann approach [19]: it uses SVO Logic, a modal logic that is composed by inference rules and axioms

which are used to express beliefs that can be analysed by a judge to decide if the service provided the property.

�
 The inductive approach [1]: it uses an inductive model, a set of all the possible histories of the network that the protocol

execution may produce; a history, called trace, is a list of network events, that can indicate the communication of a
message or the annotation of information for future use.

We follow a different approach, the same as Buchholtz [4] and Gao [7], who show how some security properties can be
analysed using the LySa [2] process calculus with annotations and a Control Flow Analysis (CFA) to detect flaws in the
protocols. The main idea is to extend LySa with specific annotations, i.e. tags that identify part of the message for which the
property has to hold and that uniquely assigns principal identifiers and session identifiers to encryptions and decryptions.
ll rights reserved.
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The advantages of this proposal are the following:
�
 The analysis is general enough to check any protocol (even if in few exceptional cases the result can be incorrect).

�
 The environment in which the protocol is executed can possibly involve infinitely many principals who run infinitely

many sessions.

�
 The analysis can easily be implemented, providing a user-friendly tool which can automatically check the non-

repudiation property for any specified encoding.

It is interesting to notice that the non-repudiation analysis that we propose easily fits into the CFA framework [13],
yielding a suite of analyses that can be combined in various ways, with no major implementation overload. Since the
analyses share the same framework differing only in the annotations, a combination of them might lead to a result with
less resource consumption. This combination could be easily obtained by generalizing the syntax and turning the
correspondent monitors on in the semantics.

The structure of the paper is the following: Section 2 is a quick overview of LySa; Section 3 presents the CFA framework;
Section 4 shows the new non-repudiation analysis, and its application to the protocols; Section 5 concludes.

2. LySa

LySa [2] is a process calculus in the p�calculus tradition that models security protocols on a global network. It
incorporates pattern matching into the language constructs where values can become bound to variables. In LySa all the
communications take place directly on a global network and this corresponds to the scenario in which security protocols
often operate. Channels are considered in many process calculi, but they may give a degree of security that there is not in
the common network, where a spy can eavesdrop and forge communications; furthermore, channels are often declared
private and used explicitly as cryptographic keys while in real systems they are extremely problematic. LySa calculus offers
instead a realistic environment in which there are not channels to protect the exchange of messages among the principals.

2.1. Syntax and semantics

An expression E 2 Expr may represent a name, a variable or an encryption. The set Expr contains two disjointed subsets,
Name and Var. The elements in the first subset can be identifiers, nonces, symmetric keys, key pairs (m+ , m�) for
asymmetric key cryptography (where m+ is the public key and m� is the private one), etc., ranged over by n. The elements
in Var are only variables, ranged over by x. The remaining expressions are symmetric and asymmetric encryptions of
k-tuples of other expressions, defined as fE1, . . . ,EkgE0

and fjE1, . . . ,EkjgE0
, respectively, where E0 represents a symmetric or

asymmetric key.
LySa also allows to construct processes P 2 Proc, which use the expressions explained above. Processes can have the

following form:
�
 /E1, . . . ,EkS:P: the process sends a k-tuple of values onto the global network; when the message has been successfully
sent the process continues as P.

�
 (E1,y,Ej;xj +1,y,xk).P: the process reads the k-tuple of values sent, it checks if the first j values expected are identical to

E1,y,Ej, and, if this succeeds, the remaining k� j values are bound to the variables xj + 1,y,xk, and the process continues
as P, which is the scope of the variables; notice that a semi-colon is used to distinguish between the expressions used
for matching and the variables.

�
 decrypt E as fE1, . . . ,Ej; xjþ1, . . . ,xkgE0

in P: the process denotes the symmetric decryption and it works in a way similar to
the input construct; if the encryption key is identical to E0, the process decrypts the k-tuple, then it checks if the values
expected are identical to E1,y,Ej, and, if this succeeds, the remaining k� j values are bound to the variables xj + 1,y,xk,
and the process continues as P, which is the scope of the variables; a semi-colon distinguishes between the expressions
used for matching and the variables.

�
 decrypt E as fjE1, . . . ,Ej; xjþ1, . . . ,xkjgE0

in P: the process denotes the asymmetric decryption and it works like symmetric
decryption; the only differences are in E0 and in the key used to encrypt, which have to be a key pair m+ and m�; their
order depends on the role of decryption, i.e. if it is used to verify a private key signature or to obtain the original
message after a public key encryption.

�
 ðnnÞP: the process generates a new name n and it continues in P, which is the scope of the name.

�
 ðn7mÞP: the process generates a new key pair, m+ and m� , and it continues in P, which is the scope of the key pair.

�
 P1jP2: the process denotes two processes running in parallel that may synchronize through communication over the

network or perform actions independently.

�
 !P: the process acts as an arbitrary number of processes P composed in parallel.

�
 0: the process is the inactive or nil process that does nothing.

Both expressions and processes are defined in Table 1.



ARTICLE IN PRESS

Table 1
Syntax of LySa calculus.

E :: ¼ Terms

n Name

x Variable

m+ Public key

m� Private key

fE1 , . . . ,EkgE0
Symmetric encryption

fjE1 , . . . ,EkjgE0
Asymmetric encryption

P :: ¼ Processes

/E1 , . . . ,EkS:P Output

(E1,y,Ej; xj +1,y,xk).P Input

decrypt E as fE1 , . . . ,Ej; xjþ1 , . . . ,xkgE0
in P Symmetric decryption

decrypt E as fjE1 , . . . ,Ej; xjþ1 , . . . ,xkjgE0
in P Asymmetric decryption

ðnnÞP Restriction

ðn7mÞP Pair restriction

P1jP2 Parallel composition

!P Replication

0 Nil

Table 2
Function fn(P) for free names.

fnðnÞ
¼
def
fng

fnðmþ Þ
¼
def
fmþ g

fnðm�Þ
¼
def
fm�g

fnðxÞ
¼
def

|

fnðfE1 , . . . ,EkgE0
Þ

¼
def

fnðE0Þ [ � � � [ fnðEkÞ

fnðfjE1 , . . . ,EkjgE0
Þ

¼
def

fnðE0Þ [ � � � [ fnðEkÞ

fnð/E1 , . . . ,EkS:PÞ ¼
def

fnðE1Þ [ � � � [ fnðEkÞ [ fnðPÞ

fnððE1 , . . . ,Ej; xjþ1 , . . . ,xkÞ:PÞ ¼
def

fnðE1Þ [ � � � [ fnðEjÞ [ fnðPÞ

fn(decrypt E as fE1 , . . . ,Ej; xjþ1 , . . . ,xkgE0
in P)

¼
def

fnðEÞ [ fnðE0Þ [ � � � [ fnðEjÞ [ fnðPÞ

fn(decrypt E as fjE1 , . . . ,Ej; xjþ1 , . . . ,xkjgE0
in P)

¼
def

fnðEÞ [ fnðE0Þ [ � � � [ fnðEjÞ [ fnðPÞ

fnððnnÞPÞ
¼
def

fnðPÞ\fng

fnððn7mÞPÞ
¼
def

fnðPÞ\fmþ ,m�g

fnðP1jP2Þ ¼
def

fnðP1Þ [ fnðP2Þ

fnð!PÞ
¼
def

fnðPÞ

fnð0Þ
¼
def

|
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A binder introduces new names or variables which have scope in the rest of the process. The prefix ðnnÞ in the process
ðnnÞP and the prefix ðn7mÞ in the process ðn7mÞP are binders, because they create new keys which have scope in the
process P. Also input and decryption are binders that introduce the variables xj + 1,y,xk. If a name or a variable is not bound
by any binder, it is free; the function fn(P) collects all the free names in the process P and it is defined in Table 2 while the
function fv(P), defined in Table 3, collects the free variables. The bound variables are defined by the function
bvðPÞ ¼

def
varðPÞ\fvðPÞ, where var(P) is the function that defines the set of variables contained in a given protocol P; roughly

speaking, bv(P) provides the set of all the variables that are not free in the protocol P. All these functions are also defined on
the terms, which are part of the processes.

LySa provides a reduction semantics that describes the evolution of a process step-by-step, using a reduction relation

between two processes, written P-P0. If the reduction relation holds then P can evolve into P0 using the rules depicted in
Table 6 that show an inductive definition of the relation by axioms and inference rules.

The structural congruence between two processes, written P� P0, means that P is equal to P0 except for syntactic
aspects, but this does not interfere with the way they evolve. The structural congruence is defined as the smallest relation
satisfying the rules in Table 4, that express the following ideas:
�
 The reduction relation is an equivalence relation.

�
 The parallel composition is defined to be commutative, associative, and has 0 as neutral element.

�
 The order of the processes in the parallel composition is not influential.
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Table 3
Function fv(P) for free variables.

fvðnÞ
¼
def

|

fvðmþ Þ
¼
def

|

fvðm�Þ
¼
def

|

fvðxÞ
¼
def
fxg

fvðfE1 , . . . ,EkgE0
Þ

¼
def

fvðE0Þ [ � � � [ fvðEkÞ

fvðfjE1 , . . . ,EkjgE0
Þ

¼
def

fvðE0Þ [ � � � [ fvðEkÞ

fvð/E1 , . . . ,EkS:PÞ ¼
def

fvðE1Þ [ � � � [ fvðEkÞ [ fvðPÞ

fvððE1 , . . . ,Ej; xjþ1 , . . . ,xkÞ:PÞ ¼
def

fvðE1Þ [ � � � [ fvðEjÞ [ ðfvðPÞ\fxjþ1 , . . . ,xkgÞ

fv(decrypt E as fE1 , . . . ,Ej; xjþ1 , . . . ,xkgE0
in P)

¼
def

fvðE0Þ [ � � � [ fvðEjÞ [ ðfvðPÞ\fxjþ1 , . . . ,xkgÞ

fv(decrypt E as fjE1 , . . . ,Ej; xjþ1 , . . . ,xkjgE0
in P)

¼
def

fvðE0Þ [ � � � [ fvðEjÞ [ ðfvðPÞ\fxjþ1 , . . . ,xkgÞ

fvððnnÞPÞ
¼
def

fvðPÞ

fvððn7mÞPÞ
¼
def

fvðPÞ

fvðP1jP2Þ ¼
def

fvðP1Þ [ fvðP2Þ

fvð!PÞ
¼
def

fvðPÞ

fv(0)
¼
def

|

Table 4
Structural congruence P� P0 .

P � P

P1 � P2 ) P2 � P1

P1 � P24P2 � P3 ) P1 � P3

P1 � P2 )

/E1 , . . . ,EkS:P1 �/E1 , . . . ,EkS:P2

ðE1 , . . . ,Ej; xjþ1 , . . . ,xkÞ:P1

� ðE1 , . . . ,Ej; xjþ1 , . . . ,xkÞ:P2

decrypt E as fE1 , . . . ,Ej; xjþ1 , . . . ,xkgE0
in P1

� decrypt E as fE1 , . . . ,Ej; xjþ1 , . . . ,xkgE0
in P2

decrypt E as fjE1 , . . . ,Ej; xjþ1 , . . . ,xkjgE0
in P1

� decrypt E as fjE1 , . . . ,Ej; xjþ1 , . . . ,xkjgE0
in P2

ðnnÞP1 � ðnnÞP2

ðn7mÞP1 � ðn7mÞP2

P1jP3 � P2jP3

!P1 � !P2

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

P1jP2 � P2jP1

ðP1jP2ÞjP3 � P1jðP2jP3Þ

Pj0� P

!P� Pj!P

ðnnÞ0� 0

ðnn1Þðnn2ÞP� ðnn2Þðnn1ÞP

ðnnÞðP1jP2Þ � P1jðnnÞP2 if n=2fnðP1Þ

ðn7mÞ0� 0

ðn7m1Þðn7m2ÞP� ðn7m2Þðn7m1ÞP

ðn7mÞðP1jP2Þ � P1jðn7mÞP2 if mþ ,m�=2fnðP1Þ

ðn7mÞðnnÞP� ðnnÞðn7mÞP

P1 �
a

P2 ) P1 � P2
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�
 The replication corresponds to an arbitrary number of process in parallel.

�
 The restrictions can be simplified under certain assumptions.

�
 Two processes are structurally equivalent whenever they are a�equivalent.
Two processes P1 and P2 are a�equivalent, written P1 �
a

P2, when they are identical except that they may differ in the
choice of bound names. A procedure called a-conversion replaces all the instances of a bound name in a process for another
name. The definition of the equivalence relation is in Table 5. Notice that a substitution P½n1/n2� substitutes all the free
occurrences of n1 in P for n2.

