
Contents lists available at SciVerse ScienceDirect

Computer Languages, Systems & Structures

Computer Languages, Systems & Structures] (]]]])]]]–]]]
1477-84

doi:10.1

n Corr

E-m

Pleas
Syste
journal homepage: www.elsevier.com/locate/cl
Abstract interpretation of database query languages
Raju Halder, Agostino Cortesi n

Universit �a Ca’ Foscari Venezia, Italy
a r t i c l e i n f o

Article history:

Received 3 March 2011

Received in revised form

5 July 2011

Accepted 28 October 2011

Keywords:

Databases

SQL

Program analysis

Abstract Interpretation
24/$ - see front matter & 2011 Published by

016/j.cl.2011.10.004

esponding author.

ail addresses: halder@unive.it (R. Halder), cor

e cite this article as: Halder R, Cortes
ms & Structures (2011), doi:10.101
a b s t r a c t

In this paper, we extend the Abstract Interpretation framework to the field of query

languages for relational databases as a way to support sound approximation techniques.

This way, the semantics of query languages can be tuned according to suitable abstractions

of the concrete domain of data. The abstraction of relational database system has many

interesting applications, in particular, for security purposes, such as fine grained access

control, watermarking, etc.

& 2011 Published by Elsevier Ltd.
1. Introduction

In the context of web-based services interacting with DBMS, there is a need of ‘‘sound approximation’’ of database
query languages, in order to minimize the weight of database replicas on the web or in order to hide specific data values
while giving them public access with larger granularity. There are many application areas where processing of database
information at different level of abstraction plays important roles, like the applications where users are interested only in
the query answers based on some properties of the database information rather than their exact values.

Given an exploratory nature of the applications, like decision support system, experiment management system, etc.,
many of the queries end up producing no result of particular interest to the user. Wasted time can be saved if users are
able to quickly see an approximate answer to their query, and only proceed with the complete execution if the
approximate answer indicates something interesting. The sound approximation of the database and its query languages
may also serve as a formal foundation of answering queries approximately as a way to reduce query response times, when
the precise answer is not necessary or early feedback is helpful.

Cooperative query answering [1,2] supports query relaxation and provides intelligent, approximate answers as well as
exact answers. It provides neighborhood or generalized information relevant to the original query and within a certain
semantic distance of the exact answer. Searching approximate values for a specialized value is equivalent to find an
abstract value of the specialized value, since the specialized values of the same abstract value constitute approximate
values of one another. Sound approximation of the database system provides a formal framework to the field of
cooperative query answering, ensuring three key issues: soundness, relevancy and optimality which are crucial in this
context.

When a database is being populated with tuples, all tuples must satisfy some properties which are represented in terms
of integrity constraints. For instance, the ages of the employees must be positive and must lie between 18 and 62. Any
Elsevier Ltd.

tesi@unive.it, cortesi@dsi.unive.it (A. Cortesi).

i A. Abstract interpretation of database query languages. Computer Languages,
6/j.cl.2011.10.004

www.elsevier.com/locate/cl
www.elsevier.com/locate/cl
dx.doi.org/10.1016/j.cl.2011.10.004
mailto:halder@unive.it
mailto:cortesi@unive.it
mailto:cortesi@dsi.unive.it
dx.doi.org/10.1016/j.cl.2011.10.004
dx.doi.org/10.1016/j.cl.2011.10.004
dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]2
transaction over the database must satisfy all these integrity constraints as well. The dynamic checking for any transaction
to ensure whether it violates the integrity constraints of the database can increase the run-time overhead significantly,
while managing the integrity constraint verification statically may have a significant impact in terms of efficiency.

The traditional Fine Grained Access Control (FGAC) [3] provides only two extreme views to the database information: either
public or private. There are many application areas where some partial or relaxed view of the confidential information is
desirable. For instance, consider a database in an online transaction system containing the credit card numbers for its
customers. According to the disclosure policy, the employees of the customer-care section are able to see the last four digits of
the credit card numbers, whereas all the other digits are completely hidden. The traditional FGAC policy is unable to implement
this type of security framework without changing the database structure.

An interesting solution to all these problems can be provided by extending to the database field a well known static analysis
technique, called Abstract Interpretation [4–7]. Abstract Interpretation, in fact, has been proved, in other contexts, as the best
way to provide a semantics-based approach to approximation. Its main idea is to relate concrete and abstract semantics where
the later are focussing only on some properties of interest. It was originally developed by Cousot and Cousot as a unifying
framework for designing and then validating static program analysis, and recently it becomes a general methodology for
describing and formalizing approximate computation in many different areas of computer science, like model checking,
verification of distributed memory systems, process calculi, security, type inference, constraint solving, etc. [7].

Relational databases enjoy mathematical formulations that yield to a semantic description using formal language like
relational algebra or relational calculus. To handle the aggregate functions or NULL values, some extensions of existing
relational algebra and relational calculus have been introduced [8–11]. However, this semantic description covers only a subset
of SQL [8,11,12]. In particular, problems arise when dealing with UPDATE, INSERT or DELETE statements since operators
originally proposed in relational algebra do not fully support them. This motivates our theoretical work aiming at defining a
complete denotational semantics of SQL embedded applications, both at the concrete and at the abstract level, as a basis to
develop an Abstract Interpretation of application programs embedded with SQL. In this setting, we represent all the syntactic
elements in SQL statements (for example, GROUP BY, ORDER BY, DISTINCT clauses, etc.) as functions and the semantics is
described as a partial functions on states which specify how expressions are evaluated and commands are executed. The
functional representation of syntactic elements increases the power of expressibility of the semantics and facilitates us to
provide a complete functional control on the corresponding domains of data. As far as we know, the impact of abstract
interpretation for sound approximation of database query languages has not yet been investigated. This is the aim of this paper.

The underlying concepts is that the applications embedded with SQL code basically interact with two worlds or
environments: user world and database world. Corresponding to these two worlds or environments we define two sets of
variables: Vd and Va. The set Vd is the set of database variables (i.e. the set of database attributes) and Va is a distinct set of
variables called application variables defined in the application. Variables from Vd are involved only in the SQL commands,
whereas variables in Va may occur in all type of instructions of the application. We denote any SQL command by a tuple
Csql9/Asql,fS. We call the first component Asql the action part and the second component f the pre-condition part of Csql. In an
abstract sense, any SQL command Csql first identifies an active data set from the database using the pre-condition f and then
performs the appropriate operations on that data set using the SQL action Asql. The pre-condition f appears in Csql as a well-
formed formula in first-order logic. The semantics defined this way can be lifted from the concrete domain of values to abstract
representation of them by providing suitable abstract operators corresponding to the concrete ones.

The structure of this paper1 is as follows: Section 2 recalls some preliminary concepts. Section 3 defines the abstract
syntax of the SQL embedded application. In Section 4, we define environments and states associated with the application.
Section 5 describes the semantics of the arithmetic and boolean expressions, whereas Sections 6 and 7 describe the formal
semantics of atomic and composite statements respectively. The correspondence of the proposed denotational semantic
approach with the relational algebra is discussed in Section 8. In Section 9, we lift the syntax and semantics of the query
languages from concrete domain to an abstract domain of interest by discussing the soundness and completeness of the
abstraction in details. In Section 10, we discuss the formal semantics of SQL statements with correlated and non-correlated
subquery. The interesting applications of suitable abstraction of the relational databases are discussed in Section 11.
Section 12 discusses the related work in the literature. Finally, in Section 13, we draw our conclusions.

2. Preliminaries

In this section, we recall some basic mathematical notation used in the literature, some ideas about Semantic
Interpretation of First-Order Logic [14] and the Abstract Interpretation theory [4–7].

2.1. Basic mathematical notation

If S and T are sets, then YðSÞ denotes the powerset of S, 9S9 the cardinality of S, S\T the set-difference between S and T,
S� T the Cartesian product. A poset P with ordering relation L is denoted as /P,LS, while /C,L, t , u ,>, ? S denotes the
complete lattice C with ordering L, lub t, glb u, greatest element >, and least element ?.
1 The paper is a revised and extended version of [13].

Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 3
We use the following functions in the subsequent section:
�

P
S

const(e) returns the constants appearing in e.

�
 var(e) returns the variables appearing in e.

�
 attr(t) returns the attributes associated with t.

�
 dom(f) returns the domain of f.

�
 target(f) returns a subset of dom(f) on which the application of f is restricted.
2.2. Semantic interpretation of well-formed formulas in first-order language

We now recall the concepts of the semantic interpretation of a well-formed formula f in a first-order language L [14].
Let F, R and C be the set of function symbols, relation symbols and constant symbols respectively in the first order

language L. A semantic structure B for L is a non-empty set DB, called the domain of the structure, along with the following:
1.
 For each function symbol f n,m 2 F, there is a function f Bn,m : Dn
B-DB.
2.
 For each relation symbol Rn,m 2 R, there is a subset RB
n,m of Dn

B .
3.
 For each constant symbol ck 2 C, there is an element cBk.
The subscript n in the notation f n,m and Rn,m gives the number of arguments of the corresponding function or relation,
whereas subscript m says it is the mth of the symbols requiring n arguments. In general, a subset of Dn

B is called an n-place
relation on DB, so that the subsets RB

n,m are just described as the relations on B, and the cBk s are called constants of B.
The functions f Bn,m 2 FB, relations RB

n,m 2 RB and constants cBk 2 CB are called the interpretations in the structure B of the
corresponding symbols of L.

We shall often write semantic structures using the notation, B¼ fDB, CB, FB, RBg. Let L be a language with equality. A
structure for L is said to be normal if the interpretation of ¼ is equality on its domain.

Suppose that the variables x1, x2, . . . , xn are interpreted respectively by elements a1, a2, . . . , an of DB. We shall
abbreviate this interpretation by ~a=~x. Then the interpretation in B of each term t 2 T of the first-order language L under
this interpretation of the variables, which we write as t½~a=~x�B, is defined recursively as follows:
�
 For each variable xi, we define xi½~a=~x�
B ¼ ai.
�
 For each constant symbol ck, we define ck½~a=~x�
B ¼ cBk.
�
 If f n,m is a function symbol in first-order language L and t1, t2, . . . , tn 2 T, then
f n,mðt1, t2, . . . , tnÞ½~a=~x�

B ¼ f Bn,mðt1½~a=~x�
B, . . . , tn½~a=~x�

BÞ.
Now let f be a well-formed-formula of L. The relation BFf½~a=~x� is read as ‘‘the formula f is true in, or is satisfied by, the
structure B when x1, x2, . . . , xn are interpreted by a1, a2, . . . , an’’. This is defined recursively on the construction of f as follows:
�
 Atomic formulas:

(a)
l
y

for each relation symbol Rn,m in L and terms t1, t2, . . . , tn: BFRn,mðt1, t2, . . . , tnÞ½~a=~x� if and only if
ðt1½~a=~x�

B, . . . , tn½~a=~x�
BÞ 2 RB

n,m;

(b)
 if t1 ¼ t2 are terms, then BFðt1 ¼ t2Þ½~a=~x� if and only if t1½~a=~x�

B ¼ t2½~a=~x�
B.
�
 For any formula of one of the forms :f, f13f2, f14f2, 8xi f, (xi f truth tables laws are followed, e.g.,

(a)
 BF ð:fÞ½~a=~x� if and only if it is not the case that BFf½~a=~x�.

(b)
 BF ðf13f2Þ½~a=~x� if and only if BF f1½~a=~x� or BF f2½~a=~x�.

(c)
 BF ðf14f2Þ½~a=~x� if and only if BF f1½~a=~x� and BF f2½~a=~x�.

(d)
 BFð8xi fÞ½~a=~x� if and only if for all b 2 DB, BFf½~a=~x½b=xiU.

(e)
 BFð(xi fÞ½~a=~x� if and only if there is some b 2 DB, BFf½~a=~x½b=xiU.
2.3. Abstract interpretation

The basic idea of abstract interpretation [4–7] is that the program behavior at different levels of abstraction is an
approximation of its formal concrete semantics. Approximated/abstract semantics is obtained from the concrete one by
substituting concrete domains of computation and their basic concrete semantic operations with abstract domains and
corresponding abstract semantics operations. The basic intuition is that abstract domains are representations of some
properties of interest about concrete domains’ values, while abstract operations simulate, over the properties encoded by
abstract domains, the behavior of their concrete counterparts. Abstract interpretation formalizes the correspondence
between the concrete semantics Sc1PU of syntactically correct program P 2 P in a given programming language P and its
abstract semantics Sa1PU which is a safe approximation of the concrete semantics Sc1PU.
ease cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
stems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]4
The concrete semantics belongs to concrete semantics domain Dc which is a complete lattice /Dc ,LcS partially
ordered by Lc . The ordering ALcB implies that A is more precise (concrete) than B. The abstract semantics domain is also a
complete lattice /Da,LaS ordered by abstract version La of the concrete one Lc .

The correspondence between these two concrete and abstract semantics domains Dc and Da form a Galois connection
ðDc ,a,g,Da

Þ, where the function a : Dc
�!Da and g : Da

�!Dc form an adjunction, namely 8A 2 Da, 8C 2 Dc : aðCÞLaA3

CLcgðAÞ where aðgÞ is the left(right) adjoint of gðaÞ. a and g are called abstraction and concretization maps respectively.
Let ðC,a,g,AÞ be a Galois connection, f : C-C be a concrete function and f] : A-A be an abstract function. f] is a sound,

i.e., correct approximation of f if fJgLgJf]. When the soundness condition is strengthened to equality, i.e., when
fJg¼ gJf], the abstract function f] is a complete approximation of f in A. This means that no loss of precision is
accumulated in the abstract computation through f]. Let uco be the upper closure operator on a lattice. Given A 2 ucoðCÞ

and a semantic function f : C-C, the notation f A9aJfJg denotes the best correct approximation of f in A. It has been
proved that, given an abstraction A, there exists a complete approximation of f : C-C in A if and only if the best correct
approximation fA is complete [7]. This means that completeness of fA is an abstract domain property, namely that it
depends on the structure of the abstract domains only.
3. Abstract syntax

The abstract syntax of the application programs embedded with SQL is depicted in Table 1. It is based on the following
syntactic sets:
Table
Abstra

c ::¼

e ::¼

b ::¼

t ::¼

af ::¼

f ::¼

gð~eÞ

r ::¼

s ::¼

h(e)

hðnÞ
~hð~xÞ:

f ð~eÞ :

Asql :

Csql::

I::¼

Please cite th
Systems & St
n : Z
 Integer
k : S
 String
c : C
 Constants
va : Va
 Application variables
vd : Vd
 Database variables (attributes) involved in SQL commands
v : V9Vd [Va
 Variables
e : E
 Arithmetic expressions
b : B
 Boolean expressions
Asql : Asql
 Action part of SQL commands
t : T
 Terms
af : Af
 Atomic formulas
f :W
 Well-formed formulas (pre-condition part of SQL commands)
Csql : Csql
 SQL commands
I : I
 Instructions/commands
Any constant c 2 C appearing in SQL command Csql is either an integer n 2 Z or a string k 2 S. The pre-condition f of Csql is
a well-formed formula in first order logic. We deal with only Data Manipulation Language (DML) for the action part Asql,
that is, an SQL action is the application of either SELECT, or UPDATE, or INSERT, or DELETE. Observe that the database
variables from the set Vd can appear in Csql only. Since the variables from Vd represent the attributes of the database
tables, we assume that no two tables have the same attributes.

The function GROUP BY ð~eÞ[t] where ~e represents an ordered sequence of arithmetic expressions, is applied on a table t

and depending on the values of ~e over the tuples of t, it results into maximal partition of the tuples of t. The functions
ORDER BY ASC ð~eÞ[t] and ORDER BY DESC ð~eÞ[t] sort the tuples of table t in ascending or descending order based on the value
of ~e over the tuples in t respectively. Observe that, Asql of SELECT statement may or may not use GROUP BY and ORDER BY

functions, and this fact is reflected in the abstract syntax of g and f respectively in Table 1.
1
ct syntax of the application program embedded with SQL.

n 9 k

c 9 vd 9 va 9 opu e 9 e1 opb e2, where opu and opb represent unary and binary arithmetic operators respectively.

e1 ¼ e2 9 e1 Ze2 9 e1 re2 9 e1 4e2 9 e1 oe2 9 e1ae2 9 :b 9 b1 3 b2 9 b1 4 b2 9 true 9 false

c 9 va 9 vd 9 f nðt1 ,t2 , . . . ,tnÞ, where fn is an n-ary function.