Finally, we define values V 2 Val, which are used in the reduction as expressions without variables x 2 Var:

V :: ¼ n

jmþ
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Table 5

a�equivalence �
a

.

P�
a

P

P1 �
a

P2 implies P2 �
a

P1

P1 �
a

P24P2 �
a

P3 implies P1 �
a

P3

ðnn1ÞP�
a
ðnn2ÞðP½n1/n2�Þ if n2=2fnðPÞ

ðn7m1ÞP �
a
ðn7m2ÞðP½m

þ
1 /mþ2 ,m�1 /m�2 �Þ if mþ2 ,m�2 =2fnðPÞ

Table 6
Semantics of LySa calculus.

(Com)

Vj
i ¼ 1 Vi ¼ V 0i

/V1 , . . . ,VkS:PjðV 01 , . . . ,V 0j ; xjþ1 , . . . ,xkÞ:P0-R

PjP0 ½Vjþ1=xjþ1 , . . . ,Vk=xk�

(Dec)

Vj
i ¼ 0 Vi ¼ V 0i

decrypt fV1 , . . . ,VkgV0
as fV 01 , . . . ,V 0j ; xjþ1 , . . . ,xkgV 0

0
in P-R

P½Vjþ1=xjþ1 , . . . ,Vk=xk�

(ADec)

Vj
i ¼ 1 Vi ¼ V 0i

decrypt fjV1 , . . . ,Vkjgmþ as fjV 01 , . . . ,V 0j ; xjþ1 , . . . ,xkjgm�

in P-RP½Vjþ1=xjþ1 , . . . ,Vk=xk�

(ASig)

Vj
i ¼ 1 Vi ¼ V 0i

decrypt fjV1 , . . . ,Vkjgm� as fjV 01 , . . . ,V 0j ; xjþ1 , . . . ,xkjgmþ

in P-RP½Vjþ1=xjþ1 , . . . ,Vk=xk�

(New)
P-RP0

ðnnÞP-RðnnÞP0

(ANew)
P-RP0

ðn7mÞP-Rðn7mÞP0

(Par)
P1-RP01

P1jP2-RP01jP2

(Congr)
P� P04P0-RP

004P
00

� P
000

P-RP000
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jm�

jfV1, . . . ,VkgV0

jfjV1, . . . ,VkjgV0

The reduction relation describes how a process may evolve into another and it is defined inductively as the smallest
relation such that the rules in Table 6 are satisfied. A reference monitor is used to check each step before allowing it to be
executed. It can be turned off or on: in the first case there are not requirements that have to be meet; in the other case
some properties are checked at run time and, if the check does not succeed, the process execution is aborted.

A substitution function is used in the reduction rules, written P[V/x]; it substitutes a variable x for a value V in the process
P whenever x becomes bound to V.

The rule (Com) is the parallel composition between an output process and an input process. This means that the
communication between two principals happens only if these two processes run in parallel. Furthermore, the first j values
V1,y,Vj sent have to be identical to the first j values V 01, . . . ,V 0j that the recipient expects. In this case, the variables are
substituted with the values Vj + 1,y,Vk. The rules (Dec), (ADec) and (ASig) are used to decrypt messages with a symmetric
key, a private key and a public key, respectively. As before, the first j values V1,y,Vj encrypted have to be identical to the
first j values V 01, . . . ,V 0j that who decrypts the message expects. In this case, the variables are substituted with the values
Vj +1,y,Vk. The rule (New) and (ANew) restrict the scope of the names created, therefore they are visible only in the
respective processes. The rule (Par) is the parallel composition that can evolve into a new parallel composition where one
of the two processes involved is evolved while the other remains unchanged. The rule (Congr) allows to apply the
reduction relation to any process that is structurally congruent to the process found in the other rules.

2.2. Meta level calculus

The meta level is an extension of LySa that can be used to describe different scenarios in which many principals execute
a protocol at the same time. Thanks to this level the analysis can run in a realistic environment with many initiators and
responders. This is done by running several copies of the processes and renaming each name and each variable using
indexes, added to make them unique.
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Table 7
Syntax of meta level LySa calculus.

mx :: ¼ x
i

ME :: ¼ MTerm

n
i

mx

mþ
i

m�
i

fME1 , . . . ,MEkgME0

fjME1 , . . . ,MEkjgME0

MP :: ¼ MProc

ji2SMP

let XDS in MP

ðn
i2S

n
ai
ÞMP

ðn
7 i2S

m
ai
ÞMP

/ME1 , . . . ,MEkS:MP

ðME1 , . . . ,MEj;mxjþ1 , . . . ,mxkÞ:MP

decrypt ME as fME1 , . . . ,MEj;mxjþ1 , . . . ,mxkgME0
in MP

decrypt ME as fjME1 , . . . ,MEj;mxjþ1 , . . . ,mxkjgME0
in MP

ðnn
i
ÞMP

ðn7m
i
ÞMP

MP1jMP2

!MP

0
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The syntax of the meta level is defined by the grammar described in Table 7. Its constructs incorporate a countable
indexing set S, which includes a set of variables X.

The meta level terms MEi are identical to the object level terms, i.e. the terms explained before, except that names,
variables and asymmetric keys are indexed. A sequence of indexes i is added as subscript, that is a shorthand for i1,y,ik.
The meta level processes are the following:
�
 ji2SMP: the process describes the parallel composition of instances of the process MP where the index i is an element in
the set S.

�
 let XDS in MP: the process declares a set identifier X which has some values of the index set S in the process MP; the set

X can be infinite, so that the meta level process may instantiate to infinitely many processes, specifying arbitrarily large
scenarios.

�
 ðn

i2S
n

ai
ÞMP: the process describes the restriction of all the names n

ai
; a is a prefix of the index that can be empty.
�
 ðn
7 i2S

m
ai
ÞMP: the process describes the restriction of all the key pairs mþ

ai
and m�

ai
; as above, a is a prefix of the index

that can be empty.

�
 /ME1, . . . ,MEkS:MP: the process sends a k-tuple of values onto the global network; when the message has been

successfully sent the process continues as MP.

�
 ðME1, . . . ,MEj;mxjþ1, . . . ,mxkÞ:MP: the process reads the k-tuple of values sent, it checks if the values expected are

identical to ME1,y,MEj, and, if this succeeds, the remaining k� j values are bound to the variables mxj +1,y,mxk, and the
process continues as MP, which is the scope of the variables; a semi-colon is used to distinguish between the terms used
for matching and the variables, as in the input process seen in the object level (the one described in Section 2.1).

�
 decrypt ME as fME1, . . . ,MEj;mxjþ1, . . . ,mxkgME0

in MP: the process denotes the symmetric decryption; it checks if the
encryption key is identical to ME0, then the process decrypts the k-tuple, and it checks if the values expected are
identical to ME1,y,MEj, and, if this succeeds, the remaining k� j values are bound to the variables mxj +1,y,mxk, and the
process continues as MP, which is the scope of the variables.

�
 decrypt ME as fjME1, . . . ,MEj;mxjþ1, . . . ,mxkjgME0

in MP: the process denotes the asymmetric decryption and it works
like symmetric decryption except that ME0 and the key used to encrypt have to be a key pair m+ and m�.

�
 ðnn

i
ÞMP: the process generates k new names ni, i 2 ½1: :k�, and it continues as MP, which is the scope of the names.
�
 ðn7m
i
ÞMP: the process generates k new key pairs, m+

i and m�i , and it continues as MP, which is the scope of the key pairs.

�
 MP1jMP2: the process denotes two meta level subprocesses running in parallel that may synchronize through

communications over the network or perform actions independently.

�
 !MP: the process acts as an arbitrary number of processes MP composed in parallel.

�
 0: the process is the inactive or nil process that does nothing.
The process let XDS in MP is a binder of X, therefore if X is instantiated to a subset of S then every occurrence of X in the
process MP is instantiated. The process ji2SMP is a binder of i and the indexed restrictions are binders of names and key
pairs.
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Table 8
Instantiation relation MP-IP.

(ILet)
MP½X/S0 �0P

let XDS in MP0P
if S0D finS

where D fin means finite subset

(IIPar)
MP½i/a1�0P1 � � �MP½i/ak�0Pk

ji2fa1 ,...,akg
MP0P1j � � � jPk

(IINew)
MP0P

ðn
i2fa1 ,...,ak g

n
ai
ÞMP0ðnnaa1

Þ � � � ðnnaak
ÞP

(IIANew)
MP0P

ðn
7 i2fa1 ,...,ak g

m
ai
ÞMP0ðn7 maa1

Þ � � � ðnmaak
ÞP

(IOut)
MP0P

/ME1 , . . . ,MEkS:MP0/ME1 , . . . ,MEkS:P

(IInp)
MP0P

ðME1 , . . . ,MEj;mxjþ1 , . . . ,mxkÞ:MP0

ðME1 , . . . ,MEj;mxjþ1 , . . . ,mxkÞ:P

(IDec)
MP0P

decrypt ME as fME1 , . . . ,MEj;mxjþ1 , . . . ,mxkgME0
in MP0

decrypt ME as fME1 , . . . ,MEj;mxjþ1 , . . . ,mxkgME0
in P

(IADec)
MP0P

decrypt ME as fjME1 , . . . ,MEj;mxjþ1 , . . . ,mxkjgME0
in MP0

decrypt ME as fjME1 , . . . ,MEj;mxjþ1 , . . . ,mxkjgME0
in P

(INew)
MP0P

ðnna ÞMP0ðnna ÞP

(IANew)
MP0P

ðn7ma ÞMP0ðn7ma ÞP

(IRep)
MP0P

!MP0!P

(IPar)
MP10P1 MP20P2

MP1jMP20P1jP2

(INil) 000
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An instantiation relation, written MP-IP, is introduced to describe that a process P is an instance of a meta level
process MP, as depicted in Table 8.

The rule (ILet) allows the meta level to instantiate to all the object level processes P that are in some finite subset of the
set S. The rule (IIPar) instantiates the process ji2SMP to be the parallel composition of processes for each of the indexes in
the set S. The rules (IINew) and (IIANew) instantiate the indexed restrictions to the restrictions of the names for all the
values in the set fa1, . . . ,akg. The rules (IOut), (IInp), (IDec), (IADec), (INew), (IANew), (IRep), (IPar) and (INil) are
instantiations of their subprocesses.

Example 1. Let us introduce a known non-repudiation protocol, namely the Zhou–Gollmann protocol [17], which is the
following:

A-B: fNRO,B,L,C,NRO

B-A: fNRR,A,L,NRR

A-TTP : fSUB ,B,L,K ,sub_K

B2TTP : fCON ,A,B,L,K ,con_K

A2TTP : fCON ,A,B,L,K ,con_K

where:
�
 A is the originator of the non-repudiation exchange;

�
 B is the recipient of the non-repudiation exchange;

�
 TTP is the on-line trusted third party providing network services accessible to the public;

�
 M is the message sent from A to B;

�
 C is the encryption for the message M under a key K;

�
 K is the message key defined by A;

�
 L is a unique label that links all messages of a particular protocol run together;

�
 NRO=SigA(fNRO,B,L,C) is the non-repudiation of origin for M;

�
 NRR=SigB(fNRR,A,L,C) is the non-repudiation of receipt for M;

�
 sub_K=SigA(fSUB,B,L,K) is the proof of submission of K;

�
 con_K=SigKTTP(fCON,A,B,L,K) is the confirmation of K issued by TTP;
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�
 f� is a flag which expresses the aim of the message (the sender wants to give a proof of origin NRO/receipt NRR/
submission SUB/confirmation con_K);

�
 A-B : X means that principal A sends message X from principal B;

�
 A2B : X means that principal A fetches message X from principal B.

The first message of the encoding provides B the encryption C of a message M under a key K; if the message fails to reach

B then the protocol ends without disputes, since B cannot read M yet without the decryption key K. With the second step A
is given the proof that B received the first message. After checking if B’s evidence matches with A’s evidence, A sends the

decryption key K to the trusted third party TTP. Finally the trusted third party stores in a public directory a message

consisting of the key and the proof that it belongs to a particular protocol session run by A and B; the principals can fetch

the key through the fourth and the fifth messages (the order of the last two messages is not important).

Note that L and the proofs in the five messages must always match in order to eventually win a dispute, because they
link the messages belonging to same session of the protocol.

The encoding is the following, where three key pairs (AK 7 for A, BK 7 for B, and KTTP7 for the trusted third party) and a
symmetric key (SK) are used:

ðn7KTTPÞðn7AKÞðn7BKÞð

!ðnSKÞðnLÞðnMÞ

/fNRO ,B,L,fMgSK ,fjfNRO ,B,L,fMgSK jgAK�S.

(fNRR, A, L; xNRR).

decrypt xNRR asfjfNRR ,A,L,fMgSK ; jgBK þ in

/fSUB ,B,L,SK,fjfSUB ,B,L,SKjgAK�S.

(fCON,A,B,L,SK; xCon).

decrypt xCon as fjfCON ,A,B,L,SK; jgKTTP þ in 0

j !ðfNRO ,B; xL,xEnMsg,xNROÞ.

decrypt xNRO as fjfNRO ,B,xL,xEnMsg; jgAK þ in

/fNRR ,A,xL,fjfNRR ,A,xL,xEnMsgjgBK�S.

(fCON,A, B xL; xK, xCon).

decrypt xCon as fjfCON ,A,B,xL,xK; jgKTTP þ in

decrypt xEnMsg as f; xMsggxK in 0

j !ðfSUB ,B; xL,xSK ,xSubÞ.

decrypt xSub as fjfSUB ,B,xL,xSK; jgAK þ in

/fCON ,A,B,xL,xSK ,fjfCON ,A,B,xL,xSKjgKTTP�S.

/fCON ,A,B,xL,xSK ,fjfCON ,A,B,xL,xSKjgKTTP�S:0
Þ

where the restrictions ðn7KTTPÞ, ðn7AKÞ, and ðn7BKÞ define the key pairs used in the scope of the protocol. In particular
the private keys, denoted by a minus, are used only by the subprocess modelling the behavior of the correspondent user; for
example only the subprocess modelling the principal A can use the key AK� . Public keys, denoted by a plus, are known by all
the principals in the network so that all of them can check signatures (or encrypt messages if the protocol requires this).

In this scenario we have modelled only three principals, each one with a specific role, but this is not realistic. In fact, in
the global network there are many principals and this gives chances to an attack. Therefore we have to extend the protocol
above with multiple principals, simply indexing each name, each variable and each parallel composition construct. We
consider a scenario in which there are a trusted third party (an honest principal) and many initiators and responders. The
set X contains both initiators and responders, so each principal can be one or the other. The resulting protocol is the
following:
let XDS in ðn7 i2X AKiÞðn7KTTPÞð
ji2X jj2X
 !ðnSKijÞðnLijÞðnMijÞ
/fNRO ,Ij ,Lij ,fMijgSKij
,fjfNRO ,Ij ,Lij ,fMijgSKij

jgAK�i
S.
ðfNRR ,Ii ,Lij; xNRRijÞ.
decrypt xNRRij as fjfNRR ,Ii ,Lij ,fMijgSKij
; jgAK þj

in
/fSUB ,Ij ,Lij ,SKij ,fjfSUB ,Ij ,Lij ,SKijjgAK�i
S.
ðfCON ,Ii ,Ij ,Lij ,SKij; xConijÞ.
decrypt xConij as fjfCON ,Ii ,Ij ,Lij ,SKij; jgKTTP þ in 0
Ji2X jj2X
 !ðfNRO ,Ij; xLij ,xEnMsgij ,xNROijÞ.
decrypt xNROij as fjfNRO ,Ij ,xLij ,xEnMsgij; jgAK þi
in
/fNRR ,Ii ,xLij ,fjfNRR ,Ii ,xLij ,xEnMsgijjgAK�j
S.
ðfCON ,Ii ,Ij ,xLij; xKij ,xConijÞ.
decrypt xConij as fjfCON ,Ii ,Ij ,xLij ,xKij; jgKTTP þ in
decrypt xEnMsgij as f; xMsgijgxKij
in 0
Ji2X jj2X
 !ðfSUB,Ij; xLij ,xSKij ,xSubijÞ.
decrypt xSubij as fjfSUB ,Ij ,xLij ,xSKij; jgAK þi
in
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able 9
nalysis of t

(AN)

(ANp)

(ANm)

(AVar)

(AEnc)

(AAEnc)

(AOut)

(AInp)

(ASDec)

(AADec)

(AASig)

(ANew)

(AANew)

(APar)

(ARep)

(ANil)
/fCON ,Ii ,Ij ,xLij ,xSKij ,fjfCON ,Ii ,Ij ,xLij ,xSKijjgKTTP�S.
/fCON ,Ii ,Ij ,xLij ,xSKij ,fjfCON ,Ii ,Ij ,xLij ,xSKijjgKTTP�S:0

Þ

3. Control flow analysis

In this section we introduce our Control Flow Analysis (CFA) as an extension of [13]. The aim of the CFA is to collect
information about the behavior of a process and to store them in some data structuresA, called analysis components. To be
finite, static analysis is forced to compute approximations rather than exact answers. Therefore the analysis can give false
positives but it has to preserve soundness.

We will use Flow Logic settings for the specification and the proofs. It is a formalism for specifying static analysis and it
focuses on the relationship between an analysis estimate and the process to be analysed, formally:

AFP

which is a predicate that holds when A is a description of the behavior of the process P.
CFA abstracts the executions and represents only some aspects of the behavior of a process which can also be infinite.

We will prove the correctness of the analysis by showing that the analysis components A are such that the property they
represent also holds when the process evolves. Formally:

AFP4P-P0 ) AFP0

The Flow Logic specifications can be of the following formats.

Definition 1 (Verbose Format). A Verbose Flow Logic specification records information about a process globally, by rules of
the form

AFP iff a logic formula F holds

that means that the analysis components A are estimates of the process P if and only if the logic formula F holds.
erms and processes.

rFn : W iff bnc 2 W
rFmþ : W iff bmþ c 2 W
rFm� : W iff bm�c 2 W
rFx : W iff rðbxcÞDW
rFfE1 , . . . ,EkgE0

: W iff
Vk

i ¼ 0 rFEi : Wi48U0 , . . . ,Uk :
Vk

i ¼ 0 Ui 2 Wi

) fU1 , . . . ,UkgU0
2 W

rFfjE1 , . . . ,EkjgE0
: W iff

Vk
i ¼ 0 rFEi : Wi48U0 , . . . ,Uk :

Vk
i ¼ 0 Ui 2 Wi

) fjU1 , . . . ,UkjgU0
2 W

r,kF/E1 , . . . ,EkS:P iff
Vk

i ¼ 1 rFEi : Wi48U1 , . . . ,Uk :
Vk

i ¼ 1 Ui 2 Wi

) ð/U1 , . . . ,UkS 2 k4r,kFPÞ

r,kFðE1 , . . . ,Ej; xjþ1 , . . . ,xkÞ:P

iff
Vj

i ¼ 1 rFEi : Wi48/U1 , . . . ,UkS 2 k :
Vj

i ¼ 1 Ui 2 Wi

) ð
Vk

i ¼ jþ1 Ui 2 rðbxicÞ4r,kFPÞ

r,kF decrypt E as fE1 , . . . ,Ej; xjþ1 , . . . ,xkgE0
in P

iff rFE : W4
Vj

i ¼ 0 rFEi : Wi48fU1 , . . . ,UkgU0
2 W

4
Vj

i ¼ 0 Ui 2 Wi ) ð
Vk

i ¼ jþ1 Ui 2 rðbxicÞ4r,kFPÞ

r,kFdecrypt E as fjE1 , . . . ,Ej; xjþ1 , . . . ,xkjgE0
in P

iff rFE : W4
Vj

i ¼ 0 rFEi : Wi48fjU1 , . . . ,UkjgU0
2 W :

8U00 2 W0 : 8ðm
þ ,m�Þ : ðU0 ,U00Þ ¼ ðbm

�c,bmþ cÞ

4
Vj

i ¼ 1 Ui 2 Wi ) ð
Vk

i ¼ jþ1 Ui 2 rðbxicÞ4r,kFPÞ

r,kFdecrypt E as fjE1 , . . . ,Ej; xjþ1 , . . . ,xkjgE0
in P

iff rFE : W4
Vj

i ¼ 0 rFEi : Wi48fjU1 , . . . ,UkjgU0
2 W :

8U00 2 W0 : 8ðm
þ ,m�Þ : ðU0 ,U00Þ ¼ ðbm

þ c,bm�cÞ

4
Vj

i ¼ 1 Ui 2 Wi ) ð
Vk

i ¼ jþ1 Ui 2 rðbxicÞ4r,kFPÞ

r,kFðn nÞP iff r,kFP

r,kFðn7mÞP iff r,kFP

r,kFP1jP2 iff r,kFP14r,kFP2

r,kF!P iff r,kFP

r,kF0 iff true
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Definition 2 (Succinct Format). A Succinct Flow Logic specification records information about a process locally, by rules of
the form

AFP : A0 iff a logic formula F holds

where A0 is an analysis component that holds information only about the process P and it is not known anywhere else in
the analysis.

The analysis components record canonical values from the set bValc ranged over by U to represent values generated by
the same restriction. The component k 2 PðbValc�Þ collects the tuples of canonical values corresponding to the values
communicated in the global network while r : bVarc-PðbValcÞ records the canonical values corresponding to the values
that variables may become bound to. A predicate r,kFP says that r and k are valid analysis results describing the behavior
of P. To analyse the expressions it is used the form rFE : W to describe a set of canonical values W 2 PðbValcÞ that the
expression E may evaluate.

The analysis of terms and processes is described in Table 9. The rules (AN), (ANp) and (ANm) say that names may
evaluate to themselves iff the canonical names are in W. The rule (AVar) says that variables may evaluate to the values
described by r for the corresponding canonical variable. The rules (AEnc) and (AAEnc) use the analysis predicate
recursively to evaluate all the subexpressions in the encryption and they require W to contain all the encrypted values that
can be formed combining the values that subexpressions may evaluate to. The rule (AOut) says that the expressions are
evaluated and it is required that all the combinations of the values found by this evaluation are recorded in k. The rule
(AInp) says that the first j expressions in the input construct are evaluated to be the sets Wi for i=1,y,j; if the pattern match
with the values in k is successful, the remaining values of the k-tuple are recorded in r as possible binding of the variables
Table 10
The meta level analysis.

(MLet) r,kFG let XDS in M iff r,kFG½X/S0 �M where S0D finGðSÞ and bS0c ¼ bGðSÞc
(MIPar) r,kFGji2SM iff

V
a2GðSÞr,kFGM½i/a�

(MINew) r,kFGðni2S
n

ai
ÞM iff r,kFGM

(MIANew) r,kFGðn7 i2S
m

ai
ÞM iff r,kFGM

(MN) rFn
i
: W iff bn

i
c 2 W

(MNp) rFmþ
i
: W iff bmþ

i
c 2 W

(MNm) rFm�
i
: W iff bm�

i
c 2 W

(MVar) rFx
i
: W iff rðbx

i
cÞDW

(MEnc) rFfME1 , . . . ,MEkgME0
: W iff

Vk
i ¼ 0 rFMEi : Wi48U0 , . . . ,Uk :Vk

i ¼ 0 Ui 2 Wi ) fU1 , . . . ,UkgU0
2 W

(AAEnc) rFfjME1 , . . . ,MEkjgME0
: W

iff
Vk

i ¼ 0 rFMEi : Wi48U0 , . . . ,Uk :Vk
i ¼ 0 Ui 2 Wi ) fjU1 , . . . ,UkjgU0

2 W
(MOut) r,kFG/ME1 , . . . ,MEkS:M iff

Vk
i ¼ 1 rFMEi : Wi48 U1 , . . . ,Uk :Vk

i ¼ 1 Ui 2 Wi ) /U1 , . . . ,UkS 2 k4r,kFGM

(MInp) r,kFGðME1 , . . . ,MEj; xjþ1 , . . . ,xkÞ:M

iff
Vj

i ¼ 1 rFMEi : Wi48/U1 , . . . ,UkS 2 k :
Vj

i ¼ 1 Ui 2 Wi

) ð
Vk

i ¼ jþ1 Ui 2 rðbxicÞ4r,kFGMÞ

(ASDec) r,kFGdecrypt ME as fME1 , . . . ,MEj; xjþ1 , . . . ,xkgME0
in M

iff rFME : W4
Vj

i ¼ 0 rFMEi : Wi4

8fU1 , . . . ,UkgU0
2 W4

Vj
i ¼ 0 Ui 2 Wi

) ð
Vk

i ¼ jþ1 Ui 2 rðbxicÞ4r,kFGMÞ

(AADec) r,kFGdecrypt ME as fjME1 , . . . ,MEj; xjþ1 , . . . ,xkjgME0
in M

iff rFGME : W4
Vj

i ¼ 0 rFGMEi : Wi4
8fjU1 , . . . ,UkjgU0

2 W : 8U00 2 W0 :

8ðmþ ,m�Þ : ðU0 ,U00Þ ¼ ðbm
�c,bm�cÞ

4
Vj

i ¼ 1 Ui 2 Wi ) ð
Vk

i ¼ jþ1 Ui 2 rðbxicÞ4r,kFGMÞ

(AASig) r,kFGdecrypt ME as fjME1 , . . . ,MEj; xjþ1 , . . . ,xkjgME0
in M

iff rFGME : W4
Vj

i ¼ 0 rFMEi : Wi4
8fjU1 , . . . ,UkjgU0

2 W : 8U00 2 W0 :

8ðmþ ,m�Þ : ðU0 ,U00Þ ¼ ðbm
þ c,bm�cÞ

4
Vj

i ¼ 1 Ui 2 Wi ) ð
Vk

i ¼ jþ1 Ui 2 rðbxicÞ4r,kFGMÞ

(ANew) r,kFGðnniÞM iff r,kFGM

(AANew) r,kFGðn7miÞM iff r,kFGM

(APar) r,kFGM1jM2 iff r,kFGM14r,kFM2

(ARep) r,kFG!M iff r,kFGM

(ANil) r,kFG0 iff true
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Table 11
The attacker’s capabilities.