Rnðt1 ,t2 , . . . ,tnÞ 9 t1 ¼ t2, where Rn is an n-ary relation: Rnðt1 ,t2 , . . . ,tnÞ 2 ftrue,falseg

af 9 :f1 9 f13f2 9 f14f2 9 8xi f 9 (xi f
::¼ GROUP BY(~e) 9 id

DISTINCT 9 ALL
AVG 9 SUM 9 MAX 9 MIN 9 COUNT

::¼ sJrðeÞ 9 DISTINCT ðeÞ 9 id

::¼ COUNT ðnÞ

:¼ /h1ðx1Þ, . . . ,hnðxnÞS, where ~h ¼/h1 , . . . ,hnS and ~x ¼/x1 , . . . ,xnS
:¼ ORDER BY ASC(~e) 9 ORDER BY DESC(~e) 9 id

:¼ selectðva , f ð~e0 Þ, rð~hð~xÞÞ, f, gð~eÞÞ 9 updateð ~vd , ~eÞ 9 insertð ~vd , ~eÞ 9 deleteð ~vd Þ

¼ /Asql ,fS 9 Csql
0 UNION Csql

00 9 Csql
0 INTERSECT Csql

00 9 Csql
0 MINUS Csql

00

skip 9 va : ¼ e 9 va : ¼ ? 9 Csql 9 if b then I1 else I2 9 while b do I 9 I1; I2

is article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
ructures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 5
The aggregate functions in SELECT statement are represented by s. The clauses DISTINCT and ALL are used to deal with
duplicate values. We denote DISTINCT and ALL by the function r. By ~hð~xÞ, we denote an ordered sequence of functions
operating on an ordered sequence of arguments ~x, i.e., each function hi 2

~h operates on the corresponding argument xi 2 ~x.
The argument xi is an expression e or a sequence of all attributes of the table denoted by n in SQL.

It should be noted that, if SELECT statement uses GROUP BY ð~eÞ, then there must be an ~hð~xÞ which is evaluated on each
partition obtained by GROUP BY operation, yielding to a single tuple. In such case, the ith element hi 2

~h must be DISTINCT
function if the corresponding ith element of~x (i.e. xi) belongs to~x \~e, or hi must be COUNT if xi is n, otherwise hiðxiÞ is sJrðeÞ

where e 2 ~x4e=2ð~x \~eÞ. That is,

hi9

COUNT if xi ¼ n or

DISTINCT if xi 2 ~x \~e or

sJr otherwise

8><
>:

When the SELECT statement does not use any GROUP BY ð~eÞ function, we have two situations: (i) if ~ha~id, then the set of all
tuples in the table for which f satisfies is considered as a single group and ~hð~xÞ is evaluated on that group. In that case,
hi 2

~h is defined as follows:

hi9
COUNT if xi ¼ n or

sJr otherwise

�

(ii) if ~h ¼ ~id, then each tuple in the table for which f satisfies is considered as an individual group and ~hð~xÞ ¼~x is evaluated
on each of these groups.

Note that, the function r involved in hi 2
~h deals with duplicate values of the argument expression e, whereas the

function r in rð~hð~xÞÞ occurring in the action part Asql of SELECT statement deals with duplicate results obtained after
performing ~h over the group(s).

The formula f and the variable va appearing in Asql of the SELECT statement represent the HAVING clause and a Record/
ResultSet type application variable respectively. va has an ordered sequence of fields ~w where the type of each field wi 2 ~w

is the same as the return type of the corresponding function hiðxiÞ 2
~hð~xÞ. By the vector notation ~vd , we denote an ordered

sequence of database variables.
Finally, we introduce a particular assignment ‘‘va :¼ ?’’, called random assignment, in the instruction set, that models

the insertion of input values at run time by an external user.

4. Environment and state

In this section, we introduce different type of environments and states associated with SQL embedded application. Consider
a database instance d consisting of three tables temp and tdept and tprj, as shown in Fig. 1.

4.1. Environment

The SQL embedded program P acts on a set of constants constðPÞ 2 YðCÞ and set of variables varðPÞ 2 YðVÞ, where
V9Vd [Va. These variables take their values from semantic domain D A, where D A¼ fD [f

A

gg and

A

represents the
undefined value.

Now we define two environments Ed and Ea corresponding to the database and application variable sets Vd and Va

respectively.
eID Name Age Dno Pno Sal Child − no
1 Matteo 30 2 1 2000 4
2 Alice 22 1 2 1500 2
3 Joy 50 2 3 2300 3
4 luca 10 1 2 1700 1
5 Deba 40 3 4 3000 5
6 Andrea 70 1 2 1900 2
7 Alberto 18 3 4 800 1
8 Bob 14 2 3 4000 3

Deptno Dname Loc MngrID
1 Math Turin 4
2 Computer Venice 1
3 Physics Mestre 5

Prjno Title
1 SQL
2 LatticeTheory
3 Semantics
4 Light

Fig. 1. Database d containing (a) temp, (b) tdept and (c) tprj.

Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]6
Definition 1 (Application environment). An application environment ra 2 Ea maps a variable v 2 domðraÞDVa to its value
raðvÞ. So, Ea9Va/D A.

Definition 2 (Database environment). A database is a set of tables fti 9 i 2 Ixg for a given set of indexes Ix. We may define a
function rd whose domain is Ix, such that for i 2 Ix, rdðiÞ ¼ ti.

In the example depicted in Fig. 1, the index set Ix is femp,dept,prjg, and the database d is the set ftemp,tdept ,tprjg. So,
rdðempÞ ¼ temp, for example.

Definition 3 (Table environment). Given a database environment rd and a table t 2 d. We define attrðtÞ ¼ fa1,a2, . . . ,akg. So,
tDD1 � D2 � � � � � Dk where ai is the attribute corresponding to the typed domain Di. A table environment rt for a table t is
defined as a function such that for any attribute ai 2 attrðtÞ,

rtðaiÞ ¼/piðljÞ 9 lj 2 tS

where p is the projection operator, i.e. piðljÞ is the ith element of the ljth row. In other words, rt maps ai to the ordered set
of values over the rows of the table t.

In the example of Fig. 1, domðrtemp
Þ ¼ feID, Name, Age, Dno, Pno, Sal, Child-nog. So, for example, rtemp

ðAgeÞ ¼/30;22,
50;10,40;70,18;14S.

Relation between database environment and table environment. Given a database d and a table ti 2 d with ~a ¼ attrðtiÞ.
Then, rdðiÞ ¼ rti

ð~aÞ.

4.2. State and state transition

Given a SQL embedded program P, we define a state s 2 S as a triplet /I,rd,raS where I 2 I is the instruction to be
executed, rd and ra are the database environment and application environment respectively on which I is executed. Thus,

S9I� Ed � Ea

where Ed denotes the set of all database environments, and Ea denotes the set of all application environments. The set of
states of a program P is defined as

S1PU9P � E1PU

where E1PU is the set of environment of the program P whose domain is the set of program variables.
The state transition relation is defined as G9S/YðSÞ. The transitional semantics of a program P is, thus, defined as

G1PU9S1PU/YðS1PUÞ.
In the next sections, we will describe in detail the semantic functions E1 � U and B1 � U for evaluating arithmetic and

boolean expressions respectively, and S1 � U for evaluating SQL statements.

5. Formal semantics of expressions

The evaluation of arithmetic expressions is defined by distinguishing different basic cases
1.
P
S

E1cUðrd,raÞ ¼ c.

2.
 E1vaUðrd,raÞ ¼ raðvaÞ.

3.
 E1vdUðrd,raÞ
Let (t 2 domðrdÞ : vd ¼ ai 2 attrðtÞ in

¼E1vdUðrt ,raÞ

¼rtðaiÞ.

4.
 E1vdopcUðrd,raÞ where, op represents the arithmetic operation.
Let (t 2 domðrdÞ : vd ¼ ai 2 attrðtÞ and op : Di � Dj-Dk in

¼E1vdopcUðrt ,raÞ

¼/ðmopcÞ 2 Dk9m 2 rtðaiÞ4ai 2 Di4c 2 DjS.

5.
 E1vdopvaUðrd,raÞ
Let (t 2 domðrdÞ : vd ¼ ai 2 attrðtÞ and op : Di � Dj-Dk in

¼E1vdopvaUðrt ,raÞ

¼ /ðmopnÞ 2 Dk9m 2 rtðaiÞ4raðvaÞ ¼ n4ai 2 Di4va 2 DjS.

6.
 E1vd1

op vd2
Uðrd,raÞ
Let (t 2 domðrdÞ : vd1
¼ ai,vd2

¼ aj,fai,ajgDattrðtÞ and
op : Di � Dj-Dk in
lease cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
ystems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

P
S

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 7
¼E1vd1
opvd2

Uðrt ,raÞ

¼/mr 2 Dk9mr ¼ piðlrÞoppjðlrÞ where lr is the rth row of tS.

7.
 E1e1 op e2Uðrd,raÞ ¼

Case 1 : (! t 2 domðrdÞ : if vd occurs in e1 or e2 and vd ¼ a 2 attrðtÞ

¼ E1e1ope2Uðrt ,raÞ

¼ E1e1Uðrt ,raÞopE1e2Uðrt ,raÞ

Case 2 : Let T ¼ ft 2 domðrdÞ9(vd occurring in e1 or e2 s:t: vd ¼ a 2 attrðtÞg

Let T ¼ ft1,t2, . . . ,tng and t0 ¼ t1 � t2 � � � � � tn

¼ E1e1ope2Uðrt0 ,raÞ:

8>>>>>>>>><
>>>>>>>>>:
We generalize the arithmetic operation op on lists as follows: suppose op is a binary arithmetic operation over two lists S1

and S2. Also assume, S0DS1, s1 2 S1 and S00DS2, s2 2 S2 with 9S09¼ 9S009, then the generalization of op is defined by,

op9

S0 op s2 ¼/s op s29s 2 S0S

s1 op S00 ¼/s1 op s9s 2 S00S

S0 op S00 ¼/s0i op si
009s0i and si

00 are the ith element of S0 and S00 respectivelyS

8><
>:

Finally, the evaluation of boolean expressions is defined by
1.
 B1trueUðrd,raÞ ¼ true.

2.
 B1falseUðrd,raÞ ¼ false.

3.
 B1e1 opr e2Uðrd,raÞ ¼ E1e1Uðrd,raÞ opr E1e2Uðrd,raÞ, where opr represents the relational operator.

4.
 B1:bUðrd,raÞ ¼ :B1bUðrd,raÞ.

5.
 B1b13b2Uðrd,raÞ ¼ B1b1Uðrd,raÞ3B1b2Uðrd,raÞ.

6.
 B1b14b2Uðrd,raÞ ¼ B1b1Uðrd,raÞ4B1b2Uðrd,raÞ.
6. Formal semantics of program instructions

Semantics S1IUðrd,raÞ of an instruction I in a SQL embedded program defines the effect of executing this instruction on
the environment ra or ðrd,raÞ. There are two types of instructions: one executed only on ra and other executed on both
database and application environment ðrd,raÞ together. The SQL commands Csql belong to the second category, whereas all
other instructions of the application belong to the first category.

6.1. Semantics of SELECT statement

In this section, we describe the semantics of SELECT statement and we illustrate it with an example. We apologise for
considering a quite complex SQL statement as example, but this way the reader should be able to get a more complete
understanding of the transitions in the semantic functions.

Consider the database of Fig. 1 and the following SELECT statement Cselect:
SELECT DISTINCT Dno, Pno, MAXðSalÞ, AVGðDISTINCTAgeÞ, COUNTðnÞ FROM temp INTO va WHERE Sal41000 GROUP BY Dno,Pno HAVING

MAXðSalÞo4000 ORDER BY AVGðDISTINCTAgeÞ,Dno

An equivalent formulation of Cselect is
SELECT DISTINCT/DISTINCTðDnoÞ, DISTINCTðPnoÞ, MAXJALLðSalÞ, AVGJDISTINCTðAgeÞ, COUNTðnÞSÞ FROM temp INTO va WHERE

Sal41000 GROUP BY /Dno,PnoS HAVING ðMAXJALLðSalÞÞo4000 ORDER BY /AVGJDISTINCTðAgeÞ,DnoS

According to the abstract syntax, we get
�
 f1 ¼ Sal41000,

�
 ~e ¼ /Dno,PnoS,

�
 gð~eÞ ¼ GROUP BYð/Dno, PnoSÞ,

�
 f2 ¼ ðMAXJALLðSalÞÞo4000,

�
 ~h ¼/DISTINCT, DISTINCT,MAXJALL,AVGJDISTINCT, COUNTS,

�
 ~x ¼/Dno, Pno,Sal,Age,nS,

�
 ~hð~xÞ ¼ /DISTINCTðDnoÞ, DISTINCTðPnoÞ,MAXJALLðSalÞ, AVGJDISTINCTðAgeÞ;COUNTðnÞS,

�
 ~e0 ¼/AVGJDISTINCTðAgeÞ,DnoS, where AVGJDISTINCTðAgeÞ simply represents an expression after the application of ~hð~xÞ,

�
 f ð~e0 Þ ¼ ORDERBYASCð/AVGJDISTINCTðAgeÞ, DnoSÞ,

�
 va ¼ Record or ResultSet type application variable with fields ~w ¼/w1,w2,w3,w4,w5S:The type ofw1,w2,w3, w4,w5 are same

as the return type of DISTINCTðDnoÞ,DISTINCTðPnoÞ,MAXJALLðSalÞ,AVGJDISTINCTðAgeÞ,COUNTðnÞ respectively: For
lease cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
ystems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]8
instance; in java as a host language, va represents the object of the type ResultSet: Observe that; here we use the term
INTOto understand the assignment into the application variable:

Thus, Cselect is of the form as follows:
SELECT rð~hð~xÞÞ FROM temp INTO vað~wÞ WHERE f1 GROUP BY ~e HAVING f2 ORDER BY ASC ~e0

We now describe the semantics of SELECT statement step by step using the above example.
Recall from Table 1 that the syntax of SELECT statement is defined as

/selectðva,f ð~e0 Þ,rð~hð~xÞÞ,f2,gð~eÞÞ,f1S

The semantics of SELECT statement is described below

S1/selectðva,f ð~e0 Þ,rð~hð~xÞÞ,f2,gð~eÞÞ,f1SUBðrd,raÞ ¼

S1/selectðva,f ð~e0 Þ,rð~hð~xÞÞ,f2,gð~eÞÞ,f1SUBðrt ,raÞ

if (!t 2 domðrdÞ :

targetð/selectðva,f ð~e0 Þ,rð~hð~xÞÞ,f2,gð~eÞÞ,f1SÞ ¼ ftg

S1/selectðva,f ð~e0 Þ,rð~hð~xÞÞ,f2,gð~eÞÞ,f1SUBðrt0 ,raÞ otherwise,

where T ¼ ft1, . . . ,tn 2 domðrdÞ9ti occurs in Cselectg and

t0 ¼ t1 � t2 � � � � � tn

8>>>>>>>>>><
>>>>>>>>>>:

Below the semantics of SELECT statement is unfolded step by step:
Step 1. Absorbing f1:

S1/selectðva,f ð~e0 Þ,rð~hð~xÞÞ,f2,gð~eÞÞ,f1SUBðrt0
,raÞ ¼ S1/selectðva,f ð~e0 Þ,rð~hð~xÞÞ,f2,gð~eÞÞ,trueSUBðrt0 ,raÞ, where

t0 ¼/li 2 t09let varðf1Þ ¼
~v0d [

~v0a with ~v0d ¼~aDattrðt0Þ:BFf1½ p~a ðliÞ= ~v0d �½rað
~v0a Þ= ~v

0
a �S

Example. Since in our example targetðCselectÞ ¼ ftempg, we apply WHERE clause f1 ¼ Sal41000 on temp. The result is depicted
in Table 2(a). The row ‘‘eID:7; Name:Alberto; Age:18; Dno:3; Pno:4; Sal:800; Child-no:1’’ is disregarded from the result
because, Bjf1[800/Sal]. In fact, the semantic structure B does not satisfy f1 when the variable ‘Sal’ is substituted by the
value ‘800’ of the corresponding row.