(1) The attacker may learn by eavesdroppingV
k2Ak
8/V1 , . . . ,VkS 2 k :

Vk
i ¼ 1 Vi 2 rðz�Þ

(2) The attacker may learn by decrypting messages with keys already knownV
k2AEnc

8fV1 , . . . ,VkgV0
2 rðz�Þ : V0 2 rðz�Þ )

Vk
i ¼ 1 Vi 2 rðz�ÞV

k2AEnc
8fjV1 , . . . ,Vkjgmþ 2 rðz�Þ : m� 2 rðz�Þ )

Vk
i ¼ 1 Vi 2 rðz�ÞV

k2AEnc
8fjV1 , . . . ,Vkjgm� 2 rðz�Þ : mþ 2 rðz�Þ )

Vk
i ¼ 1 Vi 2 rðz�Þ

(3) The attacker may construct new encryptions using the keys knownV
k2AEnc

8V0 , . . . ,Vk :
Vk

i ¼ 0 Vi 2 rðz�Þ ) fV1 , . . . ,VkgV0
2 rðz�ÞV

k2AEnc
8mþ ,V1 , . . . ,Vk : mþ 2 rðz�Þ4

Vk
i ¼ 1 Vi 2 rðz�Þ ) fjV1 , . . . ,Vkjgmþ 2 rðz�ÞV

k2AEnc
8m� ,V1 , . . . ,Vk : m� 2 rðz�Þ4

Vk
i ¼ 1 Vi 2 rðz�Þ ) fjV1 , . . . ,Vkjgm� 2 rðz�Þ

(4) The attacker may actively forge new communicationsV
k2Ak
8V1 , . . . ,Vk :

Vk
i ¼ 1 Vi 2 rðz�Þ ) /V1 , . . . ,VkS 2 k

(5) The attacker initially has some knowledge

fn� ,m7
� g [N f Drðz�Þ
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and the continuation process is analysed. The rules (ASDec), (AADec) and (AASig) evaluate the expression E into the set W
and the first j expressions in the decryption constructs are evaluated to be the sets Wi for i=1,y,j; if the pattern match with
the values in k is successful, the remaining values of the k-tuple are recorded in r as possible binding of the variables and
the continuation process is analysed. Notice that the original syntax [4,7] uses only the rule (AADec) to define both
asymmetric decryption and signature while we introduce here two rules imposing an order in the choice of the keys to
make our analysis more efficient. The rules (ANew), (AANew), (APar) and (ARep) require that the subprocesses are
analysed. The rule (ANil) deals with the trivial case.

Whenever the requirements hold, the continuation process is analysed.
The analysis is also defined for the meta level as an extension of the analysis seen so far and it takes the form

r,kFGM

where G : SetID [ PðIndexfinÞ-PðIndexfinÞ is a mapping from set identifiers to finite sets of indexes. To solve the problem of
infinite object level processes we use again the canonical representation of the names. The analysis is defined in Table 10,
and the new rules are explained below; the rest of the rules are similar to the ones for analysing object level (the one seen
so far), except that they range over indexed names and variables.

The rule (MLet) updates G with the mapping X/S0, where S0 is required to be finite and it has the same canonical names
as the set S. The rule (MIPar) expresses that the analysis holds for all the processes where the index i is substituted by all
the elements in GðSÞ. The rules (MINew) and (MIANew) ignore the restriction operators.

3.1. The attacker

The attacker is unique and runs its protocol P� following the Dolev–Yao formula FDY
RM [6]. We write PsysjP� to show that

an arbitrary attacker controls the whole network while principals exchange messages using the protocol. A protocol
process Psys has type whenever it is close, all its free names are in N f , all the arities of the sent or received messages are in
Ak and all the arities of the encrypted or decrypted messages are in AEnc . These three sets are finite, like N c and X c , used to
collect all the names and all the variables, respectively, in the process Psys. The attacker uses a new name, n�=2N c , and a new
variable, z�=2X c , which do not overlap the names and the variables used by the legitimate principals. It is again considered a
process with finitely many canonical names and variables. A formula FDY

RM of the type ðN f ,Ak,AEncÞ, which is capable of
characterizing the potential effect of all the attackers P� of the type ðN f ,Ak,AEncÞ, is defined as the conjunction of the
components in Table 11.

4. Non-repudiation analysis

Non-repudiation guarantees that the principals exchanging messages cannot falsely deny having sent or received the
messages. This is done using evidences [11] that allow to decide unquestionably in favor of the fair principal whenever
there is a dispute. In particular, non-repudiation of origin provides the recipient with proof of origin while non-repudiation
of receipt provides the originator with proof of receipt. Evidences [18] should have verifiable origin, integrity and validity.

The syntax of the process calculus LySa has to be extended to guarantee, given a protocol, the non-repudiation property,
i.e. authentication (only the sender of the message can create it), integrity and freshness. This is done using electronic
signatures and unique identifiers for users and sessions. To this aim, we introduce two sets, used in the body of the
messages to collect information that will be useful to perform the analysis: ID, where id 2 ID is a unique identifier for a
principal, and NR, where nr 2 NR says that non-repudiation property is required for that part of the message nr. To include
this sets in our analysis, a redefinition of the syntax of LySa is required, as shown in Table 12. Observe that, with respect to
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Table 12
Syntax of LySa calculus extended with principal identifiers.

e :: ¼ Terms

n Name

x Variable

[m+]id Public key

[m�]id Private key

fe1 , . . . ,ekge0
Symmetric encryption

fje1 , . . . ,ekjg
u
e0

Asymmetric encryption

P :: ¼ Processes

/e1 , . . . ,ekS:P Output

ðe1 , . . . ,ej; xjþ1 , . . . ,xkÞ:P Input

decrypt e as fe1 , . . . ,ej; xjþ1 , . . . ,xkge0
in P Symmetric decryption

decrypt e as fje1 , . . . ,ej; xjþ1 , . . . ,xkjg
u
e0

in P Asymmetric decryption

ðnnÞP Restriction

ðn7 ½m�idÞP Pair restriction

P1jP2 Parallel composition

½!P�id Replication

0 Nil

Table 13
Functions F and G.

F : E� ID-e
� F ðn,idÞ ¼ n

� F ðx,idÞ ¼ x

� F ðmþ ,idÞ ¼ ½mþ �id
� F ðm� ,idÞ ¼ ½m��id
� F ðfE1 , . . . ,EkgE0

,idÞ ¼ fF ðE1 ,idÞ, . . . ,F ðEk ,idÞgF ðE0 ,idÞ

� F ðfjE1 , . . . ,EkjgE0
,idÞ ¼ fjF ðE1 ,idÞ, . . . ,F ðEk ,idÞjguF ðE0 ,idÞ

G : P � ID-P
� Gð/E1 , . . . ,EkS:P,idÞ ¼/F ðE1 ,idÞ, . . . ,F ðEk ,idÞS:GðP,idÞ

� GððE1 , . . . ,Ej; xjþ1 , . . . ,xkÞ:P,idÞ

¼ ðF ðE1 ,idÞ, . . . ,F ðEj ,idÞ; xjþ1 , . . . ,xkÞ:GðP,idÞ

� Gðdecrypt E as fE1 , . . . ,Ej; xjþ1 , . . . ,xkgE0
in P,idÞ

¼ decrypt F ðE,idÞ as fF ðE1 ,idÞ, . . . ,F ðEj ,idÞ; xjþ1 , . . . ,xkgF ðE0 ,idÞ in GðP,idÞ

� Gðdecrypt E as fjE1 , . . . ,Ej; xjþ1 , . . . ,xkjg
u
E0

in P,idÞ

¼ decrypt F ðE,idÞ as fjF ðE1 ,idÞ, . . . ,F ðEj ,idÞ; xjþ1 , . . . ,xkjg
u
F ðE0 ,idÞ in GðP,idÞ

� GððnnÞP,idÞ ¼ ðnnÞGðP,idÞ

� Gððn7mÞP,idÞ ¼ ðn7 ½m�idÞGðP,idÞ

� GðPjQ ,idÞ ¼ GðP,idÞjGðQ ,id0Þ

� Gð!P,idÞ ¼ ½!P�id
� Gð0,idÞ ¼ 0
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the LySa calculus in Table 1, a unique identifier u is associated to encryption and decryption and an id 2 ID is associated to
public and private keys to specify the principal that encrypts a given message. The redefinition is obtained applying the
function G to the processes of the protocol analysed that acts recursively on the subprocesses and redefines subterms using
another function, called F . The definition of the functions F and G, that map standard terms and processes into the
extended ones, is shown in Table 13. Notice that the functions provide a new syntax in which:
�
 id s are attached whenever an asymmetric key appears;

�
 a session identifier u is attached to each asymmetric encryption and decryption;

�
 parallel composition assigns a different id to each process, because the two processes belong to a different user;

�
 replication has a particular form that the semantic rules use to create replications of the process with different id s (that

have to be unique).
Notice that we have generalized the approach [7] proposed by Gao to provide freshness property in a protocol. Indeed, the
author defines two functions to attach a session identifier to each statement; then, she redefines the semantics, using the
functions to avoid to redefine the structural congruence. In our analysis, because of the redefinition of the latter, we do not
have to modify significantly the reduction semantics, except that the rule (NRNRep) takes advantage of a particular syntax
that allows to attach different and unique identifiers to each process. Thus has to be removed because the structural
equivalence does not hold in this case. The rule (NRNRep) will appropriately treat the behavior of the replication
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statement, as reported in Table 17. Finally, we have to add the following annotations to the signatures:
�

Tab
Red

fn

fn

fn

fn

fn

fn

fn

fn

fn

fn

fn

fn

fn

fn

fn
[from id] is associated to encryption and it means that the recipient expects a message from id.

�
 [check NR] is associated to decryption and it means that for all the elements of the set NR, non-repudiation property

must be guaranteed. It is interesting to notice that the elements in the set NR can specify a part of the message, not
necessarily the whole message, according to the definition of non-repudiation.

The syntax of asymmetric encryption and decryption becomes:
�
 fje1, . . . ,ekjg
u
e0
½from id�
�
 decrypt e as fje1, . . . ,ej; xjþ1, . . . ,xkjg
u
e0
½check NR� in P
Notice that the annotation [from id] and the label u have a different role in the analysis. The first says that the principal
who encrypted the message must be the same specified in the label associated to the private key used, while the second
expresses that the message has to belong to a particular session.

In practice, when there is a violation due to the id s, it means that the attacker encrypted a message and sent it to a
principal who expected it from another principal (remember that the attacker can even use a key known different from his
key). Instead, when there is a violation due to the labels u, it means that the attacker made a replay attack using a message
exchanged in a previous session.