Step 2. Grouping:

S1/selectðva,f ð~e0 Þ,rð~hð~xÞÞ,f,gð~eÞÞ,trueSUBðrt ,raÞ ¼ S1/selectðva,f ð~e0 Þ,rð~hð~xÞÞ,f,idÞ,trueSUBðrT ,raÞ

where gð~eÞ ¼ Group By ð~eÞ and gð~eÞ½t� is the maximal partition T ¼ ft1,t2, . . . ,tng of t s.t. 8ti 2 T, tiDt and 8ej 2 ~e,
8mk,ml 2 E1ejUðrti

,raÞ : mk ¼ml.

Example. Applying the grouping function g ð~eÞ ¼ GROUP BY(/Dno, PnoS) on the result of step 1 based on the argument
/Dno, PnoS, we get four different partitions with /2;1S, /1;2S, /2;3S and /3;4S as the values of /Dno, PnoS, depicted
in Table 2(b).

Step 3. Absorbing f:

S1/selectðva, f ð~e0 Þ, rð~hð~xÞÞ, f, idÞ, trueSUBðrT ,raÞ ¼ S1/selectðva, f ð~e0 Þ, rð~hð~xÞÞ, true, idÞ, trueSUBðrT 0 ,raÞ

where T 0 is defined as follows: there is a sequence of functions ~h0 occurring in f, operating on groups, such that

~h0 ð~x0 Þ 3 hi
0
ðxi
0Þ9

COUNTðnÞ or

DISTINCTðeÞ or

sJrðeÞ

8><
>:

Let ~v0a be a sequence of application variables occurring in f and,

8ti 2 T , ~h0 ð/E1~x0Uðrti
,raÞSÞ ¼~ci and

T 0 ¼ fti 2 T9BFf½~ci=
~h0 ð~x0 Þ�½rað

~v0a Þ= ~v
0
a �g

Example. We apply the HAVING clause f2¼MAX JALL ðSalÞo4000 over all the groups in step 2. One group with the value
of /Dno, PnoS equal to /2;3S has been disregarded, since the maximum salary of that group is not less than 4000. That is,
the semantic structure B does not satisfy f2 after interpreting MAX JALL(Sal) in f2 with the value which is returned by the
function MAX JALL(Sal) applying on that group. The result is shown in Table 2(c).
Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Table 2
Operations of Cselect.

eID Name Age Dno Pno Sal Child-no

(a) Absorbing WHERE clause f1

1 Matteo 30 2 1 2000 4

2 Alice 22 1 2 1500 2

3 Joy 50 2 3 2300 3

4 luca 10 1 2 1700 1

5 Deba 40 3 4 3000 5

6 Andrea 70 1 2 1900 2

7 Alberto 18 3 4 800 1

8 Bob 14 2 3 4000 3

(b) Grouping

1 Matteo 30 2 1 2000 4

2 Alice 22 1 2 1500 2

4 luca 10 1 2 1700 1

6 Andrea 70 1 2 1900 2

3 Joy 50 2 3 2300 3

8 Bob 14 2 3 4000 3

5 Deba 40 3 4 3000 5

(c) Absorbing HAVING clause f2]

1 Matteo 30 2 1 2000 4

2 Alice 22 1 2 1500 2

4 luca 10 1 2 1700 1

6 Andrea 70 1 2 1900 2

3 Joy 50 2 3 2300 3

8 Bob 14 2 3 4000 3

5 Deba 40 3 4 3000 5

Dno Pno MAX(Sal) AVGðDISTINCT AgeÞ COUNTðnÞ

(d) Performing ~hð~xÞ]

2 1 2000 30 1

1 2 1900 34 3

3 4 3000 40 1

(e) Getting table out of the result from (d)

2 1 2000 30 1

1 2 1900 34 3

3 4 3000 40 1

(f) Elimination of duplicates

2 1 2000 30 1

1 2 1900 34 3

3 4 3000 40 1

(g) Ordering

2 1 2000 30 1

1 2 1900 34 3

3 4 3000 40 1

(h) Assign to ~va

w1 w2 w3 w4 w5

2 1 2000 30 1

1 2 1900 34 3

3 4 3000 40 1

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 9
Step 4. Applying rð~hð~xÞÞ on each group in T:

¼ S1/selectðva, f ð~e0 Þ, rð~hð~xÞÞ, true, idÞ, trueSUBðrT ,raÞ ¼ S1/selectðva, f ð~e0 Þ, id, true, idÞ, trueSUBðrt ,raÞ where

t0 ¼/~hðE1~xUðrti
,raÞÞ9ti 2 TS and t¼ r½t0�

As we mentioned earlier that the generation of maximal partitions T of the tuples depends on (i) whether the function g is
present or not, (ii) ~h is ~id or not.
Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]10
Example. In the example, we have rð~hð~xÞÞ¼DISTINCT(/ DISTINCT(Dno), DISTINCT(Pno), MAX JALL(Sal), AVG

JDISTINCT(Age), COUNT ðnÞS). We perform rð~hð~xÞÞ on each group resulting from step 3. We have three steps:
(a)
Pl
Sy
Perform the ordered sequence of functions ~hð~xÞ ¼/ DISTINCT(Dno), DISTINCT(Pno), MAX JALL(Sal), AVG

JDISTINCT(Age), COUNT ðnÞS on each group: after applying ~hð~xÞ on each group, we get the result as in Table 2(d).

(b)
 Get the table t out of these results obtained in step (a): this is shown in Table 2(e).

(c)
 Apply r¼DISTINCTon the rows of table t obtained in step (b): we get Table 2(f) which is equal to the Table 2(e),since

there is no duplicate rows.
Step 5. Possibly applying the ordering

S1/selectðva, f ð~e0 Þ, id, true, idÞ, trueSUBðrt ,raÞ ¼ S1/selectðva, id, id, true, idÞ, trueSUBðrt0 ,raÞ, where t0 ¼ f ð~eÞ½t�

Example. Performing f ð~e0 Þ¼ORDER BY ASC(/ AVG JDISTINCT(Age), DnoS) on Table 2(f), we get Table 2(g).

Step 6. Set the resulting values to the Record/ResultSet type application variable va with fields ~w

S1/selectðva, id, id, true, idÞ, trueSUBðrt ,raÞ ¼ ðrt0
,ra0 Þ

where ra0 ¼ ra½vað~wÞ=rtð~aÞ� with ~a ¼ attrðtÞ and t0 is the initial table of step 1. Here, the ith field wi 2 ~w of va is substituted
by ith attribute ai 2 ~a of t.

Example. Finally, the result obtained in step 5 is assigned to the application variable va with fields ~w ¼/w1, w2, w3, w4,
w5S. The result is shown in Table 2(h).

6.2. Semantics of UPDATE statement

Consider the database of Fig. 1 and the following UPDATE statement Cupdate:
UPDATE temp SET Age :¼ Ageþ2, Sal :¼ SalþSal� 0:5 WHERE Sal41500.
According to the abstract syntax we get
�
 f1 ¼ Sal41500,

�
 ~vd ¼/Age,SalS,

�
 ~e ¼/Ageþ2, SalþSal� 0:5S.
Thus, Cupdate is of the form as below:
UPDATE temp SET ~vd :¼ ~e WHERE f.
Recall from Table 1 that the syntax of UPDATE statement is defined as

/updateð ~vd ,~eÞ,fS

The semantics of UPDATE statement is described as follows: the update statement always targets an individual table. Let

targetð/updateð ~vd ,~eÞ,fSÞ ¼ ftg

where t 2 domðrdÞ. Therefore,

S1/updateð ~vd , ~eÞ, fSUBðrd,raÞ ¼ S1/updateð ~vd , ~eÞ, fSUBðrt ,raÞ

Below the semantics of UPDATE statement is unfolded step by step.
Step 1: Absorbing f:

S1/updateð ~vd , ~eÞ, fSUBðrt ,raÞ ¼ S1/updateð ~vd , ~eÞ, trueSUBðrt0 ,raÞ

where

t0 ¼/ li 2 t9let varðfÞ ¼ ~v0d [
~v0a with ~v0d ¼~aDattrðtÞ:BFf½p~a ðliÞ= ~v0d �½rað

~v0a Þ= ~v
0
a �S

Example. In the example, targetðCupdateÞ ¼ ftempg. Applying WHERE clause f¼ sal41500 on temp, we get the result t0emp

depicted in Table 3(a). Observe that two rows are disregarded as they do not satisfy the semantic structure B of f. That is,
Bjf[1500/Sal] and Bjf[800/Sal].
ease cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
stems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Table 3
Operations of Cupdate.

eID Name Age Dno Pno Sal Child-no

(a) Table t0emp: after absorbing WHERE clause f
1 Matteo 30 2 1 2000 4

2 Alice 22 1 2 1500 2

3 Joy 50 2 3 2300 3

4 luca 10 1 2 1700 1

5 Deba 40 3 4 3000 5

6 Andrea 70 1 2 1900 2

7 Alberto 18 3 4 800 1

8 Bob 14 2 3 4000 3

(b) Table temp
00: after update

1 Matteo 32 2 1 3000 4

3 Joy 52 2 3 3450 3

4 luca 12 1 2 2550 1

5 Deba 42 3 4 4500 5

6 Andrea 72 1 2 2850 2

8 Bob 16 2 3 6000 3

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 11
Step 2: Update:

S1/updateð ~vd , ~eÞ, trueSUBðrt ,raÞ ¼ ðrt0 ,raÞ

where

let ~vd ¼~aDattrðtÞ and ~e ¼/e1,e2, . . . ,ehS and E1~eUðrt ,raÞ ¼/ ~mi 9i¼ 1, . . . ,hS,

and let mj
i be the jth element of the sequence ~mi and ai be the ith element of

the sequence ~a, and t0 ¼/lj½m
j
i=ai�9lj 2 tS:

Example. Performing the update operation (~vd :¼ ~eÞ ¼ ð/Age :¼ Ageþ2, Sal :¼ SalþSal� 0:5S) on table t0emp of step 1, we
get the updated table t00emp as shown in Table 3(b). Here, two expressions (Ageþ2) and (SalþSal�0.5) are evaluated over
the environment ðrt0emp

,raÞ first, and then for each rows of the table, two attributes ‘Age’ and ‘Sal’ are updated with the
corresponding evaluated results respectively. Evaluation of the expression (Ageþ2) over the environment ðrt0emp

,raÞ gives
the following results:

E1Ageþ2Uðrt0emp
,raÞ ¼/32;52,12;42,72;16S

E1SalþSal� 0:5Uðrt0emp
,raÞ ¼/3000;3450,2550;4500,2850;6000S

Now the updation of the attribute ‘Age’ is done for all rows as follows:

/l1ð32=AgeÞ,l2ð52=AgeÞ,l3ð12=AgeÞ,l4ð42=AgeÞ,l5ð72=AgeÞ,l6ð16=AgeÞS

We do the same for Sal :¼ SalþSal� 0:5.

6.3. Semantics of INSERT statement

Consider the database of Fig. 1 and the following INSERT statement Cinsert:
P
S

INSERT INTO tdept VALUES (4,‘Electronins’,‘Trieste’,2)
According to the abstract syntax we get
�
 ~vd¼/Deptno, Dname, Loc, MngrIDS,

�
 ~e ¼/4, ‘Electronins’, ‘Trieste’, 2S.
Thus, Cinsert is of the following form:
INSERT INTO ~vd VALUES ~e.
Recall from Table 1 that the syntax of INSERT statement is defined as

/insertð ~vd ,~eÞ,fS
lease cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
ystems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Table 4
Operation of Cinsert.

Deptno Dname Loc MngrID

1 Math Turin 4

2 Computer Venice 1

3 Physics Mestre 5

4 Electronins Trieste 2

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]12
The semantics of INSERT statement is described as follows: the insert statement always targets an individual table. Let

t 2 domðrdÞ : targetð/insertð ~vd ,~eÞ,fSÞ ¼ ftg

Therefore,

S1/insertð ~vd ,~eÞ,fSUBðrd,raÞ ¼ S1/insertð ~vd ,~eÞ,fSUBðrt ,raÞ ¼ S1/insertð ~vd ,~eÞ,trueSUBðrt ,raÞ ¼ ðrt0 ,raÞ

where

let ~vd ¼~aDattrðtÞ, and E1~eUðraÞ ¼~x

~a ¼/a1,a2, . . . ,anS,~x ¼/x1,x2, . . . ,xnS, and lnew ¼/x1=a1,x2=a2, . . . ,xn=anS, in

t0 ¼ t [flnewg:

Observe that we suppose ~vd includes all attributes of the table t. Although there exists alternative syntax where we can
insert the values for selective attributes only, we can easily convert this alternative syntax into the one mentioned above
by inserting undefined value

A

in ~e for the unspecified attributes.
Example: In the example, targetðCinsertÞ ¼ ftdeptg. Since, E1~eUðraÞ ¼/4,‘Electronics’,‘Trieste’,2S and ~vd ¼~a ¼ /Deptno,

Dname,Loc,MngrIDS, we get lnew¼/4=Deptno,‘Electronics’=Dname,‘Trieste’=Loc,2=MngrIDS. After inserting the new row lnew,
we get the resulting table tdept

0 as shown in Table 4 while the application environment ra keeps unchanged.

6.4. Semantics of DELETE statement

Consider the database of Fig. 1 and the following DELETE statement Cdelete:
P
S

DELETE FROM temp WHERE SalZ1800
According to the abstract syntax we get
DELETE FROM temp WHERE f
where f represents the first-order formula ‘‘SalZ1800’’.
Recall from Table 1 that the syntax of DELETE statement is defined as

/deleteð ~vd Þ,fS

The semantics of DELETE statement is described as follows: the DELETE statement always targets an individual table. Let

t 2 domðrdÞ : targetð/deleteð ~vd Þ,fSÞ ¼ ftg

Therefore,

S1/deleteð ~vd Þ,fSUBðrd,raÞ ¼ S1/deleteð ~vd Þ,fSUBðrt ,raÞ ¼ ðrt0 ,raÞ

where

td ¼/li 2 t9 let varðfÞ ¼ ~v0d [
~v0a with ~v0d ¼~aDattrðtÞ : BFf½p~a ðliÞ= ~v0d �½rað

~v0a Þ= ~v
0
a �S

t0 ¼ t\td

Observe that in case of DELETE, ~vd includes all attributes of the table t.
Example: In the example, targetðCdeleteÞ ¼ ftempg. Applying f¼ SalZ1800 and deleting the rows which satisfy f, we get

t0emp as shown in Table 5. Here, five rows are deleted from the table as they satisfy f.

6.5. Formal semantics of non-SQL statements

S1skipUBðrd,raÞ9ðrd,raÞ

S1va :¼ eUBðrd,raÞ9ðrd,ra½E1eUðraÞ=va�Þ
lease cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
ystems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Table 5
Operation of Cdelete.

eID Name Age Dno Pno Sal Child-no

1 Matteo 30 2 1 2000 4

2 Alice 22 1 2 1500 2

3 Joy 50 2 3 2300 3

4 luca 10 1 2 1700 1

5 Deba 40 3 4 3000 5

6 Andrea 70 1 2 1900 2

7 Alberto 18 3 4 800 1

8 Bob 14 2 3 4000 3

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 13
S1va :¼ ?UBðrd,raÞ9ððrd,ra0 Þ where, b is any value in domðvaÞ in ra0 ¼ ra½b=va�

7. Some inference rules for composite commands

The inference rules for composite instructions are obtained by induction

S1Csql1
Uðrd,raÞ ¼ t1 S1Csql2

Uðrd,raÞ ¼ t2

S1Csql1
UNION Csql2

Uðrd,raÞ ¼ t1 [t2

S1Csql1
Uðrd,raÞ ¼ t1 S1Csql2

Uðrd,raÞ ¼ t2

S1Csql1
INTERSECT Csql2

Uðrd,raÞ ¼ t1 \ t2

S1Csql1
Uðrd,raÞ ¼ t1 S1Csql2

Uðrd,raÞ ¼ t2

S1Csql1
MINUS Csql2

Uðrd,raÞ ¼ t1\t2

S1A1Uðrd,raÞ ¼ ðrd0 ,ra0 Þ S1A2Uðrd0 ,ra0 Þ ¼ ðrd00 ,ra00 Þ

S1A1;A2Uðrd,raÞ ¼ ðrd00 ,ra00 Þ

Consider the auxiliary conditional statement cond

condðB1bU,S1A1U,S1A2UÞðrd,raÞ ¼ ðrd0 ,ra0 Þ

where either B1bUðrd,raÞ ¼ true and S1A1Uðrd,raÞ9ðrd0 ,ra0 Þ or B1bUðrd,raÞ ¼ false and S1A2Uðrd,raÞ9ðrd0 ,ra0 Þ.

The semantics of ‘‘if b then A1 else A2’’ statement is expressed using the conditional statement cond as follows:

S1if b then A1 else A2Uðrd,raÞ ¼ condðB1bU,S1A1U,S1A2UÞðrd,raÞ

The semantics of the ‘‘while b do A’’ statement is expressed as follows: since ‘‘while b do A’’ � ‘‘if b then ðA; while b do AÞ

else skip’’, we can write

S1while b do AUðrd,raÞ ¼ S1if b then ðA; while b do AÞ else skipUðrd,raÞ ¼ FIX F

where FðgÞ ¼ condðB1bU,gJS1AU, idÞðrd,raÞ and FIX is a fix-point operator.

Definition 4 (Equivalence of instructions). Let the environments ðrd,raÞ and ðrd0 ,ra0 Þ be denoted by rx and rx0 respectively.
Two instructions I1 and I2 are said to be equivalent if, fðrx,rx0 Þ9S1I1UðrxÞ ¼ rx0 g ¼ fðrx,rx0 Þ9S1I2UðrxÞ ¼ rx0 g. In other words,
I1 � I2 if I1 and I2 determine the same partial function on states.

8. Soundness of the denotational semantics of SQL with respect to the standard semantics

The abstract syntax and the denotational semantics of SQL introduced in the previous sections correspond to the
standard syntax and semantics of SQL as defined by ANSI [15] and the Relational Algebra. In particular, we can prove a
correspondence between our denotational approach to the standard relational model approach to each SQL statement. For
instance, consider the following basic SQL statement embedded in Java:
Statement stmt¼conn.createStatement();

String Q¼ ‘‘SELECT a1, a2, . . ., an FROM t WHERE C’’;

ResultSet rs¼stmt.executeQuery(Q);
where a1,a2, . . . ,an represents the attributes of the table t and C is a condition.
An equivalent representation of the above SQL statement in Relational Algebra is
Please cite th
Systems & St
t0 ¼sC ðtÞ
t00 ¼ p~a ðt0Þ
 where ~a ¼/a1 ,a2 , . . . ,anS

rs¼ t00
is article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
ructures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]14
In our proposed denotational approach, an equivalent formulation of the above java embedded SQL statement is shown below:

/selectðva,f ð~e0 Þ,rð~hð~xÞÞ,f2,gð~eÞÞ,f1S¼/selectðrs,id,ALLð~idð~aÞÞ,true,idÞ,CS, where ~idð~aÞ ¼/idða1Þ,idða2Þ, . . . ,idðanÞS

Given an environment ðrd,raÞ, the semantics is described as follows:

S1/selectðrs,id,ALLð~idð~aÞÞ,true,idÞ,CSUBðrd,raÞ ¼ S1/selectðrs,id,ALLð~idð~aÞÞ,true,idÞ,CSUBðrt ,raÞ where t 2 d

¼ S1/selectðrs,id,ALLð~idð~aÞÞ,true,idÞ,trueSUBðrt0 ,raÞ

where

t0 ¼/li 2 t9 let varðCÞ ¼ ~v0d [
~v0a with ~v0d ¼~xDattrðtÞ:BFC½p~x ðliÞ= ~v0d �½rað

~v0a Þ= ~v
0
a �S¼ sCðtÞ

¼ S1/selectðrs; id; id; true; idÞ; trueSUBðrt00 ;raÞ ð1Þ

where

t00 ¼ ALL½/~idðE1~aUðrt0 ;raÞÞS� ¼ E1~aUðrt0 ;raÞ; since ALL does not remove or modify any element

¼ p~a ðt0Þ; according to the semantics of expressions¼ ðrt ,ra0 Þ ð2Þ

where

ra0 ðrsÞ ¼ t00 ð3Þ

Observe that Eqs. (1)–(3) show the correspondence between the Relational Algebra and Denotational semantic approaches.
9. Abstract semantics of SQL embedded applications

In this section, we lift the semantics of SQL operations defined so far to an abstract setting, where instead of working on
the concrete databases, queries are applied to abstract databases, in which some information are disregarded and concrete
values are possibly represented by suitable abstractions.
9.1. Abstract databases

Generally, traditional databases are concrete databases as they contain data from concrete domains, whereas abstract

databases are obtained by replacing concrete values by the elements from abstract domains representing specific
properties of interest. We may distinguish partial abstract database in contrast to fully abstract one, as in the former
case only a subset of the data in the database is abstracted. The values of the data cells belonging to an attribute x are
abstracted by following the Galois connection ðYðDcon

x Þ,ax,gx,Dabs
x Þ [7], where YðDcon

x Þ and Dabs
x represent the powerset of

concrete domain of x and an abstract domain of x respectively, whereas ax and gx represent the corresponding abstraction
and concretization functions (denoted ax : YðDcon

x Þ-Dabs
x and gx : Dabs

x -YðDcon
x Þ) respectively. In particular, partial

abstract databases are special case of fully abstract databases where abstraction and concretization functions for some
attributes x are identity function id, and thus, follow the Galois connection ðYðDcon

x Þ,id,id,YðDcon
x ÞÞ. Let us illustrate it by an

example.

Example 1. The database in Fig. 1 consists of a concrete table temp that provides information about the employees of a
company. We assume that the ages, salaries, and number of children of the employees lie between 5 and 100, between 500
and 10 000 and between 0 and 10 respectively. Considering an abstraction where ages and salaries of the employees are
abstracted by the elements from the domain of intervals, and the number of children in the attribute ‘Child-no’ are
abstracted by the abstract values from the abstract domain Dabs

Child-no ¼ f? ,Zero,Few,Medium,Many,>g where > represents
‘‘any’’ and ? represents ‘‘undefined’’. The abstract table t]emp corresponding to temp w.r.t. these abstractions is shown in
Table 6. Observe that the number of abstract tuples in an abstract database may be less than the number of tuples in the
corresponding concrete database if the primary key is abstracted. The correspondence between concrete and abstract
values of the attribute, for instance, ‘Child-no’ can be formally expressed by the abstraction and concretization functions
achild-no and gchild-no respectively as follows:

achild-noðXÞ9

? if X ¼ |

Zero if X ¼ f0g

Few if 8x 2 X : 1rxr2

Medium if 8x 2 X : 3rxr4

Many if 8x 2 X : 5rxr10

> otherwise

8>>>>>>>><
>>>>>>>>:
Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Table 6

Abstract table: t]emp .

eID] Name] Age] Dno] Pno] Sal] Child-no]

1 Matteo [25,59] 2 1 [1500,2499] Medium

2 Alice [12,24] 1 2 [1500,2499] Few

3 Joy [25,59] 2 3 [1500,2499] Medium

4 luca [5,11] 1 2 [1500,2499] Few

5 Deba [25,59] 3 4 [2500,10 000] Many

6 Andrea [60,100] 1 2 [1500,2499] Few

7 Alberto [12,24] 3 4 [500,1499] Few

8 Bob [12,24] 2 3 [2500,10 000] Medium

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 15
gchild-noðyÞ9

| if y¼ ?

f0g if y¼ Zero

fx : 1rxr2g if y¼ Few

fx : 3rxr4g if y¼Medium

fx : 5rxr10g if y¼Many

fx : 0rxr10g if y¼>

8>>>>>>>>><
>>>>>>>>>:

We can similarly define the abstraction–concretization functions for other attributes as well. The corresponding abstract
lattices for the attributes ‘Age’, ‘Sal’ and ‘Child-no’ are shown in Fig. 2(a)–(c) respectively.

Definition 5 (Abstract database). Let dB be a database. The database dB] ¼ aðdBÞ where a is an abstraction function, is said
to be an abstract version of dB if there exists a representation function g, called concretization function such that for all
tuple /x1,x2, . . . ,xnS 2 dB there exists a tuple /y1,y2, . . . ,ynS 2 dB] such that 8i 2 ½1 . . .n�,xi 2 idðyiÞ3xi 2 gðyiÞ.

9.2. Syntax and semantics of statements in abstract domain

We now define the syntax and semantics of the SQL embedded applications in an abstract domain. We denote by the
apex], the syntactic elements of the abstract semantics. For each concrete element z, whenever we use the syntax z], this
means that there is a monotonic representation function g from the abstract to the concrete domain such that zLgðz]Þ.

The syntax of SQL statement C] and SQL action A] over an abstract domain corresponding to the concrete SQL command
Csql and action Asql represented as below:

C] :: ¼/A],f]S9C]1UNION
]C]29C

]
1INTERSECT

]C]29C
]
1MINUS

]C]2

A] :: ¼ select]ðv]a,f]ð ~e0] Þ,r]ð
~
h] ð~x] ÞÞ,f],g]ð~e] ÞÞ9update]ð ~v]d ,~e] Þ9insert]ð ~v]d , ~e] Þ9delete]ð ~v]d Þ

Arithmetic expressions over abstract domain are defined as expected, whereas boolean expressions are evaluated into a
three-valued logics ftrue,false,>g, where > means ‘‘either true or false’’.
c] :: ¼ n]9k] .

e] :: ¼ c]9v]d9v
]
a9op]e]9e]1op]e]2, where op] represents abstract arithmetic operator.

b] :: ¼ e]1 op]r e]2 9 :b] 9 b]1 3 b]2 9 b]1 4 b]2 9 true 9 false 9 >, where op]r represents abstract relational operator.
Abstract elements in abstract pre-condition f] are defined as follows:
t] :: ¼ c] 9 v]a 9 v]d 9 f]nðt]1 ,t]2 , . . . ,t]nÞ, where f]n is an abstract n-ary function.

a]f :: ¼ R]nðt]1 ,t]2 , . . . ,t]nÞ 9 t]1 ¼ t]2, where R]n is an abstract n-ary relation: R]nðt]1 ,t]2 , . . . ,t]nÞ 2 ftrue,false,>g.

f] : ¼ a]f 9 :f]
1 9 f]

13f]
2 9 f]

14f]
2 9 8x]i f]

1 9 (x]i f]
1.
Different abstract functions involved in A] are shown below:
g] ::¼GROUP BY] 9 id

r] ::¼DISTINCT] 9 ALL]

s] ::¼AVG] 9 SUM] 9 MAX] 9 MIN] 9 COUNT]

h]ðe]Þ ::¼s]Jr]ðe]Þ 9 DISTINCT]ðe]Þ 9 id

h]ðnÞ ::¼COUNT]ðnÞ

f] ::¼ORDER BY ASC] 9 ORDER BY DESC] 9 id
Instructions over an abstract domain are defined as follows:
I] ::¼skip 9 v]a : ¼ e] 9 v]a : ¼ ? 9 C] 9 if b] then I]1 else I]2 9 while b] do I] 9 I]1; I
]
2.
Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

 {5 } { 6} {7} {99} {100}

age

age

{5, 6} {6, 7} . . . {7 , 99} . . .{ 99 , 100}

{5 , , 99} {6, , 100}

{5 , , 100} [5,100]

 [12,100] [5,59]

[5,24] [12,59] [25,100]

[60,100] [25,59] [12,24] [5,11]

{500 } { 501} {502} {9999} {10000}

sal

sal

{500 ,501} {501,502} . . . {502,9999} . . . {9999,10000}

{500 , , 9999} {501, , 10000}

{500 , , 10000}

[500,1499] [1500,2499] [2500,10000]

[1500,10000] [500,2499]

 [500,10000]

Few Medium Many

child no

child no

 {0} {1} {2} {9} {10}

 {0, 1} {1, 2} {2, 9} {9, 10}

{0 , , 9} {1, , 10}

{0 , , 10}

Zero

Fig. 2. Abstract lattices for attributes ‘Age’, ‘Sal’ and ‘Child-no’.

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]16
In the subsequent sections, we define abstract syntactic functions appearing in various abstract SQL statements so as to
preserve the soundness in an abstract domain of interest. This way, we prove the soundness of abstract SQL statements with
respect to their concrete counter-part. The soundness and completeness of an abstract function f] are defined in Definition 6.

Definition 6. Let g be a concretization function from an abstract domain to a concrete one. The soundness and
completeness conditions for an abstract functions f] with respect to the corresponding concrete function f are,

f] is sound if gJf]3fJg

f] is complete if gJf] ¼ fJg
Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 17
9.3. Abstract pre-conditions

The pre-condition f in Csql follows first order logic, and are defined by the n-ary function fn on constants and variables.
Soundness (and completeness eventually) of its abstract version f]n relies on the local correctness of the operations in the
abstract domain. For example, consider an abstract domain for parity represented by PAR¼ f>,even,odd, ?g. The ‘� ’
operation over the concrete domain is mapped to its abstract version as follows: oddð�]Þodd¼ odd, evenð�]Þodd¼ even,
and evenð�]Þeven¼ even. Similarly, in case of abstract domain of sign represented by SIGN¼ f>,þ ,�, ?g, the correspond-
ing operation would be �ð�]Þ�¼ þ , þð�]Þ�¼�, and þð�]Þþ ¼ þ .

Given a set of terms ft1, . . . ,tng, the relation Rnðt1, . . . ,tnÞ appearing in f results into either true or false. However, an
abstract relation R]nðt]1, . . . ,t]nÞ corresponding to Rn follows three valued logic ftrue,false,>g, where > represents either true

or false. The correspondence between the relation Rn and its abstract version R]n should guarantee that, if R]nðt]1, . . . ,t]nÞ is
true, then 8t1 2 gðt]1Þ, . . . ,tn 2 gðt]nÞ : Rnðt1, . . . ,tnÞ is true and if R]nðt]1, . . . ,t]nÞ is false, then 8t1 2 gðt]1Þ, . . . ,tn 2 gðt]nÞ :
Rnðt1, . . . ,tnÞ is false. For instance, if we consider the binary relation ‘o ’ among integers, its abstract version ‘o]’ on the

domain of intervals is defined as follows:

½li,hi�o]½lj,hj�9

true if hio lj

false if hjr li

> otherwise

8><
>:

Similarly, ‘Z]’ is defined as

½li,hi�Z
]½lj,hj�9

true if liZhj

false if hio lj

> otherwise

8><
>:

Thus, abstract pre-condition f] appearing in C] identifies the set of active data from abstract database for which it
evaluates to either true or >.

Example 2. Consider the database of Fig. 1 containing a concrete table temp and consider the following SELECT statement:
C1¼SELECT Age,Dno,Sal FROM temp WHERE Sal41600.
If we execute C1 on temp, we get the result x1 shown in Table 7.
The abstract version of C1, using the abstract mapping a defined in Example 1, is shown below:
C]1¼SELECT
] Age],Dno],Sal] FROM t]emp WHERE Sal]4]½1500;2499�
where the abstract version 4] involved in the pre-condition over the domain of intervals is defined as follows:

½li,hi�4
]½lj,hj�9

true if li4hj

false if ljZhi

> otherwise

8><
>:
Table 7

x1: result of C1 (concrete).

Age Dno Sal

30 2 2000

50 2 2300

10 1 1700

40 3 3000

70 1 1900

14 2 4000

Table 8

x]1: result of C]1.

Age] Dno] Sal]

[25,59] 2 [1500,2499]

[12,24] 1 [1500,2499]

[25,59] 2 [1500,2499]

[5,11] 1 [1500,2499]

[25,59] 3 [2500,10 000]

[60,100] 1 [1500,2499]

[12,24] 2 [2500,10 000]

Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]18
The result of the abstract query C]1 on the abstract table t]emp (Table 6) is depicted in Table 8. Observe that one row
corresponding to eID]

¼ 7 has been disregarded because the abstract well formed formula ½500;1499�Z]½1500;2499� does
not satisfy the semantic structure B], as 1500Z1499 is true. Soundness is preserved, i.e. x1 2 gðx

]
1Þ, as we include the rows

(in this example, the row corresponding to eID]
¼ 2) where the evaluation of the relation Z

] yields >; this might introduce
inaccuracies, of course, in the abstract calculus, that results into a sound overapproximation of the concrete one.