4.1. Dynamic property

To guarantee the dynamic property, the values have to be redefined into NRVal, attaching the identifiers to the
asymmetric key pairs and the annotations in the encryption constructs as shown below:

NRV :: ¼ n

j½mþ �id
j½m��id
jfNRV1, . . . ,NRVkgNRV0

jfjNRV1, . . . ,NRVkjg
u
NRV0
½from id�

Furthermore, our extension involves redefinition of the semantics, of free names, of structural congruence, and of
a�equivalence, as described in Tables 17, 14, 15, 16, respectively.

Notice that there are the following differences between the previous semantics and the one used in the analysis:
�
 The asymmetric encryption and decryption are redefined adding a session identifier u, an identifier that shows who has
encrypted a given cipher message, and the annotations above.

�
 New terms e and processes P are used instead of the previous, E and P, which do not carry annotations.

�
 The process !P is not structurally equivalent to Pj!P, because of the recursive definition of the function G.
le 14
efinition of the function fn(P).

(n)
¼
def
fng

([m+]id)
¼
def
f½mþ �idg

([m�]id)
¼
def
f½m��idg

(x)
¼
def

|

ðfe1 , . . . ,ekge0
Þ

¼
def

fnðe0Þ [ � � � [ fnðekÞ

ðfje1 , . . . ,ekjg
u
e0
½from id�Þ

¼
def

fnðe0Þ [ � � � [ fnðekÞ

ð/e1 , . . . ,ekS:PÞ ¼
def

fnðe1Þ [ � � � [ fnðekÞ [ fnðPÞ
ððe1 , . . . ,ej; xjþ1 , . . . ,xkÞ:PÞ ¼

def
fnðe1Þ [ � � � [ fnðejÞ [ fnðPÞ

(decrypt e as fe1 , . . . ,ej; xjþ1 , . . . ,xkge0
in P)

¼
def

fnðeÞ [ fnðe0Þ [ � � � [ fnðejÞ [ fnðPÞ
ðdecrypt e as fje1 , . . . ,ej; xjþ1 , . . . ,xkjg

u
e0
½check NR� in PÞ

¼
def

fnðeÞ [ fnðe0Þ [ � � � [ fnðejÞ [ fnðPÞ
ððnnÞPÞ

¼
def

fnðPÞ\fng
ððn7 ½m�idÞPÞ ¼

def
fnðPÞ\f½mþ �id ,½m��idg

ðP1jP2Þ ¼
def

fnðP1Þ [ fnðP2Þ

ð½!P�idÞ ¼
def

fnðGðP,idÞÞ

(0)
¼
def

|
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Table 15
Redefinition of the structural congruence P� P0 .

P �P
P1 �P2 ) P2 �P1

P1 �P24P2 �P3 ) P1 �P3

P1 �P2 )

/e1 , . . . ,ekS:P1 �/e1 , . . . ,ekS:P2

ðe1 , . . . ,ej; xjþ1 , . . . ,xkÞ:P1 � ðe1 , . . . ,ej; xjþ1 , . . . ,xkÞ:P2

decrypt e as fe1 , . . . ,ej; xjþ1 , . . . ,xkge0
in P1

� decrypt e as fe1 , . . . ,ej; xjþ1 , . . . ,xkge0
in P2

decrypt e as fje1 , . . . ,ej; xjþ1 , . . . ,xkjg
u
e0
½check NR� in P1

� decrypt e as fje1 , . . . ,ej; xjþ1 , . . . ,xkjg
u
e0
½check NR� in P2

ðnnÞP1 � ðnnÞP2

ðn7 ½m�idÞP1 � ðn7 ½m�idÞP2

P1jP3 �P2jP3

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

P1 � P2 ) ½!P1�id � ½!P2�id if both P1 and P2 are annotated with the same id

P1jP2 �P2jP1

ðP1jP2ÞjP3 �P1jðP2jP3Þ

Pj0�P
ðnnÞ0� 0

ðnn1Þðnn2ÞP � ðnn2Þðnn1ÞP
ðnnÞðP1jP2Þ �P1jðnnÞP2 if n=2fnðP1Þ

ðn7 ½m�idÞ0� 0

ðn7 ½m1�idÞðn7 ½m2�idÞP � ðn7 ½m2�idÞðn7 ½m1�idÞP
ðn7 ½m�idÞðP1jP2Þ �P1jðn7 ½m�idÞP2 if ½mþ �id ,½m��id=2fnðP1Þ

ðn7 ½m�idÞðnnÞP � ðnnÞðn7 ½m�idÞP
P1 �

a P2 ) P1 �P2

Table 16

Redefinition of the a�equivalence.

P �a P
P1 �

a P2 implies P2 �
a P1

P1 �
a P2 and P2 �

a P3 implies P1 �
a P3

ðnn1ÞP �
a
ðnn2ÞðP½n1/n2�Þ if n2=2fnðPÞ

ðn7 ½m1�idÞP �
a
ðn7 ½m2�idÞðP½½m1�

þ

id /½m2�
þ

id ,½m1�
�
id/½m2�

�
id�Þ

if ½m2�
þ

id ,½m2�
�
id=2fnðPÞ
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�
 The rule (NRNRep) in Table 17 assures that each process has a different id; starting from a replication process tagged
with an identifier, the rule spawns a new process with the same identifier in parallel with another replication process
associated now to a fresh unique identifier id0.
We use the reference monitor semantics (-RM), an extension of the standard semantics (-R), to check the non-
repudiation property. Taking advantage of annotations, it forces some requirements and, if they are not meet, the process
execution is aborted.

The reference monitor semantics P-RMP0 takes annotations into account and defines RM as

RMðid,id0,u,u0,fNRV1, . . . ,NRVng,NRÞ

¼ ðid¼ id04u¼ u048nr 2 NR : nr 2 fNRV1, . . . ,NRVngÞ

where {NRV1,y,NRVn} is a set of redefined values for non-repudiation analysis. When the reference monitor is turned on,
the reduction relation -R checks if the requirements are met; otherwise R is considered true, i.e. the execution cannot be
aborted for the requirements above, it verify only the assumptions of the standard rules.

Intuitively, we verify if the message received is encrypted by the correct sender and if it is a fresh message.
The main difference between the standard semantics and the redefined semantics is expressed by the rule used to verify

a signature. In fact, when the reference monitor is turned on, the rules (NRNSig) ensure that the non-repudiation property
holds for the elements specified by the annotations.

Definition 3 (Dynamic non-repudiation). A process P ensures dynamic non-repudiation property if for all the executions

P-�P0-RMP
00

id¼ id0 and u¼ u0 and 8nr 2 NR : nr 2 fNRV1, . . . ,NRVkg when P0-RMP
00

is derived using (ASig) on
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Table 17
Redefinition of the semantics of LySa calculus.

(NRNCom)

Vj
i ¼ 1 NRVi ¼NRV 0i

/NRV1 , . . . ,NRVkS:PjðNRV 01 , . . . ,NRV 0j; xjþ1 , . . . ,xkÞ:P0-R

PjP0 ½NRVjþ1=xjþ1 , . . . ,NRVk=xk�

(NRNDec)

Vj
i ¼ 0 NRVi ¼NRV 0i

decrypt fNRV1 , . . . ,NRVkgNRV0

as fNRV 01 , . . . ,NRV 0j; xjþ1 , . . . ,xkgNRV 00
½check NR�

in P-RP½NRVjþ1=xjþ1 , . . . ,NRVk=xk�

(NRNADec)

Vj
i ¼ 1 NRVi ¼NRV 0i

decrypt fjNRV1 , . . . ,NRVkjg
u
½mþ �id

½from id0 � as

fjNRV 01 , . . . ,NRV 0j; xjþ1 , . . . ,xkjg
u0

½m��id
½check NR� in

P-RP½NRVjþ1=xjþ1 , . . . ,NRVk=xk�

(NRNSig)

Vj
i ¼ 1 NRVi ¼NRV 0i4RMðid,id0 ,u,u0 ,fNRVjþ1 , . . . ,NRVkg,NRÞ

decrypt fjNRV1 , . . . ,NRVkjg
u
½m��id
½from id0 � as

fjNRV 01 , . . . ,NRV 0j; xjþ1 , . . . ,xkjg
u0

½mþ �id
½check NR� in

P-RP½NRVjþ1=xjþ1 , . . . ,NRVk=xk�

(NRNNew)
P-RP0

ðnnÞP-RðnnÞP 0

(NRNANew)
P-RP 0

ðn7 ½m�idÞP-Rðn7 ½m�idÞP0

(NRNPar)
P1-RP01

P1jP2-RP01jP2

(NRNCongr)
P �P04P0-RP

00

4P 00 �P 000

P-RP
000

(NRNRep) ½!P�id-RGðP,idÞj½!P�id0

Table 18

Non-repudiation analysis of terms r ‘ e : W.

(NRAN) rFn : W iff bnc 2 W
(NRANp) rF½mþ �id : W iff ½bmþ c�idpW
(NRANm) rF½m��id : W iff ½bm�c�idpW
(NRAVar) rFx : W iff rðbxcÞDW
(NRAEnc) rFfe1 , . . . ,ekge0

: W iff
Vk

i ¼ 0 rFei : Wi4

8NRV0 , . . . ,NRVk :
Vk

i ¼ 0 NRVipWi )

fNRV1 , . . . ,NRVkgNRV0
pW

(NRAAEnc) rFfje1 , . . . ,ekjg
u
e0
½from id� : W

iff
Vk

i ¼ 0 rFei : Wi4

8NRV0 , . . . ,NRVk :
Vk

i ¼ 0 NRVipWi )

fjNRV1 , . . . ,NRVkjg
u
½NRV0 �id0

½from id�pW
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decrypt fjNRV1, . . . ,NRVkjg
u
½m��id
½from id0� as

fjNRV 01, . . . ,NRV 0j; xjþ1, . . . ,xkjg
u0

½mþ �id
½check NR� in P

Definition 3 says that an extended process P ensures non-repudiation property if there is no violation in any of its

execution.

4.2. Static property

A component cDPðNRÞ will collect all the labels nr such that the non-repudiation property for the element nr is
possibly violated.

The p operator is introduced to ignore the extension of the syntax and is defined as

NRVpW iff there exists V 2 Val such that NRV ¼ V and V 2 W

where the relation NRV=V is defined to be the least equivalence between an element in NRVal and an element in Val that
inductively ignores the identifiers and the annotations.

The analyses of the terms and of the processes are shown in Tables 18 and 19. The rule (NRASig) checks the non-
repudiation property whenever a signature is verified.

To prove the correctness of our analysis we must prove that it respects the extended operational semantics of LySa, i.e. if
r,k,cFP then the triple ðr,k,cÞ is a valid estimate for all the states passed through in a computation of P. Furthermore, we
prove that when c is empty, then the reference monitor is useless.
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Table 19

Non-repudiation analysis of processes r,k,cFP.

(NRAOut) r,k,cF/e1 , . . . ,ekS:P
iff
Vk

i ¼ 1 rFei : Wi4

8NRV1 , . . . ,NRVk :
Vk

i ¼ 1 NRVipWi )

ð/NRV1 , . . . ,NRVkS 2 k4r,k,cFPÞ
(NRAInp) r,k,cFðe1 , . . . ,ej; xjþ1 , . . . ,xkÞ:P

iff
Vj

i ¼ 1 rFei : Wi4

8/NRV1 , . . . ,NRVkS 2 k :
Vj

i ¼ 1 NRVipWi )

ð
Vk

i ¼ jþ1 NRVi 2 rðbxicÞ4r,k,cFPÞ
(NRADec) r,k,cFdecrypt e as fe1 , . . . ,ej; xjþ1 , . . . ,xkge0

in P
iff rFe : W4

Vj
i ¼ 0 rFei : Wi4

8fNRV1 , . . . ,NRVkgNRV0
pW4

Vj
i ¼ 0 NRVipWi )

ð
Vk

i ¼ jþ1 NRVi 2 rðbxicÞ4r,k,cFPÞ
(NRAADec) r,k,cFdecrypt e as fje1 , . . . ,ej; xjþ1 , . . . ,xkjg

u0

e0
½check NR� in P

iff rFe : W4
Vj

i ¼ 0 rFei : Wi4
8fjNRV1 , . . . ,NRVkjg

u
NRV0
½from id�pW :

8NRV 00pW0 : 8ðm
þ ,m�Þ : ðNRV0 ,NRV 00Þ

¼ ð½bm�c�id0 ,½bm
þ c�id0 Þ4

Vj
i ¼ 1 NRVipWi )

ð
Vk

i ¼ jþ1 NRVi 2 rðbxicÞ4r,k,cFPÞ
(NRASig) r,k,cFdecrypt e as fje1 , . . . ,ej; xjþ1 , . . . ,xkjg

u0

e0
½check NR� in P

iff rFe : W4
Vj

i ¼ 0 rFei : Wi4
8fjNRV1 , . . . ,NRVkjg

u
NRV0
½from id�pW :

8NRV 00pW0 : 8m
þ ,m� ,id,id0 : ðNRV0 ,NRV 00Þ

¼ ð½bmþ c�id0 ,½bm
�c�id0 Þ4

Vj
i ¼ 1 NRVipWi )

ð
Vk

i ¼ jþ1 NRVi 2 rðbxicÞ4r,k,cFP4
8nr 2 NR : ðidaid03uau03
nr=2fNRVjþ1 , . . . ,NRVkgÞ ) bnrc 2 cÞ

(NRANew) r,k,cFðnnÞP iff r,k,cFP
(NRAANew) r,k,cFðn7mÞP iff r,k,cFP
(NRAPar) r,k,cFP1jP2 iff r,k,cFP14r,k,cFP2

(NRARep) r,k,cF½!P�id iff r,k,cFGðP,idÞ

(NRANil) r,k,cF0 iff true
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Our proof uses three lemmas, defined and proved below. The first and the second show that estimates are resistant to
substitution of closed terms for variables, both in the terms and in the processes; the third says that an estimate for an
extended process P is valid for every process congruent to P.