9.4. Abstract syntactic functions in abstract SELECT statements

We now describe the correspondence between concrete and abstract functions involved in SELECT statement. Observe
that many of these abstract functions differ from the corresponding concrete ones only on the domain and range, while
their functionality are the same.

9.4.1. Abstract GROUP BY function

We denote by g the GROUP BY function in SELECT statement. The function gð~eÞ½t� where ~e represents an ordered
sequence of arithmetic expressions, is applied on a table t and depending on the values of~e over the tuples of the table t, it
results into maximal partitions of the tuples in t. The tuples in the same partition will have the same values for ~e, whereas
the tuples in different partitions will have different values for ~e. The GROUP BY function g is identity function id when no
GROUP BY clause is present in SELECT statement. The function g and its abstract version g] are shown below:

g :: ¼ GROUP BY 9 id

g] :: ¼ GROUP BY]9id

Abstract GROUP BY function g] works in the similar way, but it is applied on abstract tables t], instead of concrete ones. It

partitions the abstract tuples of t] based on the abstract values of ~e] over the tuples.

Lemma 1. Let g be a concretization function. The abstract GROUP BY function g] is sound with respect to g, i.e. gJg]3gJg,
where g is the concrete counter-part of g].

Proof. Let t] be an abstract table and ~e] be an ordered sequence of abstract expressions. Let t 2 gðt]Þ and~e 2 gð~e] Þ, where g
is the concretization function.

Suppose fl1,l2, . . . ,lng is a set of concrete partitions obtained from gð~eÞ½t�, whereas fs1,s2, . . . ,smg is the set of abstract
partitions obtained from g]ð~e] Þ½t]�.

To prove the soundness of g], we have to show that

8li,(sj : liDgðsjÞ and mrn

Consider a concrete partition liDt. From the Definition 5, we know that 8x 2 t, (y 2 t] : x 2 gðyÞ. Thus, we have

8xi1,xi2 2 li, (y]j1,y]j2 2 t] : xi1 2 gðy]j1Þ4xi2 2 gðy]j2Þ ð4Þ

We know that the values of ~e for all tuples in a partition are same, i.e.

8xi1,xi2 2 li, p~e ðxi1Þ ¼ p~e ðxi2Þ

By the definition of abstraction, we get

aðp~e ðxi1ÞÞ ¼ aðp~e ðxi2ÞÞ where a is abstraction function ð5Þ

From Eqs. (4) and (5), we can write

p~e]
ðy]j1Þ ¼ p~e]

ðy]j2Þ ð6Þ

Eq. (6) says that y]j1 and y]j2 belongs to the same partition sjDt], as the properties of ~e] in y]j1 and y]j2 are same. Therefore,

8xi1,xi2 2 liDt, (y]j1,y]j2 2 sjDt] : xi1 2 gðy]j1Þ,xi2 2 gðy]j2Þ

or

8li, (sj : liDgðsjÞ

Since an abstraction function a might be surjective, two different concrete partitions li and lj (iaj) might be mapped into
the same abstract partition sk, if

xi 2 li, xj 2 lj, iaj : aðp~e ðxiÞÞ ¼ aðp~e ðxjÞÞ

Thus, the number of abstract partitions is less than or equal to the number of concrete partitions, i.e., mrn. &
Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 19
9.4.2. Abstract ALL and abstract DISTINCT

SELECT statement sometimes uses DISTINCT or ALL clause denoted by the function r which deals with duplicate tuples
or duplicate values of expressions. Its abstract version r] also works similarly, i.e., deals with the duplicate elements in the
list of abstract tuples or abstract values of expressions. The concrete function r and its abstract version are shown below:
r ::¼DISTINCT 9 ALL
r] ::¼DISTINCT] 9 ALL]
Lemma 2. Let g be a concretization function. ALL] is complete, i.e. gJALL] ¼ ALLJg.

Proof. When applying ALL] to a list of abstract tuples /l]i : i 2 IS, none of the tuple is removed or modified, and the same
holds for ALL. Therefore,

gJALL]ð/l]i : i 2 ISÞ ¼ gðALL]ð/l]i : i 2 ISÞÞ ¼ gð/l]i : i 2 ISÞ ¼/gðl]i Þ : i 2 IS

¼ ALLð/gðl]i Þ : i 2 ISÞ ¼ ALLðgð/l]i : i 2 ISÞÞ ¼ ALLJgð/l]i : i 2 ISÞ &

Lemma 3. If g is injective, then DISTINCT] is complete, i.e. gJDISTINCT]¼DISTINCT Jg.

Proof. Suppose, after applying DISTINCT] function on an abstract table t], we get the abstract table t]u containing only
unique rows. That means,

8l]1,l]2 2 t]u,(a] 2 attrðt]uÞ : pa] ðl
]
1Þapa] ðl

]
2Þ

In other words, any two rows in t]u differ by the property in at least one attribute position. Thus, concretization of t]u results
into a concrete table tu containing unique rows only, as g is injective.

If we first apply g on t] before applying DISTINCT], it results into a concrete table t containing duplicate rows if t] has
duplicate abstract rows. But after applying DISTINCT on t, we always get the same concrete table tu. Therefore, the
function DISTINCT] is complete if g is injective. &

9.4.3. Abstract ORDER BY function

We denote by f the ORDER BY function appearing in SELECT statement. The operation f ð~eÞ½t� sorts the tuples of the table
t in ascending or descending order based on the values of ~e over those tuples. An abstract version f] also works in similar
way, but it is applied on abstract tables t] and sorts the abstract tuples in ascending or descending order based on the
abstract values of ~e] over the tuples in t]. The concrete functions f and their abstract versions are defined as
f :: ¼ ORDER BY ASC 9 ORDER BY DESC 9 id

f] :: ¼ ORDER BY ASC] 9 ORDER BY DESC] 9 id
Lemma 4. If the representation function g is monotone and injective, the functions f] above are complete, i.e. gJf] ¼ fJg.

Proof. Given an abstract table t] and an ordered sequence of abstract expressions ~e] . Suppose for two tuples l]i ,l]j 2 t], we
have

p~e]
ðl]i Þ4p~e]

ðl]j Þ ð7Þ

Suppose f] :: ¼ ORDER BY ASC]. Therefore, application of f] sorts them in ascending order denoted by the ordered list

/l]j ,l]i S. Since g is injective, the concretization of this ordered list of abstract tuples always yield to an ordered list of

concrete tuples denoted by /lj,liS, where li 2 gðl
]
i Þ and lj 2 gðl

]
j Þ.

Since concretization function g is monotone, it preserves the ordering while mapping from abstract domain to concrete
co-domain. Thus, from Eq. (7) we get

gðp~e]
ðl]i ÞÞ4gðp~e]

ðl]j ÞÞ

or

p~e ðliÞ4p~e ðljÞ ð8Þ

where ~e 2 gð~e] Þ and li 2 gðl
]
i Þ and lj 2 gðl

]
j Þ.

From Eq. (8), we get that the application of f (::¼ORDER BY ASC) on li and lj also yield to the same ordered list of concrete
tuples i.e. /lj,liS.

Thus, gJf] will result into the same order of the elements as obtained by function fJg. Hence, f] is complete if g is
monotone and injective. &

9.4.4. Abstract aggregate functions

In Section 3, we mentioned that the ordered sequence of functions ~hð~eÞ where ~ha~id, are applied on each partition
obtained by GROUP BY function g, or on a single partition containing tuples for which pre-condition f evaluates to true

when no GROUP BY function is used. After performing ~hð~eÞ on each partition, it results into a single concrete tuple.
Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]20
The aggregate functions MAX, MIN, AVG, SUM, COUNT appear in hi 2
~h, and are denoted by s. Aggregate functions return a

single value when applied on a group of values.
Similarly, abstract aggregate functions s] are applied on a set of abstract values, resulting into a single abstract value.

The concrete aggregate functions s and its abstract version s] are defined below:
s ::¼ AVG 9 SUM 9 MAX 9 MIN 9 COUNT
s] ::¼ AVG] 9 SUM] 9 MAX] 9 MIN] 9 COUNT]
Below we describe how to preserve the soundness of the SQL statements with aggregate functions over an abstract
domain.

Given a set of concrete numerical values X ¼ fa1,a2; . . . ; ang, the concrete aggregate functions s are defined as follows:

AVGðXÞ9
Sn

1ai

n

SUMðXÞ9Sn
1ai

MAXðXÞ9ai 2 X, where 8j 2 ½1: :n�,iaj : aiZaj

MINðXÞ9ai 2 X, where 8j 2 ½1: :n�,iaj : airaj

COUNTðXÞ9#X, where #denotes the cardinality of the set

Corresponding to each s, we consider a concrete function fn equivalent to s, that is, fnðXÞ � sðXÞ. The function fn and its
abstract versions fn] corresponding to the aggregate functions are defined as follows:
fn ::¼ average 9summation 9maximum 9minimum 9count

fn] ::¼ average] 9summation] 9maximum] 9minimum] 9count]
For instance, let X] be a set of abstract values from the domain of intervals, i.e., X]
¼ f½li,hi�9i 2 ½1 � � �n�,li,hi 2 Z; lirhig.

Let us denote L¼ fli9½li,hi� 2 X]
g and H¼ fhi9½li,hi� 2 X]

g. The abstract functions fn] on X] are defined as follows:

average]ðX]
Þ9½averageðLÞ; averageðHÞ�

summation]ðX]
Þ9½summationðLÞ; summationðHÞ�

maximum]ðX]
Þ9½maximumðLÞ; maximumðHÞ�

minimum]ðX]
Þ9½minimumðLÞ; minimumðHÞ�

count]ðX]
Þ9½countðLÞ; countðHÞ�

Formally, fn]ðX]
Þ ¼ ½fnðLÞ, fnðHÞ�.

We already know that in abstract domain we select only those tuples for which the abstract pre-condition f] evaluates
to either true or >. Thus, unlike concrete domain, the abstract groups on which abstract aggregate functions are applied
contain a set of tuples that yield f] to either true or >. Let us denote by G] an abstract group containing a set of abstract
tuples. We can partition G] into two parts: G]

yes for which f] evaluates to true, and G]
may for which f] evaluates to >. Thus,

we can write G]
¼ G]

yes [G]
may. Observe that G]

yes \ G]
may ¼ |.

To ensure the soundness, the computation of abstract aggregate functions s] on G] are defined as follows: the result of
s]ðe]Þ on G] is denoted by an interval as below:

s]ðe]Þ½G]
� ¼ ½min]ða]Þ, max]ðb]Þ�

where

a] ¼ fn]ðe]Þ½G]
yes� and b] ¼ fn]ðe]Þ½G]

�

By fn]ðe]Þ½G]
yes�, we mean that function fn] is applied on the set of abstract values obtained by evaluating e] over the tuples

in G]
yes, yielding a single abstract value as result. Similarly in fn]ðe]Þ½G]

�, fn] is applied on the set of abstract values obtained

by evaluating e] over the tuples in G]
¼ G]

yes [G]
may.

Both the functions min] and max] takes as parameter a single abstract value a] and b] respectively obtained from fn],
and returns a concrete numerical value as output. min]ða]Þ returns the minimum concrete value from gða]Þ, whereas
max]ðb]Þ returns the maximum concrete value from gðb]Þ, where g is the concretization function.

Example 3. Consider the database of Fig. 1 containing the concrete table temp and the following SELECT statement:
C2¼SELECT AVGðAgeÞ,Dno,MAXðSalÞ,COUNTðnÞ FROM temp WHERE SalZ1500 GROUP BY Dno
If we execute C2 on temp, we get result x2 shown in Table 9.
The abstract version of C2 i.e. C]2, using the abstract mapping a defined in Example 1, is defined as below:
C]2¼SELECT
] AVG]ðAge]Þ,Dno],MAX]ðSal]Þ,COUNT]ðnÞ FROM t]emp WHERE Sal]Z]½1500;2499� GROUP BY] Dno]
Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Table 9

x2: result of C2 (concrete).

AVG(Age) Dno MAX(Sal) COUNTðnÞ

34 1 1900 3

31.33 2 4000 3

40 3 3000 1

Table 10

x]2: result of C]2.

AVG]
ðAge]Þ Dno] MAX]

ðSal]Þ COUNT]ðnÞ

[0, 45] 1 [0,2499] [0, 3]

[12, 47.33] 2 [2500, 10 000] [1, 3]

[25, 59] 3 [2500, 10 000] [1, 1]

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 21
where ‘Z]’ involved in the pre-condition over the domain of intervals is defined as follows:

½li,hi�Z
]½lj,hj�9

true if liZhj

false if lj4hi

> otherwise

8><
>:

The result of C]2 on t]emp is shown in Table 10. Observe that, G]
yes ¼ | because f] evaluates to > for all abstract tuples in the

group with Dno¼1. Thus, AVG](Age]) is computed as follows:

a] ¼ average]ð|Þ ¼NULL

b] ¼ average]ð½12; 24�; ½5; 11�; ½60; 100�Þ ¼ ½25:66; 45�

Since min](a]) and max](b]) return minimum value from g(a]) and maximum value from g(b]) respectively, we get min](a])¼

min](NULL)¼0 and max](b])¼max]([25.66, 45])¼45. Thus, for group with Dno¼1, AVG](Age])¼[min](a]), max](b])]¼[0, 45].
Similarly, for the group with Dno¼2, first two tuples belong to G]

may, whereas last tuple belongs to G]
yes. Thus, MAX](Sal])

is computed as follows:

a] ¼ maximum]ð½2500;10 000�Þ ¼ ½2500;10 000�

b] ¼ maximum]ð½1500;2499�; ½1500;2499�; ½2500;10 000�Þ ¼ ½2500;10 000�

Thus, for group with Dno¼2, MAX](Sal])¼ [min](a]), max](b])]¼[2500,10 000]. Observe that abstraction is sound i.e.
x2 2 gðx

]
2Þ.

Lemma 5. Let g be a concretization function from the domain of intervals to a concrete numerical domain. The abstract

functions fn] are sound if they satisfy

gðfn]ðX]
ÞÞ+ffnðXÞ 9 X 2 gðX]

Þg

Proof. Let X] be a set of abstract values from the domain of intervals, i.e.

X]
¼ f ½li,hi� 9 i 2 ½1: :n�; li,hi 2 Z; lirhi g

Consider two sets L and H, where L¼ fli9½li,hi� 2 X]
g and H¼ fhi9½li,hi� 2 X]

g. The abstract function fn] w:r:t: the domain of
intervals is defined on X] as follows:

average]ðX]
Þ9½averageðLÞ; averageðHÞ�

summation]ðX]
Þ9½summationðLÞ; summationðHÞ�

maximum]ðX]
Þ9½maximumðLÞ; maximumðHÞ�

minimum]ðX]
Þ9½minimumðLÞ; minimumðHÞ�

count]ðX]
Þ9½countðLÞ; countðHÞ�
Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]22
Formally, we can write

fn]ðX]
Þ ¼ ½fnðLÞ,fnðHÞ� ð9Þ

¼ ½sðLÞ,sðHÞ� since, fn� s ð10Þ

For a given set of concrete numerical values X ¼ fa1,a2, . . . ,ang, the functions fn� s are defined as

averageðXÞ � AVGðXÞ9
Sn

1ai

n

summationðXÞ � SUMðXÞ9Sn
1ai

maximumðXÞ � MAXðXÞ9ai 2 X, where 8j 2 ½1: :n�,iaj : aiZaj

minimumðXÞ � MINðXÞ9ai 2 X, where 8j 2 ½1: :n�,iaj : airaj

countðXÞ � COUNTðXÞ9#X, where # denotes the cardinality of the set:

Given two sets of numerical values X ¼ fa1,a2, . . . ,ang and X0 ¼ fa01,a02, . . . ,a0ng. We say X is less than or equal to X0 (denoted
XLX0) which is defined component-wise i.e. if 8i 2 ½1: :n�, aira0i, then XLX0.