Lemma 1 (Substitution in expressions). If rFe : W and e0 2 rðxÞ then rFe½e0=x� : W.

Proof. By structural induction over expressions.

Case (Name). We assume that rFn : W and e0 2 rðxÞ. Since n¼ n½e0=x�, it is immediate that also rFn½e0=x� : W.

Case (Public key). We assume that rF½mþ �id : W and e0 2 rðxÞ. Since ½mþ �id ¼ ½m
þ �id½e0=x�, it is immediate that also

rF½mþ �id½e0=x� : W.

Case (Private key). We assume that rF½m��id : W and e0 2 rðxÞ. Since ½m��id ¼ ½m
��id½e0=x�, it is immediate that also

rF½m��id½e0=x� : W.

Case (Variable). We assume that rFx0 : W (therefore rðx0ÞDW) and e0 2 rðxÞ. There are two cases:
1.
 If eax then x0 ¼ x0½e0=x� and it is immediate that also rFx0½e0=x� : W.

2.
 If e¼ x then x0½e0=x� ¼ e0, by hypothesis we have e0 2 rðxÞ and rðx0ÞDW, then it holds that rFe0 : W, in which case

rFx0½e0=x� : W.
Case (Encryption). We assume that rFfe1, . . . ,ekge0
: W and e0 2 rðxÞ. By the induction hypothesis it holds that

rFe0½e0=x� : W, . . . ,rFek½e0=x� : W. Therefore, by the rule (NRAAEnc), we have rFfe1, . . . ,ekge0
½e0=x� : W.

Case (Asymmetric encryption). We assume that rFfje1, . . . ,ekjg
u
e0
½from id� : W and e0 2 rðxÞ. By the induction hypothesis

it holds that rFe0½e0=x� : W, . . . ,rFek½e0=x� : W. Therefore, by the rule (NRAEnc), we have rFfje1, . . . ,ekjg
u
e0
½from id�½e0=x� : W.

Since both the bases and the inductive steps have been proved, it follows that Lemma 1 holds for all the expressions by

structural induction. &
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Lemma 2 (Substitution in processes). If r,k,cFP and e 2 rðxÞ then r,k,cFP½e=x�.

Proof. By structural induction over processes.

Case (Output). We assume

P ¼/e1, . . . ,ekS:P0

By hypothesis we have
�
 r,k,cF/e1, . . . ,ekS:P0

�
 e 2 rðxÞ
By Lemma 1 and the induction hypothesis on the subprocesses, it holds that
�
 rFe1½e=x� : W, . . . ,rFek½e=x� : W

�
 r,k,cFP0½e=x�
Therefore, by the rule (NRAOut), we have r,k,cFP½e=x�.

Case (Input). We assume

P ¼ ðe1, . . . ,ej; xjþ1, . . . ,xkÞ:P0

By hypothesis we have
�
 r,k,cFðe1, . . . ,ej; xjþ1, . . . ,xkÞ:P0

�
 e 2 rðxÞ
By Lemma 1 and the induction hypothesis on the subprocesses, it holds that
�
 rFe1½e=x� : W, . . . ,rFej½e=x� : W

�
 rFxjþ1½e=x� : W, . . . ,rFxk½e=x� : W

�
 r,k,cFP0½e=x�
Therefore, by the rule (NRAInp), we have r,k,cFP½e=x�.

Case (Symmetric decryption). We assume

P ¼ decrypt e as fe1, . . . ,ej; xjþ1, . . . ,xkge0
in P0

By hypothesis we have
�
 r,k,cFdecrypt e as fe1, . . . ,ej; xjþ1, . . . ,xkge0
in P0
�
 e 2 rðxÞ
By Lemma 1 and the induction hypothesis on the subprocesses, it holds that
�
 rFe1½e=x� : W, . . . ,rFej½e=x� : W

�
 rFxjþ1½e=x� : W, . . . ,rFxk½e=x� : W

�
 r,k,cFP0½e=x�
Therefore, by the rule (NRADec), we have r,k,cFP½e=x�.

Case (Asymmetric decryption). We assume

P ¼ decrypt e as fje1, . . . ,ej; xjþ1, . . . ,xkjg
u
e0
½check NR� in P0

By hypothesis we have
�
 r,k,cFdecrypt e as fje1, . . . ,ej; xjþ1, . . . ,xkjg
u
e0
½check NR� in P0
�
 e 2 rðxÞ
By Lemma 1 and the induction hypothesis on the subprocesses, it holds that
�
 rFe1½e=x� : W, . . . ,rFej½e=x� : W

�
 rFxjþ1½e=x� : W, . . . ,rFxk½e=x� : W

�
 r,k,cFP0½e=x�
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Therefore, by the rule (NRAADec), we have r,k,cFP½e=x�.

Case (Signature). We assume
P ¼ decrypt e as fje1, . . . ,ej; xjþ1, . . . ,xkjg
u
e0
½check NR� in P0

By hypothesis we have
�
 r,k,cFdecrypt e as fje1, . . . ,ej; xjþ1, . . . ,xkjg
u
e0
½check NR� in P0
�
 e 2 rðxÞ
By Lemma 1 and the induction hypothesis on the subprocesses, it holds that
�
 rFe1½e=x� : W, . . . ,rFej½e=x� : W

�
 rFxjþ1½e=x� : W, . . . ,rFxk½e=x� : W

�
 r,k,cFP0½e=x�
Therefore, by the rule (NRASig), we have r,k,cFP½e=x�.

Case (Restriction). We assume

P ¼ ðnnÞP0

By hypothesis we have
�
 r,k,cFðnnÞP0

�
 e 2 rðxÞ
By the induction hypothesis on the subprocesses, it holds that
�
 r,k,cFP0½e=x�
Therefore, by the rule (NRANew), we have r,k,cFP½e=x�.

Case (Pair restriction). We assume

P ¼ ðn7 ½m�idÞP0

By hypothesis we have
�
 r,k,cFðn7 ½m�idÞP0

�
 e 2 rðxÞ
By the induction hypothesis on the subprocesses, it holds that
�
 r,k,cFP0½e=x�
Therefore, by the rule (NRANew), we have r,k,cFP½e=x�.

Case (Parallel composition). We assume

P ¼P1jP2

By hypothesis we have
�
 r,k,cFP1jP2
�
 e 2 rðxÞ
By the induction hypothesis on the subprocesses, it holds that
�
 r,k,cFP1½e=x�
�
 r,k,cFP2½e=x�
Therefore, by the rule (NRAPar), we have r,k,cFP½e=x�.

Case (Replication). We assume

P ¼ ½!P0�id
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By hypothesis we have
�
 r,k,cF½!P0�id

�
 e 2 rðxÞ
By the induction hypothesis on the subprocesses, it holds that
�
 r,k,cFGðP0,idÞ½e=x�
Therefore, by the rule (NRARep), we have r,k,cFP½e=x�.

Case (Nil). We assume

P ¼ 0

Since 0¼ 0½e=x� and r,k,cF0, trivially it holds r,k,cFP½e=x�.

Since both the basis and the inductive steps have been proved, it follows that Lemma 2 holds for all the processes by

structural induction. &

Lemma 3 (Invariance of structural congruence). If P �Q and r,k,cFP then r,k,cFQ.

Proof. By inspection of the clauses defining P �Q.

Case (Pj0�P). We assume r,k,cFPj0, then it must be r,k,cFP and r,k,cF0, therefore r,k,cFP.

Other cases can be proved in a similar way, therefore Lemma 3 holds for all the clauses. &

Now, we can prove the correctness of the analysis by the theorem defined below.

Theorem 1 (Correctness of the non-repudiation analysis). If r,k,cFP and c¼ | then P ensures static non-repudiation.

Proof. The theorem can be proven by induction in the length of the execution sequences, showing that if r,k,cFP and
P-RP0 then r,k,cFP0 and furthermore if c¼ | then P-RMP0 does not violate the non-repudiation property.

Case (NRNCom). We assume

r,k,cF/e1, . . . ,ekS:Pjðe01, . . . ,e0j; xjþ1, . . . ,xkÞ:Q

which amounts to:
1.

Vk

i ¼ 1 rFei : Wi V

2.
 8NRV1, . . . ,NRVk :

k
i ¼ 1 NRVipWi ) /NRV1, . . . ,NRVkS 2 k
3.
 r,k,cFPV

4.
 j

i ¼ 1 rFe0i : W
0

i V V

5.
 8/NRV1, . . . ,NRVkS 2 k :

j
i ¼ 1 NRVipW0i ) ð

k
i ¼ jþ1 NRVi 2 rðbxicÞ4r,k,cFQÞVj
6.
 i ¼ 1 ei ¼ e0i
and we have to prove

r,k,cFPjQ½ejþ1=xjþ1, . . . ,ek=xk�

From the hypothesis we obtain:
�
 (1) )
Vk

i ¼ 1 eipWiV

�
 k

i ¼ 1 fvðeiÞ ¼ | and (2) ) /e1, . . . ,ekS 2 kV

�
 (4) and (6) ) j

i ¼ 1 eipW0iV

�
 (5) ) k

i ¼ jþ1 ei 2 rðbxicÞ and r,k,cFQ

�
 Lemma 1 ) r,k,cFQ½ejþ1=xjþ1, . . . ,ek=xk�
Therefore, when c¼ |, we get immediately

/e1, . . . ,ekS:Pjðe01, . . . ,e0j; xjþ1, . . . ,xkÞ:Q-RM

PjQ½ejþ1=xjþ1, . . . ,ek=xk�

Case (NRNDec). We assume

r,k,cFdecrypt fe1, . . . ,ekge0
as fe01, . . . ,e0j; xjþ1, . . . ,xkge0

0
in P
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which amounts to:
1.

Vk

i ¼ 0 rFei : Wi V

2.
 8NRV0, . . . ,NRVk :

k
i ¼ 0 NRVipWi ) fNRV1, . . . ,NRVkgNRV0

pWV

3.
 j

i ¼ 0 rFe0i : W
0

V V

4.
 8fNRV1, . . . ,NRVkgNRV0

pW : j
i ¼ 0 NRVipW0i ) ð

k
i ¼ jþ1 NRVi 2 rðbxicÞ4r,k,cFPÞVj
5.
 i ¼ 0 ei ¼ e0i
and we have to prove

r,k,cFP½ejþ1=xjþ1, . . . ,ek=xk�

From the hypothesis we obtain:
�
 (1) and
Vk

i ¼ 0 fvðeiÞ ¼ |)
Vk

i ¼ 0 eipWi
�
 (2) ) fe1, . . . ,ekge0
pWV
�
 (3) and (5) ) j
i ¼ 0 ei 2 W

0

V

�
 (4) ) k

i ¼ jþ1 ei 2 rðbxicÞ and r,k,cFP

�
 Lemma 1 ) r,k,cFP½ejþ1=xjþ1, . . . ,ek=xk�
Therefore, when c¼ |, we get immediately

decrypt fe1, . . . ,ekge0
as fe01, . . . ,e0j; xjþ1, . . . ,xkge0

0

in P-RMP½ejþ1=xjþ1, . . . ,ek=xk�

Case (NRNADec). We assume

r,k,cFdecrypt fje1, . . . ,ekjg
u
e0
½from id0� as

fje01, . . . ,e0j; xjþ1, . . . ,xkjg
u0

e0
0
½check NR� in P

which amounts to:
1.

Vk

i ¼ 0 rFei : Wi V

2.
 8NRV0, . . . ,NRVk :

k
i ¼ 0 NRVipWi )

fjNRV1, . . . ,NRVkjg
u
NRV0
½from id�pWV
3.
 j
i ¼ 0 rFe0i : W

0

4.
 8fjNRV1, . . . ,NRVkjgNRV0
½from id�pW : 8NRV 00pW0 : 8ð½m

þ �id0 ,½m
��id0 Þ :

ðNRV0,NRV 00Þ ¼ ð½bm
�c�id0 ,½bm

þ c�id0 Þ4
Vj

i ¼ 1 NRVipW0i ) ð
Vk

i ¼ jþ1 NRVi 2 rðbxicÞ4r,k,cFPÞV

5.
 j

i ¼ 1 ei ¼ e0i

and we have to prove

r,k,cFP½ejþ1=xjþ1, . . . ,ek=xk�:

From the hypothesis we obtain:
�
 (1) and
Vk

i ¼ 0 fvðeiÞ ¼ |)
Vk

i ¼ 0 eipWi
�
 (2) ) fje1, . . . ,ekjg
u
e0
½from id�pWV
�
 (3) and (5) ) j
i ¼ 0 ei 2 W

0

V

�
 (4) ) k

i ¼ jþ1 ei 2 rðbxicÞ and r,k,cFP

�
 Lemma 1 ) r,k,cFP½ejþ1=xjþ1, . . . ,ek=xk�
Therefore, when c¼ |, we get immediately

decrypt fje1, . . . ,ekjg
u
½mþ �id
½from id0� as

fje01, . . . ,e0j; xjþ1, . . . ,xkjg
u0

½m��id
½check NR� in P-RM

P½ejþ1=xjþ1, . . . ,ek=xk�:

Case (NRNSig). We assume

r,k,cFdecrypt fje1, . . . ,ekjg
u
e0
½from id0� as

fje01, . . . ,e0j; xjþ1, . . . ,xkjg
u0

e0
0
½check NR� in P
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which amounts to:
1.

Vk

i ¼ 0 rFei : Wi V

2.
 8NRV0, . . . ,NRVk :

k
i ¼ 0 NRVipWi )

fjNRV1, . . . ,NRVkjg
u
NRV0
½from id�pWV
3.
 j
i ¼ 0 rFe0i : W

0

4.
 8fjNRV1, . . . ,NRVkjg
u
NRV0
½from id�pW : 8NRV 00pW0 : 8ð½m

þ �id0 ,½m
��id0 Þ :

ðNRV0,NRV 00Þ ¼ ð½bm
þ c�id0 ,½bm

�c�id0 Þ4
Vj

i ¼ 1 NRVipW0i ) ð
Vk

i ¼ jþ1 NRVi 2 rðbxicÞ4r,k,cFP48nr 2 NR :
ðidaid03uau03nr=2fNRVjþ1, . . . ,NRVkgÞ ) bnrc 2 cÞV
5.
 j
i ¼ 1 ei ¼ e0i4RMðid,id0,u,u0,ejþ1, . . . ,ek,NRÞ
and we have to prove

r,k,cFP½ejþ1=xjþ1, . . . ,ek=xk�:

From the hypothesis we obtain:
�
 (1) and
Vk

i ¼ 0 fvðeiÞ ¼ |)
Vk

i ¼ 0 eipWi
�
 (2) ) fje1, . . . ,ekjg
u
e0
½from id�pWV
�
 (3) and (5) ) j
i ¼ 0 ei 2 W

0

V

�
 (4) ) k

i ¼ jþ1 ei 2 rðbxicÞ and r,k,cFP

�
 Lemma 1 ) r,k,cFP½ejþ1=xjþ1, . . . ,ek=xk�
We observe that 8nr 2 NR : ðidaid03uau03nr=2fejþ1, . . . ,ekgÞ ) bnrc 2 c follows from (5) and since c¼ |, must be the case
that

RMðid,id0,u,u0,fe1, . . . ,eng,NRÞ

Thus the condition of the rule (NRNSig) is fulfilled for -RM .

Case (NRNNew). We assume r,k,cFðn nÞP, therefore ðnnÞP-RðnnÞP0 using rule (NRNNew) and the hypothesis P-RP0.
We have to prove r,k,cFðn nÞP0.
By the induction hypothesis r,k,cFP0 and by the rule (NRANew) r,k,cFðnnÞP0 and, when c¼ |, it follows immediately

that ðnnÞP-RMðnnÞP0.
Case (NRNANew). We assume r,k,cFðn7 ½m�idÞP, therefore ðn7 ½m�idÞP-Rðn7 ½m�idÞP0 using rule (NRNANew) and the

hypothesis P-RP0.
We have to prove r,k,cFðn7 ½m�idÞP0.
By the induction hypothesis r,k,cFP0 and by the rule (NRAANew) r,k,cFðn7 ½m�idÞP0 and, when c¼ |, it follows

immediately that ðn7 ½m�idÞP-RMðn7 ½m�idÞP0.
Case (NRNPar). We assume

r,k,cFP1jP2

which amounts to:
1.
 r,k,cFP1
2.
 r,k,cFP2
3.
 P1-RP01
and we have to prove

r,k,cFP01jP2:

By the induction hypothesis r,k,cFP0 and by the rule (NRAPar) r,k,cFP01jP2 and, when c¼ |, it follows immediately
that P1jP2-RMP01jP2.

Case (NRNCongr). We assume

r,k,cFP

which amounts to:
1.
 P �P�

2.
 P�-RP��

3.
 P�� �P0
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and we have to prove

0
r,k,cFP :

By Lemma 3 and (1) we obtain r,k,cFP�. By the induction hypothesis r,k,cFP�� and by Lemma 3 r,k,cFP0 and, when

c¼ |, it follows immediately that P-RMP0.
Case (NRNRep). We assume

r,k,cF½!P�id

which means that r,k,cFGðP,idÞ; we have to prove r,k,cFGðP,idÞj½!P�id0 .

But c does not contain information about id s, therefore r,k,cFGðP,id�Þ for all id� 2 ID, which means that r,k,cF½!P�id0 .
Therefore we get r,k,cFGðP,idÞj½!P�id0 and, when c¼ |, it follows immediately that ½!P�id-RMGðP,idÞj½!P�id0 .

Since both the basis and the inductive steps have been proved, it follows that Theorem 1 holds for all the rules by

induction. &

4.3. The attacker

In the setup of PjP�, the attacker process P� has to be annotated with the extended syntax. We will use a unique label u�
to indicate the session and a unique label id� to indicate the encryption place used by the attacker. The Dolev–Yao
condition has to be redefined to be used for the non-repudiation analysis, as shown in Table 20.

The main enhancement with the usual LySa attacker can be seen in the rule (3) in Table 20: whenever the attacker is
able to get an encryption key and generate an encrypted message with that key, the receiver checks the id of the sender,
and, in case the latter does not correspond to the intended one, the component c becomes non-empty, as a signal of a non-
repudiation violation.

Now we have to prove that the redefined Dolev–Yao condition holds and this is done by the following theorem.

Theorem 2 (Correctness of Dolev–Yao condition). If ðr,k,cÞ satisfies FDY
RM of type ðN f ,Ak,AEncÞ then r,k,cFQ for all attackers

Q of extended type ðfz�g,N f [ fn�g,Ak,AEncÞ.

Proof. By structural induction on Q .

Case of (NRAOut). We assume:

Q ¼/e1, . . . ,ekS:P

and we need to find W1, . . . ,Wk and show
Table 20
Redefinition of the attacker’s capabilities.

(1) The attacker may learn by eavesdroppingV
k2Ak
8/NRV1 , . . . ,NRVkS 2 k :

Vk
i ¼ 1 NRVi 2 rðz�Þ

(2) The attacker may learn by decrypting messages with keys already knownV
k2AEnc

8fNRV1 , . . . ,NRVkgNRV0
2 rðz�Þ : NRV0 2 rðz�Þ )

Vk
i ¼ 1 NRVi 2 rðz�ÞV

k2AEnc
8fjNRV1 , . . . ,NRVkjg

u
½mþ �id

½from id0 � 2 rðz�Þ : ½m��id 2 rðz�Þ

)
Vk

i ¼ 1 NRVi 2 rðz�ÞV
k2AEnc

8fjNRV1 , . . . ,NRVkjg
u
½m��id
½from id0 � 2 rðz�Þ : ½mþ �id 2 rðz�Þ

)
Vk

i ¼ 1 NRVi 2 rðz�Þ
(3) The attacker may construct new encryptions using the keys knownV

k2AEnc
8NRV0 , . . . ,NRVk :

Vk
i ¼ 0 NRVi 2 rðz�Þ ) fNRV1 , . . . ,NRVkgNRV0

2 rðz�ÞV
k2AEnc

8½mþ �id ,NRV1 , . . . ,NRVk : ½m
þ �id 2 rðz�Þ4

Vk
i ¼ 1 NRVi 2 rðz�Þ

) fjNRV1 , . . . ,NRVkjg
u�
½mþ �id�

2 rðz�Þ
V

k2AEnc
8½m��id ,NRV1 , . . . ,NRVk : ½m

��id 2 rðz�Þ4
Vk

i ¼ 1 NRVi 2 rðz�Þ
) fjNRV1 , . . . ,NRVkjg

u�
½m��id�

2 rðz�Þ4

8decrypt fjNRV 01 , . . . ,NRV 0kjg
u�
½m��id�

½from id0 � as

fjNRV
00

1 , . . . ,NRV
00

j ; xjþ1 , . . . ,xkjg
u
00

½mþ �
id
00
½check NR� in P :

8nr 2 NRððid0aid�3u
00

au�3
nr=2fNRV 0jþ1 , . . . ,NRV 0kgÞ ) bnrc 2 cÞ

(4) The attacker may actively forge new communicationsV
k2Ak
8NRV1 , . . . ,NRVk :

Vk
i ¼ 1 NRVi 2 rðz�Þ ) /NRV1 , . . . ,NRVkS 2 k

(5) The attacker initially has some knowledge

fn� ,½m7 �id� g [N f Drðz�Þ



ARTICLE IN PRESS

M. Brus�o, A. Cortesi / Computer Languages, Systems & Structures 36 (2010) 352–377374
1.

Vk

i ¼ 1 rFei : Wi and for all NRV1, . . . ,NRVk with
Vk

i ¼ 1 NRVipWi that

2.
 /NRV1, . . . ,NRVkS 2 k

4.
 r,k,cFP
We choose Wið1r irkÞ as the least set such that rFe i : Wi and prove that WiDrðz�Þ. If e i has free variables z1,y,zm then Wi

consists of all values e i½NRV1=z1, . . . ,NRVm=zm� where NRVlð1r lrmÞ 2 rðz�Þ. This proves (1).

(2) is true by definition of k.

By hypothesis, P has type ðfz�g,N f [ fn�g,Ak,AEncÞ and (3) is proved by induction hypothesis.

Case of (NRAInp). We assume:

Q ¼ ðe1, . . . ,ej; xjþ1, . . . ,xkÞ:P

and we need to find W1, . . . ,Wj and show
1.

Vj

i ¼ 1 rFei : Wi and for all /NRV1, . . . ,NRVkS 2 k with
Vj

i ¼ 1 NRVipWi thatV

2.
 k

i ¼ jþ1 NRVi 2 rðbxicÞ
3.
 r,k,cFP
We choose Wið1r ir jÞ as the least set such that rFe i : Wi and prove that WiDrðz�Þ. If ei has free variables z1,y,zm then Wi

consists of all values e i½NRV1=z1, . . . ,NRVm=zm� where NRVlð1r lrmÞ 2 rðz�Þ. This proves (1).

Since
Vj

i ¼ 1 WiDrðz�Þ, we have
Vj

i ¼ 1 NRVi 2 W and by FDY
RM we get

Vk
i ¼ jþ1 NRVi 2 rðz�Þ and, since bxic ¼ z�, we have (2).

By hypothesis, P has type ðfz�g,N f [ fn�g,Ak,AEncÞ and (3) is proved by induction hypothesis.