Since the function fn is monotone, we get

if XLX0 then fnðXÞr fnðX0Þ ð11Þ

Let X ¼ fbi9½li,hi� 2 X],lirbirhig 2 gðX]
Þ. Since, 8bi 2 X and 8½li,hi� 2 X]: lirbirhi, we can write

8X 2 gðX]
Þ : LLXLH

According to Eq. (11),

8X 2 gðX]
Þ : fnðLÞr fnðXÞr fnðHÞ ð12Þ

From Eqs. (9) and (12), we get

8X 2 gðX]
Þ : fnðXÞ 2 gðfn]ðX]

ÞÞ

or

fnðgðX]
ÞÞDgðfn]ðX]

ÞÞ

This implies that the abstract function fn] is sound. &

Lemma 6. Let g be a concretization function from the domain of intervals to a concrete numerical domain. Abstract aggregate

functions s] are sound, i.e.

8X 2 X] : sðXÞ 2 gðs]ðX]
ÞÞ

Proof. The computation of abstract aggregate functions s] over a group of abstract tuples G]
¼ Gyes [Gmay is defined as

follows: s]ðe]Þ½G]
� is denoted by an interval

s]ðe]Þ½G]
� ¼ ½min]ða]Þ, max]ðb]Þ�

where

a] ¼ fn]ðe]Þ½G]
yes� and b] ¼ fn]ðe]Þ½G]

�

From Lemma 5, we have that fn] is sound, and therefore,

8Gy 2 gðG]
yesÞ : a 2 gða]Þ or aZmin]ða]Þ

where a¼ fnðeÞ½Gy� and

8G 2 gðG]
Þ : b 2 gðb]Þ or brmax]ðb]Þ

where b¼ fnðeÞ½G�.
We know that G]

¼ Gyes [Gmay contains the abstract tuples for which f] evaluates to either true and >. Given an abstract
tuple t] 2 G] and abstract pre-condition f], any concrete tuple t 2 gðt]Þ yield the corresponding concrete pre-condition
f 2 gðf]

Þ to either true or false, since we loose precision when moving from concrete to a domain of abstraction. Thus,
8G 2 gðG]

Þ where G]
¼ Gyes [Gmay, we can write

G¼ Gy [Gy
0
[Gf , where Gy 2 gðGyesÞ and Gy

0
[Gf 2 gðGmayÞ

where Gy and Gy
0 are the set of concrete tuples for which f evaluates to true, and Gf is the set of concrete tuples for which f

evaluates to false.
Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 23
Since the concrete aggregate functions s are always applied on ðGy [Gy
0
Þ for which f evaluates to true, we get

GyD ðGy [Gy
0
ÞDG

From the monotonicity property of fn, we get

fnðeÞ½Gy�r fnðeÞ½Gy [Gy
0
�r fnðeÞ½G�

or

fnðeÞ½Gy�rsðeÞ½Gy [Gy
0
�r fnðeÞ½G�, since fn� s

or

arsðXÞrb

where X is obtained by evaluating e over the tuples of ðGy [Gy
0
Þ.

or

min]ða]ÞrsðXÞrmax]ðb]Þ

or

sðXÞ 2 gð½min]ða]Þ, max]ðb]Þ�Þ

or

sðXÞ 2 gðs]ðX]
ÞÞ

Thus, the abstract aggregate functions s] are sound. &

9.5. Abstract UPDATE, INSERT, and DELETE statements

The abstract semantics of UPDATE, INSERT and DELETE statements in an abstract domain of interest are defined below:
Abstract UPDATE statement: Let Cupdate ¼/updateð ~vd ,~eÞ,fS be an UPDATE statement with targetðCupdateÞ ¼ t. Let

C]update ¼/update]ð ~v]d ,~e] Þ,f]S and t] be their abstract versions in the abstract domain corresponding to Cupdate and t

respectively, such that targetðC]updateÞ ¼ t]. According to the abstract semantics of C]update, we get

S]1C]updateUðrt] ,ra] Þ ¼ S]1/update]ð ~v]d ,~e] Þ,f]SUðrt] ,ra] Þ ¼ ðrt]
1
,ra]

1
Þ

where

rt]
1
ð x] Þ ¼

rt] kt f] ð x] Þ [rt] ku f] ð x] Þ [rt] kf f] ð x] Þ if x]=2 ~v]d

E]1e]i Uðrt] kt f] ,ra] Þ [ðtðE
]1 e]i Uðrt]ku f] ,ra] Þ,E

]1 x]Uðrt]ku f] ÞÞÞ [rt] kf f] ðx]Þ

if x] is the ith component of ~v]d and e]i is the ith component of ~e]

8>>>><
>>>>:

By the notations t]ktf
], t]kuf

] and t]kff
] we denote the set of abstract tuples in t] for which f] evaluates to true, unknown

and false respectively. The operator t stands for computing least upper bound component-wise, i.e. tðX],Y]
Þ ¼

flubðx]i ,y]i Þ 9 x]i 2 X] 4 y]i 2 Y]
g.

Abstract INSERT statement: Let C]insert ¼/insert]ð ~v]d , ~e] Þ,f]S and t] be an abstract INSERT statement and an abstract table
corresponding to their concrete versions Cinsert and t respectively, such that targetðC]insertÞ ¼ t]. According to the abstract
semantics of C]insert , we get

S]1C]insertUðrt] ,ra] Þ ¼ S]1/insert]ð ~v]d ,~e] Þ,f]SUðrt] ,ra] Þ ¼ ðrt]1
,ra]

1
Þ

where

let ~v]d ¼/a]1,a]2, . . . ,a]nS¼ attrðt]Þ, and E]1 ~e] Uðra] Þ ¼
~r] ¼/r]1,r]2, . . . ,r]nS,

and l]new ¼/r]1=a]1,r]2=a]2, . . . ,r]n=a]nS, and rt]
1
ð~x] Þ ¼ rt][l]new

ð~x] Þ:

Abstract DELETE statement: Given an abstract delete statement C]delete ¼/delete]ð ~v]d Þ,f
]S with targetðC]deleteÞ ¼ t] corre-

sponding to the concrete statement Cdelete and concrete table t respectively. According to the abstract semantics of C]delete,
we get

S]1C]deleteUðrt] ,ra] Þ ¼ S]1/delete]ð ~v]d Þ,f
]SUðrt] ,ra] Þ ¼ ðrt]

1
,ra]

1
Þ

where rt]
1
ðx]Þ ¼ rt]ku f] ð~x] Þ [rt] kf f] ð~x] Þ.
Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]24
9.6. Soundness of abstract SQL statements

Given an abstraction, let T and T] be a concrete and abstract table respectively. The correspondence between T and T]

are described using the concretization and abstraction maps g and a respectively. If Csql and C] are representing the SQL
queries on concrete and abstract domain respectively, let Tres and T]res are the results of applying Csql and C] on the T and T]

respectively. The following fact illustrate the soundness condition of abstraction:

Lemma 7. Let T] be an abstract table and C] be an abstract query. C] is sound if 8T 2 gðT]Þ: 8Csql 2 gðC]Þ : CsqlðTÞDgðC]ðT]ÞÞ.

Proof. The computation of an abstract query C] on an abstract table T] can be defined as the computation of the composite
function formed from its syntactic functional components. Consider the following abstract SELECT statement:

C]sel ¼/select]ðf]ð ~e0] Þ, r]ð
~
h] ð~x] ÞÞ, f]

1, g]ð~e] ÞÞ,f]S

and an abstract table T] where targetðC]selÞ ¼ T]. We get the abstract result as follows:

x] ¼ func]sel½T
]
� ¼ ðf]ð ~e0] ÞJr]ð

~
h] ð~x] ÞÞJf]

1Jg]ð~e] ÞJf]
Þ½T]�

where func]sel ¼ f]ð ~e0] ÞJr]ð
~
h] ð~x] ÞÞJf]

1Jg]ð~e] ÞJf].
Let Csel 2 gðC]selÞ and T 2 gðT]Þ. The computation of Csel on T is defined as

x¼ funcsel½T� ¼ ð f ð~e0 ÞJrð~hð~xÞÞJf1Jgð~eÞÞJfÞ½T�

where funcsel¼ f ð~e0 ÞJrð~hð~xÞÞJf1Jgð~eÞÞJf.

We already proved that all syntactic abstract functional components in C]sel are sound with respect to their

corresponding concrete counter-part. As the composition of sound abstract functions always yield to another sound

abstract function, we get the abstract function func]sel is sound w:r:t: funcsel. Thus, C]sel is sound, i.e. x 2 gðx]Þ. Similarly, we

can prove the soundness for other SQL statements as well. Therefore, 8T 2 gðT]Þ: 8Csql 2 gðC]Þ : CsqlðTÞDgðC]ðT]ÞÞ. &

9.7. Abstract UNION, INTERSECTION, MINUS operations

Given any abstract SQL statement C], the result of it over an abstract database can be denoted by the tuple

x] ¼/x]yes, x
]
mayS

where x]yes is the part of the result for which semantic structure of f] evaluates to true and x]may represents the remaining
part for which f] evaluates to >.2

Now we describe how to treat UNION, INTERSECTION and MINUS operation over an abstract domain so as to preserve
the soundness.

9.7.1. Abstract UNION operation

Let, C¼Cl UNION Cr be a concrete query and dB be a concrete database. Let xl ¼ 1ClUðdBÞ and xr ¼ 1CrUðdBÞ be the result
of the evaluation of Cl and Cr on dB. Clearly, x¼1CUðdBÞ ¼ xl [xr .

When we move from a concrete to an abstract domain of interest, let C]l and C]r be the corresponding abstract versions

of Cl and Cr respectively. Let dB] be an abstract database corresponding to dB w:r:t: this abstraction. We can denote the

result of the execution of C]l and C]r on dB] as follows:

x]l ¼ 1C]l UðdB]Þ ¼/x]yesl
,x]mayl

S

x]r ¼ 1C]rUðdB]Þ ¼/x]yesr
,x]mayr

S

The abstract version of C is defined as C] ¼ C]l UNION
] C]r , where the abstract union operation UNION] is defined as:

x] ¼ 1C]UðdB]Þ ¼ 1C]l UNION
] C]rUðdB]Þ ¼1C]l UðdB]Þ UNION] 1C]rUðdB]Þ ¼ x]l UNION

] x]r
¼/x]yesl

,x]mayl
S UNION] /x]yesr

,x]mayr
S¼/ðx]yesl

[x]yesr
Þ,ððx]mayl

[x]mayr
Þ\ðx]yesl

[x]yesr
ÞÞS
2 When SQL statement uses aggregate functions s] , application of s] over a group G] yields a single row in x] . This row belongs to x]may only if all rows

of that group belong to G]
may , otherwise it belongs to x]yes .

Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 25
Observe that the first component of x], i.e. ðx]yesl
[x]yesr

Þ represents the yes-part of the result for which abstract pre-

condition evaluates to true, whereas the second component ððx]mayl
[x]mayr

Þ\ðx]yesl
[x]yesr

ÞÞ represents the may-part of the

result for which the abstract pre-condition evaluates to >.

Example 4. Consider the database of Fig. 1 that contains the concrete table temp and consider the following SELECT
statement:
C3¼Cl UNION Cr¼SELECT n FROM temp WHERE Age415 UNION SELECT n FROM temp WHERE Age442

where Cl¼SELECT n FROM temp WHERE Age415,

and Cr¼SELECT n FROM temp WHERE Age442.
If we execute C3 on temp, we get the result x3 shown in Table 11.
By following the same abstraction and concretization mapping of Example 2, we get the abstract version of C3 as follows:
C]3 ¼ C]l UNION
] C]r ¼ SELECT]n FROM t]emp WHERE Age]4]½12;24� UNION] SELECT]n FROM t]emp WHERE Age]4]½25;59�
where ‘4]’ appearing in pre-condition over the domain of intervals is defined as

½li,hi�4
]½lj,hj�9

true if li4hj

false if ljZhi

> otherwise

8><
>:

The execution of the query C]l in Table 6 yields to the result shown in Table 12(a), where the tuples with eID] equal to 2, 7,
8 belong to xmayl

and the tuples with eID] equal to 1, 3, 5, 6 belong to xyesl
. Similarly, the execution of the query C]r yields to

the result shown in Table 12(b), where the tuples with eID] equal to 1, 3, 5 belong to xmayr
and one tuple with eID] equal to

6 belongs to xyesr
. Thus, the result of abstract computation of C]3 involving UNION] is depicted in Table 12(c). Observe that
Table 11

x3: result of C3 (concrete).

eID Name Age Dno Pno Sal Child-no

1 Matteo 30 2 1 2000 4

2 Alice 22 1 2 1500 2

3 Joy 50 2 3 2300 3

5 Deba 40 3 4 3000 5

6 Andrea 70 1 2 1900 2

7 Alberto 18 3 4 800 1

Table 12

Abstract computation of C]3.

eID] Name] Age] Dno] Pno] Sal] Child-no]

(a) x]l : result of C]l
1 Matteo [25,59] 2 1 [1500,2499] Medium

2 Alice [12,24] 1 2 [1500,2499] Few

3 Joy [25,59] 2 3 [1500,2499] Medium

5 Deba [25,59] 3 4 [2500,10 000] Many

6 Andrea [60,100] 1 2 [1500,2499] Few

7 Alberto [12,24] 3 4 [500,1499] Few

8 Bob [12,24] 2 3 [2500,10 000] Medium

(b) x]r : result of C]r
1 Matteo [25,59] 2 1 [1500,2499] Medium

3 Joy [25,59] 2 3 [1500,2499] Medium

5 Deba [25,59] 3 4 [2500,10 000] Many

6 Andrea [60,100] 1 2 [1500,2499] Few

(c) x]3: resulting table after performing UNION]

1 Matteo [25,59] 2 1 [1500,2499] Medium

2 Alice [12,24] 1 2 [1500,2499] Few

3 Joy [25,59] 2 3 [1500,2499] Medium

5 Deba [25,59] 3 4 [2500,10 000] Many

6 Andrea [60,100] 1 2 [1500,2499] Few

7 Alberto [12,24] 3 4 [500,1499] Few

8 Bob [12,24] 2 3 [2500,10 000] Medium

Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]26
in the result x]3, the yes-part x]yes3
¼ ðx]yesl

[x]yesr
Þ contains the tuples with eID] equal to 1, 3, 5, 6 and the may-part

x]may3
¼ ððx]mayl

[x]mayr
Þ\ðx]yesl

[x]yesr
ÞÞ contains the tuples with eID] equal to 2, 7, 8. Here the abstraction is sound i.e. x3 2 gðx

]
3Þ.

9.7.2. Abstract INTERSECTION operation

Let, x¼ 1CUðdBÞ be the result of executing a concrete query C on a database dB, where C¼Cl INTERSECT Cr. It is clear
that x¼ xl \ xr , where xl ¼1ClUðdBÞ and xr ¼1CrUðdBÞ, according to the concrete intersection operation INTERSECT.

Let C]l , C]r and dB] be abstract queries and abstract database corresponding to Cl, Cr and dB respectively w:r:t: an abstract

domain of interest. Let x]l ¼ 1C]l UðdB]Þ ¼/x]yesl
,x]mayl

S and x]r ¼1C]rUðdB]Þ ¼/x]yesr
,x]mayr

S.

The abstract version of C is, thus, defined as C] ¼ C]l INTERSECT
] C]r , where abstract intersection operation INTERSECT

] is defined as follows:

x] ¼ 1C]UðdB]Þ ¼ 1C]l INTERSECT
] C]rUðdB]Þ ¼ 1C]l UðdB]Þ INTERSECT] 1C]rUðdB]Þ ¼ x]l INTERSECT

] x]r
¼/x]yesl

,x]mayl
S INTERSECT] /x]yesr

,x]mayr
S¼/ðx]yesl

\ x]yesr
Þ,ððx]mayl

\ x]r Þ [ðx
]
mayr
\ x]l ÞÞS

where the first component ðx]yesl
\ x]yesr

Þ represents the yes-part of the result, whereas the second component ððx]mayl
\

x]r Þ [ðx
]
mayr
\ x]l ÞÞ represents the may-part of the result.