Case of (NRADec). We assume:

Q ¼ decrypt e as fe1, . . . ,e j; xjþ1, . . . ,xkge0
in P

and we need to find W and W0, . . . ,Wj and show
1.
 rFe : W4
Vj

i ¼ 0 rFei : Wi and for all fNRV1, . . . ,NRVkgNRV0
pW with

Vj
i ¼ 0 NRVipWi thatV
2.
 k
i ¼ jþ1 NRVi 2 rðbxicÞ
3.
 r,k,cFP
We choose W as the least set such that rFe : W and prove that WDrðz�Þ. If e has free variables z1,y,zm then W consists of all
values e½NRV1=z1, . . . ,NRVm=zm� where NRVið1r irmÞ 2 rðz�Þ. The same development for W0, . . . ,Wj proves (1).

Since W0Drðz�Þ, we have NRV0 2 W and by FDY
RM we get

Vk
i ¼ jþ1 NRVi 2 rðz�Þ and, since bxic ¼ z�, we have (2).

By hypothesis, P has type ðfz�g,N f [ fn�g,Ak,AEncÞ and (3) is proved by induction hypothesis.

Case of (NRAADec). We assume:

Q ¼ decrypt e as fje1, . . . ,e j; xjþ1, . . . ,xkjg
u0

e0
½check NR� in P

and we need to find W and W0, . . . ,Wj and show
1.
 rFe : W4
Vj

i ¼ 0 rFei : Wi and for all fjNRV1, . . . ,NRVkjg
u
NRV0
½from id�pW : 8NRV 00pW0 : 8ðm

þ ,m�Þ :
ðNRV0,NRV 00Þ ¼ ð½bm

�c�id0 ,½bm
þ c�id0 Þ with

Vj
i ¼ 1 NRVipWi thatV
2.
 k
i ¼ jþ1 NRVi 2 rðbxicÞ
3.
 r,k,cFP
We choose W as the least set such that rFe : W and prove that WDrðz�Þ. If e has free variables z1,y,zm then W consists of all
values e½NRV1=z1, . . . ,NRVm=zm� where NRVið1r irmÞ 2 rðz�Þ. The same development for W0, . . . ,Wj proves (1).

Since W0Drðz�Þ, we have NRV0 2 W and by FDY
RM we get

Vk
i ¼ jþ1 NRVi 2 rðz�Þ and, since bxic ¼ z�, we have (2).

By hypothesis, P has type ðfz�g,N f [ fn�g,Ak,AEncÞ and (3) is proved by induction hypothesis.

Case of (NRASig). We assume:

Q ¼ decrypt e as fje1, . . . ,e j; xjþ1, . . . ,xkjg
u0

e0
½check NR� in P

and we need to find W and W0, . . . ,Wj and show
1.
 rFe : W4
Vj

i ¼ 0 rFei : Wi and for all fjNRV1, . . . ,NRVkjg
u
NRV0
½from id�pW : 8NRV 00pW0 : 8m

þ ,m�,id,id0 :
ðNRV0,NRV 00Þ ¼ ð½bm

þ c�id0 ,½bm
�c�id0 Þ with

Vj
i ¼ 1 NRVipWi thatV
2.
 k
i ¼ jþ1 NRVi 2 rðbxicÞ
3.
 r,k,cFP

4.
 8nr 2 NR : ð:RMðid,id0,u,u0,fNRVjþ1, . . . ,NRVkg,fnrgÞ ) bnrc 2 cÞ
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We choose W as the least set such that rFe : W and prove that WDrðz�Þ. If e has free variables z1,y,zm then W consists of

all values e½NRV1=z1, . . . ,NRVm=zm� where NRVið1r irmÞ 2 rðz�Þ. The same development for W0, . . . ,Wj proves (1).
Since W0Drðz�Þ, we have NRV0 2 W and by FDY
RM we get

Vk
i ¼ jþ1 NRVi 2 rðz�Þ and 8nr 2 NR : ð:RMðid,id0,u,u0,

fNRVjþ1, . . . ,NRVkg,fnrgÞ ) bnrc 2 cÞ. Since bxic ¼ z�, we have (2) and (4).

By hypothesis, P has type ðfz�g,N f [ fn�g,Ak,AEncÞ and (3) is proved by induction hypothesis.

Case of (NRANew). We assume:

Q ¼ ðnnÞP

and we need to show r,k,cFP . But this is true by induction hypothesis.

Case of (NRAANew). We assume:

Q ¼ ðn7mÞP

and we need to show r,k,cFP . But this is true by induction hypothesis.

Case of (NRAPar). We assume:

Q ¼P1jP2

and we need to show
1.
 r,k,cFP1
2.
 r,k,cFP2
But this is true by induction hypothesis.

Case of (NRARep). We assume:

Q ¼ ½!P �id

and we need to show r,k,cFGðP ,idÞ. But GðP ,idÞ has the same type of ½!P �id, therefore r,k,cFGðP ,idÞ by induction

hypothesis.

The case (NRANil) is trivial.

Since both the basis and the inductive steps have been proved, it follows that Theorem 2 holds for all the rules of the

analysis by structural induction. &

Theorem 3. If P guarantees static non-repudiation then P guarantees dynamic non-repudiation.

Proof. If r,k,|FPsys and ðr,k,|Þ satisfies FDY
RM then, by Theorems 1 and 2, RM does not abort PsysjQ regardless of the choice

of attacker Q. &

4.4. Meta level analysis

The analysis seen so far only deals with one session. In order to get a more realistic analysis, it has to be enhanced to a
meta level, like in [4,7]. We have to add indexes to names and variables, as explained in Section 2, so a scenario with
multiple principals can be modelled. The meta level non-repudiation analysis takes the form r,k,cFGM.

Example 2. Let us now consider the protocol seen in Example 1, namely the Zhou–Gollmann protocol [17]. The whole
protocol has been extended using the annotations and the functions F and G. The resulting protocol is the following:
let XDS in ðn7 i2X ½AKi�Ii
Þðn7 ½TTP�TTPÞð
ji2X jj2X
 !ðnSKijÞðnLijÞðnMijÞ
/fNRO ,Ij ,Lij ,fMijgSKij
,

fjfNRO ,Ij ,Lij ,fMijgSKij
jg

uij

½AK�i �Ii
½from Ii�S.
ðfNRR ,Ii ,Lij; xNRRijÞ.
decrypt xNRRij as fjfNRR ,Ii,Lij ,fMijgSKij
; jg

uij

½AK þj �Ij
½check fNRR ,Ii,Lij ,fMijgSKij
� in
/fSUB,Ij ,Lij ,SKij ,fjfSUB ,Ij ,Lij ,SKijjg
uij

½AK�i �Ii
½from Ii�S.
ðfCON ,Ii,Ij ,Lij ,SKij; xConijÞ.
decrypt xConij as fjfCON ,Ii ,Ij ,Lij ,SKij; jg
uij

½KTTP þ �TTP
½check fCON ,Ii ,Ij ,Lij ,SKij� in 0
Ji2X jj2X
 !ðfNRO ,Ij; xLij ,xEnMsgij ,xNROijÞ.
decrypt xNROij as fjfNRO ,Ij ,xLij ,xEnMsgij; jg
uij

½AK þi �Ii
½check fNRO ,Ij ,xLij ,xEnMsgij� in
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/fNRR ,Ii ,xLij ,fjfNRR ,Ii ,xLij ,xEnMsgijjg
uij

½AK�j �Ij
½from Ij�S.
ðfCON ,Ii ,Ij ,xLij; xKij ,xConijÞ.
decrypt xConij as fjfCON ,Ii ,Ij ,xLij ,xKij; jg
uij

½KTTP þ �ITTP
½check fCON ,Ii ,Ij ,xLij ,xKij� in
decrypt xEnMsgij as f; xMsgijgxKij
in 0
Ji2X jj2X
 !ðfSUB ,Ij; xLij ,xSKij ,xSubijÞ:decrypt xSubij as
fjfSUB ,Ij ,xLij ,xSKij; jg
uij

½AK þi �Ii
½check fSUB ,Ij ,xLij ,xSKij� in
/fCON ,Ii ,Ij ,xLij ,xSKij ,
fjfCON ,Ii,Ij ,xLij ,xSKijjg
uij

½KTTP��TTP
½from TTP�S.
/fCON ,Ii ,Ij ,xLij ,xSKij ,
fjfCON ,Ii,Ij ,xLij ,xSKijjg
uij

½KTTP��TTP
½from TTP�S:0
Þ

After completing the analysis the component c is an empty set, i.e. the protocol guarantees non-repudiation even under

attack. In fact, the attacker cannot create new encryptions because he has not knowledge about the private keys and he

cannot make a replay attack because there is a unique label that identifies the session.

4.5. Over-approximation

When the analysis checks a protocol, we could expect that if the component c is empty then the protocol is correct, else
the protocol does not guarantee the non-repudiation protocol. But the analysis cannot be precise, because of the infinitely
many possible scenarios in which a protocol can be executed and the additional assumptions that can be made. Because of
the over-approximation, our analysis can give sometimes a false positive, i.e. the component c is non-empty but the
protocol is correct. It is important that the analysis does not mistake in the opposite direction, and this is what happens in
practice, because the analysis says that the property holds if the protocol behaves as expected, therefore it never says that a
protocol is correct even if it does not guarantee the non-repudiation property. Intuitively, when a protocol guarantees
authentication, freshness and integrity of the messages, it should guarantee even non-repudiation.

An example of false positive is given by the protocol described in [5] by Cederquist et al. In fact it does not use labels to
identify sessions, and this is why our analysis says that this protocol does not guarantee non-repudiation property.
However, the protocol is correct, because it distinguishes session runs thanks to the usage of fresh keys per-session. Our
analysis requires a session identifier, but there is not any element that is used in each message of the protocol, so a
principal cannot verify if a message belongs to a particular session or not; indeed, without the assumption of the unique
keys, an attacker could pretend to be another principal, starting the protocol after eavesdropping a protocol run. The main
protocol is the following:
O
A-B : {
 M for EOOM ¼ sigAðB,TTP,H,fjK ,AjgTTPÞ
B-A : E
 for EORM=sigB(EOOM)
A-B : K
B-A : E
 for EORK=sigB(A, H, K)
ORK

where H=h({M}K) and h is a hash function. There are other two subprotocols used in case of dispute, i.e. when a principal
does not finish the protocol execution, but we are interested only in the main protocol.

The encoding with annotation is the following:
let XDS in ðn7 i2X ½AKi�Ii
Þðn7KTTPÞð
ji2X jj2X
 !ðnSKijÞðnHijÞðnMijÞ
/fMijgSKij
,fjIj ,TTP,Hij ,fjSKij ,Iijg

uij

½KTTP þ �TTP
½from TTP�jg

uij

½AK�i �Ii
½from Ii�S:ð; xEORMijÞ.
decrypt xEORMij as fjfjIj ,TTP,Hij ,
fjSKij ,Iijg
uij

½KTTP þ �TTP
½from TTP�jg

uij

½AK�i �Ii
½from Ii�jg

uij

½AK þj �Ij
½check fjIj ,TTP,Hij ,fjSKij ,Iijg
uij

½KTTP þ �TTP
½from TTP�jg� in
/SKijS:ð; xEORKijÞ.
decrypt xEORKij as fjIi ,Hij ,SKij; g
uij

½AK þj �Ij
½check Hij ,SKij� in 0
ji2X jj2X
 !ð; xEnMsgij ,xEOOMijÞ.
decrypt xEOOMij as fjIj ,TTP; xHij ,xTTPjg
uij

½AK þi �Ii
½check xHij� in
/fjxEOOMijjg
uij

½AK�j �Ij
½from Ij�S:
ð; xSKijÞ:
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decrypt xEnMsgij as fxMsgijgxSKij
in
/fjIi ,xHij ,xSKijjgS:0

Þ

Because of the lack of labels, the result of the analysis shows that a possible flaw may arise. The component c contains all
the elements that are also in NR when jSjZ2. In fact, it does not use labels to identify the session, and this is why our
analysis says that this protocol does not guarantee non-repudiation property. However, the protocol is correct, because of
an implicit additional assumption on the uniqueness of the keys, which prevents from replay attacks.

5. Conclusions and future works

This paper extends the work by Buchholtz and Gao who defined a suite of analyses for security protocols, namely
authentication, confidentiality [10], freshness [9], simple [3] and complex [8] type flaws. The annotations we introduce
allow to express non-repudiation also for part of the message: this allows to tune the analysis focussing on relevant
components. It results that the CFA framework developed for the process calculus LySa can be extended to security
properties by identifying suitable annotations, thus re-using most of the theoretical work.
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