Example 5. Consider the concrete table temp in Fig. 1 and the following SELECT statement:
C4¼Cl INTERSECTION Cr¼SELECT n FROM temp WHERE Age415 INTERSECT SELECT n FROM temp WHERE Age442
where Cl¼SELECT n FROM temp WHERE Age415,

and Cr¼SELECT n FROM temp WHERE Age442.
If we execute C4 on temp, we get the result x4 shown in Table 13.
The corresponding abstract query C]4, by following the same abstraction and concretization mapping of Example 2, is as

follows:
C]4¼SELECT
]n FROM t]emp WHERE Age]4]½12;24� INTERSECT] SELECT]n FROM t]emp WHERE Age]4]½25;59�
The execution of the queries C]l and C]r on Table 6 yields to the result shown in Table 14(a) and (b) respectively. The result

of abstract computation of C]4 involving INTERSECT] is depicted in Table 14(c), where the yes-part x]yes4
¼ ðx]yesl

\ x]yesr
Þ

contains only one tuple with eID] equal to 6 and the may-part x]may4
¼ ððx]mayl

\ x]r Þ [ðx
]
mayr
\ x]l ÞÞ contains the tuples with
Table 13

x4: result of C4 (concrete).

eID Name Age Dno Pno Sal Child-no

3 Joy 50 2 3 2300 3

6 Andrea 70 1 2 1900 2

Table 14

Abstract computation of C]4.

eID] Name] Age] Dno] Pno] Sal] Child-no]

(a) x]l : result of C]l
1 Matteo [25,59] 2 1 [1500,2499] Medium

2 Alice [12,24] 1 2 [1500,2499] Few

3 Joy [25,59] 2 3 [1500,2499] Medium

5 Deba [25,59] 3 4 [2500,10 000] Many

6 Andrea [60,100] 1 2 [1500,2499] Few

7 Alberto [12,24] 3 4 [500,1499] Few

8 Bob [12,24] 2 3 [2500,10 000] Medium

(b) x]r : result of C]r
1 Matteo [25,59] 2 1 [1500,2499] Medium

3 Joy [25,59] 2 3 [1500,2499] Medium

5 Deba [25,59] 3 4 [2500,10 000] Many

6 Andrea [60,100] 1 2 [1500,2499] Few

(c) x]4: resulting table after performing INTERSECT]

1 Matteo [25,59] 2 1 [1500,2499] Medium

3 Joy [25,59] 2 3 [1500,2499] Medium

5 Deba [25,59] 3 4 [2500,10 000] Many

6 Andrea [60,100] 1 2 [1500,2499] Few

Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 27
eID] equal to 1, 3, 5. Here the abstraction is sound i.e. x4 2 gðx
]
4Þ.

9.7.3. Abstract MINUS operation

If we treat an abstract minus operation MINUS] in a similar manner as of concrete MINUS, we cannot preserve the
soundness. This happens due to the overapproximated results of the query on right side of MINUS] operation that removes
more information from the result of the query on the left side of MINUS]. So in order to preserve the soundness, we have to
treat MINUS] differently.

Consider an abstract SQL statement of the form C] ¼ C]l MINUS] C]r . Let the result for C]l and C]r be x]l ¼/x]yesl
,x]mayl

S and
x]r ¼/x]yesr

,x]mayr
S respectively.

The difference operation MINUS] over an abstract domain is defined as follows:

x] ¼ x]l MINUS
] x]r ¼/x]yesl

,x]mayl
S MINUS] /xi]yesr

,x]mayr
S¼/ðx]yesl

\ðx]yesl
\ x]yesr

ÞÞ,ðx]mayl
\ðx]mayl

\ x]yesr
ÞÞS

Observe that the first component ðx]yesl
\ðx]yesl

\ x]yesr
ÞÞ represents the yes-part for which the abstract pre-condition strictly

evaluates to true, whereas the second component ðx]mayl
\ðx]mayl

\ x]yesr
ÞÞ represents the may-part for which the abstract pre-

condition evaluates to >.

Example 6. Consider the database of Fig. 1 that contains concrete table temp and consider the following SELECT statement:
C5¼Cl MINUS Cr¼SELECT n FROM temp WHERE Age415 MINUS SELECT n FROM temp WHERE Age442

where Cl¼SELECT n FROM temp WHERE Age415,

and Cr¼SELECT n FROM temp WHERE Age442.
If we execute C5 on temp, we get the result x5 shown in Table 15.
By following the same abstraction and concretization mapping as of Example 2, we get the abstract version of C5 as

follows:
C]5 ¼ C]l MINUS
] C]r ¼ SELECT]n FROM t]emp WHERE Age]4]½12;24� MINUS] SELECT]nFROM t]emp WHERE Age]4]½25;59�
The execution of the query C]l and C]r in Table 6 yields to the results shown in Table 16(a) and (b) respectively. In
Table 16(a), the tuples with eID] equal to 2, 7, 8 belongs to x]mayl

, whereas the remaining four tuples belong to x]yesl
.

Similarly, in Table 16(b), the tuple with eID] equal to 6 belongs to x]yesr
, whereas the remaining three tuples belong to x]mayr

.

Table 15

x5: result of C5 (concrete).

eID Name Age Dno Pno Sal Child-no

1 Matteo 30 2 1 2000 4

2 Alice 22 1 2 1500 2

5 Deba 40 3 4 3000 5

7 Alberto 18 3 4 800 1

Table 16

Abstract computation of C]5.

eID] Name] Age] Dno] Pno] Sal] Child-no]

(a) Result of C]l
1 Matteo [25,59] 2 1 [1500,2499] Medium

2 Alice [12,24] 1 2 [1500,2499] Few

3 Joy [25,59] 2 3 [1500,2499] Medium

5 Deba [25,59] 3 4 [2500,10 000] Many

6 Andrea [60,100] 1 2 [1500,2499] Few

7 Alberto [12,24] 3 4 [500,1499] Few

8 Bob [12,24] 2 3 [2500,10 000] Medium

(b) Result of C]r
1 Matteo [25,59] 2 1 [1500,2499] Medium

3 Joy [25,59] 2 3 [1500,2499] Medium

5 Deba [25,59] 3 4 [2500,10 000] Many

6 Andrea [60,100] 1 2 [1500,2499] Few

(c) x]5: resulting table after performing MINUS]

1 Matteo [25,59] 2 1 [1500,2499] Medium

2 Alice [12,24] 1 2 [1500,2499] Few

3 Joy [25,59] 2 3 [1500,2499] Medium

5 Deba [25,59] 3 4 [2500,10 000] Many

7 Alberto [12,24] 3 4 [500,1499] Few

8 Bob [12,24] 2 3 [2500,10 000] Medium

Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]28
Thus, ðx]yesl
\ðx]yesl

\ x]yesr
ÞÞ contains the tuples with eID] equal to 1, 3, 5, whereas ðx]mayl

\ðx]mayl
\ x]yesr

Þ contains the tuples with

eID] equal to 2, 7, 8. The result of C]5 involving MINUS] is depicted in Table 16(c). Observe that the abstraction is sound i.e.

x5 2 gðx
]
5Þ.

9.8. Abstract control statements

Given an abstraction, the correspondence between the instructions I and its abstract versions I] for the conditional and
while statements are
�

P
S

‘‘if b then I1 else I2’’ is abstracted by

if ðb] ¼ trueÞ then I]1 elseif ðb] ¼ falseÞ then I]2 else I]1 t I]2
�
 ‘‘while b do I’’ is abstracted by FIX F] where F] is the functional corresponding to the concrete while statement.
10. Formal semantics of SQL statements with co-related and non-co-related subquery

A subquery is a query that is nested inside a SELECT, UPDATE, INSERT, or DELETE statement, or inside another subquery.
Subquery can be nested inside a WHERE or HAVING clause of an outer statement, or inside another subquery. A subquery
can appear anywhere where an expression can be used, if it returns a single value. However, in practice, there is a limit on
the levels of nesting based on the available memory and the complexity of the other expressions in the query.

Many queries can be evaluated by executing the subquery once and substituting the resulting value or values at the
place of subquery.

In queries that include a co-related subquery (also known as a repeating subquery), the subquery depends on the outer
query for its values. That means that the subquery is executed repeatedly, once for each row that might be selected by
outer query.

If a table appears only in a subquery and not in the outer query, then the columns from that table cannot be included in
the output.

The following example illustrates the co-related subquery which finds the name and location of those department
under which the average salary of all employees is greater than or equal to 1000
SELECT Dname,Loc FROM tdept WHERE 1000r ðSELECT AVGðSalÞ FROM temp WHERE temp:Dno¼ tdept :DeptnoÞ
Here the subquery is co-related because the value of the subquery depends on the value of the attribute ðtdept :DeptnoÞ

which is the part of a table in the outer query.
But the following subquery is non-co-related:
SELECT Dname, Loc FROM tdept WHERE Deptno¼ SOME ðSELECT Dno FROM temp WHERE SalZ1500Þ
Let Csql be a query having C0sql as a subquery. Suppose, Tout
¼ ft1,t2, . . . ,tng and Tin

¼ ft01,t02, . . . ,t0mg are the set of tables
explicitly appears in Csql and C0sql respectively, where tout ¼ t1 � t2 � � � � � tn and tin ¼ t01 � t02 � � � � � t0m.

Definition 7 (Co-related subquery). C 0sql is co-related if (x 2 attrðtoutÞ such that x used in C0sql.

The syntax of the Csql ¼/Asql,fS with one level nested subquery is
1.
 /selectðva, f ð~e0 Þ, rð~hð~xÞÞ, f2ðCselect
00
Þ, ~gð~eÞÞ, f1ðC

0
selectÞS,
2.
 /updateð ~vd , ~eÞ, fðCselectÞS,

3.
 /insertð ~vd , ~eÞ, fðCselectÞS,

4.
 /delete, fðCselectÞS,
where Cselect, C 0select and Cselect
00 do not have any nested subquery.

We use the following idea to describe the semantics of SQL statement with co-related nested subquery.
Suppose tout is partitioned into a set of mutual exclusive tables ti

out
, i ranges over the number of rows of tout. Each table

ti
out

contains a distinct row of tout. So, if there are k rows in tout, after partitioning we get k tables tout
1 ,tout

2 , . . . ,tout
k .

Now the following steps are executed k times for i¼ 1, . . . ,k:
1.
 ti ¼ tout
i � tin:
2.
 Execute the subquery C0sql on the environment ðrti
,raÞ with targetðC0sqlÞ ¼ ti.
3.
 Substitute the result obtained in step 2 at the place of the subquery C0sql and execute the outer query Csql on the
environment ðrtout

i
,raÞ with targetðCsqlÞ ¼ tout

i .

4.
 Get the final result by taking union of all the results for all i obtained in step 3.
lease cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
ystems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 29
10.1. SELECT statement with co-related subquery
10.1.1. Formal semantics of SELECT statement with co-related subqueries

S1/selectðva,f ð~e0 Þ,rð~hð~xÞÞ,f2ðC
00
selectÞ,~gð~eÞÞ,f1ðC

0
selectÞSUBðrd,raÞ

¼ S1/selectðva,rð~hð~xÞÞ,f ð~e0 Þ,f2ðC
00
selectÞ,~g ð~x,~eÞÞ,f1ðC

0
selectÞSUBðrtout [rtin

1
[rtin

2
,raÞ

where targetðC0selectÞ ¼ ft
in
1 g and targetðCselect

00
Þ ¼ ftin

2 g.

¼
[

i
S1/selectðva,rð~hð~xÞÞ,f ð~e0 Þ,fi

2,~gð~x,~eÞÞ,fi
1SUBðrtout

i
,raÞ, where

Let t1
i ¼ tout

i � tin
1 and t2

i ¼ tout
i � tin

2 , and S1C0selectUðrt1
i
,raÞ ¼ t0i and

S1C00selectUðrt2
i
,raÞ ¼ t00i with targetðC 0selectÞ ¼ ft

1
i g, targetðC00selectÞ ¼ ft

2
i g, and

fi
1 ¼f1½rt0

i
ða0Þ=C 0select� and fi

2 ¼f2½rt00
i
ða00Þ=C 00select�

with a0 ¼ attrðt0iÞ and a00 ¼ attrðt00i Þ

10.1.2. Illustration of the semantics of SQL statement with co-related subquery using an example

Consider the database instance in Fig. 3 and the following SELECT statement with a co-related subquery:
SELECT Dname,Loc FROM tdept WHERE 1000r ðSELECTAVGðSalÞ FROM tempWHERE Dno¼DeptnoÞ
From the above query we get the following information:
�

P
S

Tout
¼ ftdeptg, and thus, tout ¼ tdept ,
�
 Tin
¼ ftempg, and thus, tin ¼ temp,
�
 Q¼SELECT Dname, Loc FROM tdept WHERE 1000rðQ 0Þ,
where Q 0 ¼SELECT AVGðSalÞ FROM temp WHERE Dno¼Deptno.

Now we illustrate the operations step by step.
Step 1. Par

In

In
an

lease ci
ystems
tition the table tout into a set of tables ti
out

each containing one distinct row from tout:
the example, tout ¼ tdept with three rows. So, after partitioning we have three distinct tables tout

1 , tout
2 , tout

3 as
own in Table 17(a)–(c) respectively.
sh

Step 2. Ex
ecute the following steps, for i¼1, 2, 3:

Step (2a).
 Perform ti ¼ tout

i � tin, i¼1, 2, 3:
the example, tin ¼ temp. Thus, for three partitions tout

1 , tout
2 and tout

3 , performing the above operation we get t1, t2

d t3 respectively, as shown in Table 18(a)–(c).
eID Name Age Dno Pno Sal
1 Matteo 28 2 1 2000
2 Stefano 30 1 2 1500
3 luca 25 1 2 1700
4 Alberto 35 3 4 800

Deptno Dname Loc MngrID
1 Math Turin 4
2 Computer Venice 1
3 Physics Mestre 5

Fig. 3. Database dB.

Table 17
Partitions of tdept.

Deptno Dname Loc MngrID

(a) tout
1

1 Math Turin 4

(b) tout
2

2 Computer Venice 1

(c) tout
3

3 Physics Mestre 5

te this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
& Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Table 18

ti ¼ tout
i � temp for i¼ 1;2,3.

Deptno Dname Loc MngrID eID Name Age Dno Pno Sal

(a) t1 ¼ tout
1 � temp

1 Math Turin 4 1 Matteo 28 2 1 2000

1 Math Turin 4 2 Stefano 30 1 2 1500

1 Math Turin 4 3 luca 25 1 2 1700

1 Math Turin 4 4 Alberto 35 3 4 800

(b) t2 ¼ tout
2 � temp

2 Computer Venice 1 1 Matteo 28 2 1 2000

2 Computer Venice 1 2 Stefano 30 1 2 1500

2 Computer Venice 1 3 luca 25 1 2 1700

2 Computer Venice 1 4 Alberto 35 3 4 800

(c) t3 ¼ tout
3 � temp

3 Physics Mestre 5 1 Matteo 28 2 1 2000

3 Physics Mestre 5 2 Stefano 30 1 2 1500

3 Physics Mestre 5 3 luca 25 1 2 1700

3 Physics Mestre 5 4 Alberto 35 3 4 800

Table 19
Tables t1

0 , t2
0 and t3

0 .

AVG(Sal)

(a) t1
0 1600

(b) t2
0 2000

(c) t3
0 800

Table 20

S½½Qi��ðrtdept
i

,raÞ, for i¼ 1;2,3.

Dname Loc

(a) Math Turin

(b) Computer Venice

(c) Empty

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]30
Step (2b).
Please ci
Systems
Execute the inner query Q 0 on the environment ðrti
,raÞwith targetðQ 0Þ ¼ ftig and get the results as ti

0, for i¼1, 2, 3:
In the example, we have three table environments rti

corresponding to ti for i¼1, 2, 3. Thus, the execution of the
inner query Q 0 over ðrti

,raÞ yields to three results t1
0,t2
0 and t3

0 respectively as follows:

(i) t01 ¼ S1SELECT AVGðSalÞ FROM t1 WHERE Dno¼DeptnoUðrt1
,raÞ,

(ii) t02 ¼ S1SELECT AVGðSalÞ FROM t2 WHERE Dno¼DeptnoUðrt2
,raÞ,

(iii) t03 ¼ S1SELECT AVGðSalÞ FROM t3 WHERE Dno¼DeptnoUðrt3
,raÞ.
The resulting tables t01, t02 and t03 are shown in Table 19(a)–(c) respectively.

Step (2c).
 Substitute the result rt0

i
ð~aÞ where ~a ¼ attrðt0iÞ, in place of subquery Q 0 and get the corresponding outer query Qi

with targetðQiÞ ¼ ft
out
i g for i¼1, 2, 3:

In the example, rt0
i
(AVG(Sal)) returns three values 1600, 2000, and 800 for i¼1, 2, 3. So after substituting them in

place of subquery Q 0 we get the following three final queries:

(i) Q1¼ SELECT Dname, Loc FROM tout
1 WHERE 1000r ð1600Þ,

(ii) Q2¼SELECT Dname, Loc FROM tout
2 WHERE 1000r ð2000Þ,

(iii) Q3¼SELECT Dname, Loc FROM tout
3 WHERE 1000r ð800Þ:
Step (2d).
 Execute Qi over the environment ðrtout
i

,raÞ, for i¼1, 2, 3:
The execution of Q1, Q2 and Q3 over ðr

tdept
1

,raÞ, ðrtdept
2

,raÞ and ðr
tdept

3

,raÞ gives the results shown in Table 20(a)–(c)
respectively. Observe that the execution in the third case results into an empty table.S
Step (2e).
 Get the final result of the query Q ¼ iS1QiUðrtout
i

,raÞ, for i¼1, 2, 3:
In the example, S1QUðrtout [rtin ,raÞ¼S1QUðrtdept

[rtemp
,raÞ¼S1Q1Uðrtout

1
,raÞ [S1Q2Uðrtout

2
,raÞ[S1Q3Uðrtout

3
,raÞ.

The result is shown in Table 21
te this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
& Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Table 21
S½½Q ��ðrtout [rtin

,raÞ.

Dname Loc

Math Turin

Computer Venice

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 31
10.2. SELECT statement with non-co-related subquery

10.2.1. Formal semantics of SELECT statement with non-co-related subqueries

S1/selectðva,f ð~e0 Þ,rð~hð~xÞÞ,f2ðCselect2
Þ,~g ð~eÞÞ,f1ðCselect1

ÞSUBðrd,raÞ

¼ S1/selectðva,f ð~e0 Þ,rð~hð~xÞÞ,f2ðCselect2
Þ,~gð~eÞÞ,f1ðCselect1

ÞSUBðrtout [rtin
1
[rtin

2
,raÞ

where targetðCselect1
Þ ¼ ftin

1 g and targetðCselect2
Þ ¼ ftin

2 g:¼ S1/selectðva,f ð~e0 Þ,rð~hð~xÞÞ,f02,~gð~eÞÞ,f01SUBðrtout ,raÞ, where

S1Cselect1
Uðrtin

1
,raÞ ¼ t0 and S1Cselect2

Uðrtin
2

,raÞ ¼ t00, andf01 ¼f1½rt0 ða
0Þ=Cselect1

� and f02 ¼f2½rt00 ða
00Þ=Cselect2

�

with a0 ¼ attrðt0Þ and a00 ¼ attrðt00Þ
10.2.2. Illustration of the semantics of SELECT statement with non-co-related subquery using an example

Consider the following SELECT statement with non-co-related subquery and the database instance dB as depicted in Fig. 3:
SELECT Dname, Loc FROM tdept WHERE Deptno¼ SOMEðSELECTDnoFROMtempWHERESalZ1500Þ
From the above query we get the following informations:
�

P
S

Tout
¼ ftdeptg, and thus, tout ¼ tdept ,
�
 Tin
¼ ftempg, and thus, tin ¼ temp,
�
 Q ¼ SELECT Dname, Loc FROM tdept WHERE Deptno¼ SOMEðQ 0Þ,
where Q 0 ¼ SELECT Dno FROM temp WHERE SalZ1500.
Now we illustrate the operations step by step.
Step 1.
lease
ystem
Execute the inner query Q 0 on the environment ðrtin ,raÞ and get the result as t0:
In the example tin ¼ temp and thus, the semantics execution of Q 0 on ðrtemp

,raÞ yields to the resulting table t0, shown
in Table 22.
Step 2.
 Substitute the result rt0 ð~aÞ with ~a ¼ attðt0Þ in the place of subquery Q 0, and get the corresponding outer query Q:
As rt0 (Dno) return the /2;1,1S. Substituting it at the place of Q 0, we get

Q¼SELECT Dname, Loc FROM tdept WHERE Deptno¼ SOMEð2;1,1Þ
Step 3.
 Execute Q over the environment ðrtout ,raÞ:
The execution of Q over ðrtout ,raÞ, i.e. S1QUðrtdept

,raÞ yields to the result shown in Table 23.
10.3. Formal semantics of UPDATE/INSERT/DELETE statement with co-related subquery

S1/Asql,fðCselectÞSUBðrd,raÞ ¼ S1/Asql,fðCselectÞSUBðrtout [rtin ,raÞ where targetðCselectÞ ¼ ft
ing

¼
[

i
S1/Asql,fiSUBðrtout

i
,raÞ

where

Let ti ¼ tout
i � tin, and S1CselectUðrti

,raÞ ¼ ti with targetðCselectÞ ¼ ftig, andfi ¼f½rti
ðaÞ=Cselect� with a¼ attrðtiÞ:
cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
s & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Table 23
S1QUðrtdept

,raÞ.

Dname Loc

Math Turin

Computer Venice

Table 22

Table t0 ¼ S1Q 0Uðrtemp
,raÞ.

Dno

2

1

1

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]32
10.4. Formal semantics of UPDATE/INSERT/DELETE statement with non-co-related subquery

S1/Asql,fðCselectÞSUðrd,raÞ ¼ S1/Asql,fðCselectÞSUðrtout [rtin ,raÞ

¼ S1/Asql,f
0SUðrtout ,raÞ where S1CselectUðrtin ,raÞ ¼ t and f0 ¼f½rtðaÞ=Cselect� with a¼ attrðtÞ

11. Applications

The abstraction of relational database system has many interesting application areas. Let us discuss in detail a few
of them.

11.1. Observation-based fine grained access control

The granularity of traditional access control mechanism is coarse-grained and can be applied at database or table level
only. The Fine Grained Access Control (FGAC) mechanisms [3], on the other hand, provides the safety of the database
information even at lower level such as individual tuple level or cell level. However, in traditional FGAC, the notion of
sensitivity of the information is too restrictive (either public or private) and impractical in some real systems where
intensional leakage of the information to some extent is allowed with the assumption that the power of the external
observer is bounded. Thus, we need to weaken or downgrading the sensitivity level of the database information, hence,
consider a weaker attacker model. The weaker attacker model characterizes the observational characteristics of the
attacker and can be able to observe specific properties of the private data. For instance, suppose the database in an online
transaction system contains credit card numbers for its customers. According to the disclosure policy, the employees of the
customer-care section are able to see the last four digits of the credit card numbers, whereas all the other digits are
completely hidden. The traditional FGAC policy is unable to implement this type of security framework without changing
the database structure. To cope with this situation, we introduced an Observation-Based Fine Grained Access Control
(OFGAC) mechanism [16] for Relational Database Management System (RDBMS) based on the Abstract Interpretation
framework. In this setting, data are made accessible at various level of abstraction based on their sensitivity. For instance,
the credit card number ‘‘3456 1985 5672 1856’’, according to the policy, will be viewed as ‘‘**** **** **** 1856’’. Therefore,
unauthorized users are not able to infer the exact content of a cell containing confidential information, while they are
allowed to get partial information out of it, according to their access rights. Recently, we extended this OFGAC framework
to the context of XML documents [17].

11.2. Persistent watermarking

In the existing watermarking schemes of relational databases [18], the watermark is generated and embedded based on
the database content. As a result, the watermark verification phases completely rely on the database content. In other
words, the success of the watermark detection is content dependent. Benign updates or any other intensional processing of
this content may damage or distort the existing watermark, leading the detection phase almost infeasible. In [19,20], we
address the issue of persistency of watermarks that serves as a way to recognize the integrity and ownership proof of the
database, while allowing the evaluation of the database content by queries in a set of queries Q. The proposed algorithms
generate the watermark by exploiting the information in the static part of the database states and the invariants of the
database information represented by semantics-based properties. The static part contains the data cells of the database
state that are not affected by the queries in Q at all. The semantics-based properties are extracted from a form of abstract
Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 33
database, and these include Intra-cell (IC), Intra-tuple (IT), and Intra-attribute among-tuples (IA) properties. The IC
property deals with the properties of individual cells obtained from non-relational abstract domain. The IT property deals
with the inter-relation between two or more attribute values in the same tuple represented by the elements from
relational abstract domain (e.g., the domain of octagons, polyhedra, etc.). The IA property is obtained from the set of
independent tuples and can be represented by either relational or non-relational abstract domain.

11.3. Cooperative query answering

The traditional query processing system requires the users to have precise information about the problem domain,
database schema, and database content. It always provides limited and exact answers, or even no information at all when
the exact information is not available in the database. To remedy such shortcomings, the notion of cooperative query
answering [1,2] has been explored as an effective mechanism that provides users an intelligent database interface to issue
approximate queries independent to the underlying database structure and its content, and supplies additional useful
information as well as the exact answers. As an example, in response to the query about ‘‘specific flight departing at 10 a.m.

from Rome Fiumicino airport to Paris Orly airport’’, the cooperative query answering system may return ‘‘all flight
information during morning from airports in Rome to airports in Paris’’, and thus, the user will be able to choose other
flights from nearby airports if specific flight is unavailable. Searching approximate values for a specialized value is
equivalent to find an abstract value of the specialized value, since the specialized values of the same abstract value
constitute approximate values of one another. In [21], we introduced three key issues: soundness, relevancy and
optimality of the cooperative answers, which can be used as a milestone to compare different cooperative schemes in the
literature. In addition, we proposed a cooperative scheme based on the Abstract Interpretation framework to address these
key issues as well.

11.4. Static analysis framework for the transactions to optimize the integrity constraint checking

In [22,23], the authors introduce the way to optimize integrity constraints checking for a transaction at compile-time to
reduce the run-time overhead. They consider only the object-oriented databases where the initial databases are
represented in the form of first order logic formulas (treated as abstract form of databases). They use predicate
transformer as a way to provide the abstract interpretation of the transactions so as to collect the run-time behavior of
the transaction at compile-time. Our proposal, similarly, can serve as a semantics-based static analysis framework for the
applications or transactions that interact with relational databases.

11.5. Property-based querying and approximate query answering

Other applications include property-based querying where users are mostly interested in answers based on some
specific properties of the database information, rather than their exact content. Also abstraction of database system can
serve as a way to answering queries approximately in order to reduce query response times, when the precise answer is
not necessary or early feedback is helpful [24].

12. Related works

Most popular commercial and open source databases currently in use are based on the relational data model which
serves as a formal basis for relational database system. The relational model of data was first proposed by Codd in 1970
[25]. In [26], Codd defines a collection of operations on relations which is defined as Relational Algebra.

Relational Calculus is based on a branch of mathematical logic called predicate calculus. In 1967, possibly, Kuhns first
used the idea of predicate calculus as the basis for query language in [27]. The applied form of predicate calculus
specifically tailored to relational databases was proposed by Codd [26]. A language explicitly based on that calculus called
‘‘Data Sublanguage ALPHA’’ was also presented by Codd in [28].

In [11], the authors describe the formal semantics of SQL using a formal model, called Extended Three Valued Predicate
Calculus (E3PVC). This model is basically based on a set of rules that determine a syntax-driven translation of SQL queries.
These rules allow the transformation of a general E3VPC expression to a canonical form, which can be manipulated using
traditional, two-valued predicate calculus and solves the equivalence of SQL queries.

The Relational Algebra and Relational Calculus can be used as a model for designing many approaches to query
optimization. Many works [8,12,29,10] on semantics and optimization of SQL queries focussed on the approach of
translating SQL to a formal language.

Bultzingwloewen [8] gives a precise definition of the semantics of SQL queries having aggregate functions and identifies
some problems associated with optimization along with their solutions. Here the semantics is defined by translating SQL
queries into extended relational calculus expressions based on the work in [9] where the extension of relational algebra
and relational calculus is achieved by including aggregate functions only in a natural manner. Moreover, he considers the
NULL values as well in the extended version of relational algebra and relational calculus. He proved that these extended
Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]]34
relational calculus and relational algebra are equivalent and have the same expressive power. He also discussed a new
general processing strategy for aggregate functions.

In [12], the authors proposed a syntax directed translator of SQL into relational algebra. This is done in two steps:
transform SQL queries into equivalent SQL queries accepted by restricted grammar and then transform the restricted one
into relational algebra expression. The translator can be in conjunction with an optimizer which operates on the relational
algebra expression. This translator defines the semantics of the SQL language and can be used for the proof of equivalence
of SQL queries with different syntactic forms. Translation of SQL into equivalent relational algebra via relational calculus is
also presented in [29]. However, this translation is not optimized.

13. Conclusions

As far as we know this is the first attempt to formalize a Concrete/Abstract semantics for SQL query languages within
the Abstract Interpretation framework. This framework can serve several purposes, like (i) property-based query
answering, (ii) cooperative query processing, (iii) static analysis of the transactions to optimize the integrity constraint
checking, (iv) to provide observation-based fine grained access control to the database information, (v) approximate
query answering, (vi) persistent watermarking, (vii) to provide users either partial view or ‘‘customized replicas’’ of the
database, etc.
Acknowledgment

Work partially supported by RAS L.R. 7/2007 Project TESLA.

References

[1] Chu WW, Chen Q. A structured approach for cooperative query answering. IEEE Transactions on Knowledge and Data Engineering 1994;6:
738–49.

[2] Keun Shin M, Huh S-Y, Lee W. Providing ranked cooperative query answers using the metricized knowledge abstraction hierarchy. Expert Systems
with Applications 2007;32:469–84.

[3] Wang Q, Yu T, Li N, Lobo J, Bertino E, Irwin K, Byun J-W. On the correctness criteria of fine-grained access control in relational databases. In:
Proceedings of the 33rd international conference on very large data bases (VLDB’07). Vienna, Austria: VLDB Endowment; 2007. p. 555–66.

[4] Cousot P, Cousot R. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In:
Proceedings of the 4th annual ACM SIGPLAN-SIGACT symposium on principles of programming languages (POPL’77). Los Angeles, CA, USA: ACM
Press; 1977. p. 238–52.

[5] Cousot P, Cousot R. Systematic design of program analysis frameworks. In: Proceedings of the 6th annual ACM SIGACT-SIGPLAN symposium on
principles of programming languages (POPL’79). San Antonio, Texas: ACM Press; 1979. p. 269–82.

[6] Cousot P, Cousot R. Systematic design of program transformation frameworks by abstract interpretation. In: Proceedings of the 29th annual ACM
SIGPLAN-SIGACT symposium on principles of programming languages (POPL’02). Portland, OR, USA: ACM Press; 2002. p. 178–90.

[7] Giacobazzi R, Ranzato F, Scozzari F. Making abstract interpretations complete. Journal of the ACM 2000;47:361–416.
[8] Bultzingwloewen GV. Translating and optimizing SQL queries having aggregates. In: Proceedings of the 13th international conference on very large

data bases (VLDB’87). Brighton, England: Morgan Kaufmann Publishers Inc.; 1987. p. 235–43.
[9] Klug A. Equivalence of relational algebra and relational calculus query languages having aggregate functions. Journal of the ACM 1982;29:

699–717.
[10] Nakano R. Translation with optimization from relational calculus to relational algebra having aggregate functions. ACM Transactions on Database

Systems 1990;15:518–57.
[11] Negri M, Pelagatti G, Sbattella L. Formal semantics of SQL queries. ACM Transactions on Database System 1991;17:513–34.
[12] Ceri S, Gottlob G. Translating SQL into relational algebra: optimization, semantics, and equivalence of SQL queries. IEEE Transactions on Software

Engineering 1985;11:324–45.
[13] Halder R, Cortesi A. Abstract interpretation for sound approximation of database query languages. In: Proceedings of the IEEE 7th international

conference on informatics and systems (INFOS’10). Cairo, Egypt: IEEE Press; 2010. p. 53–9 [IEEE Catalog Number: IEEE CFP1006J-CDR].
[14] Goldrei D. Propositional and predicate calculus: a model of argument. Springer; 2005.
[15] A.N.S. Institute. Information technology-database languages-SQL-part 2: foundation (SQL/foundation).
[16] Halder R, Cortesi A. Observation-based fine grained access control for relational databases. In: Proceedings of the 5th international conference on

software and data technologies (ICSOFT’10). Athens, Greece: INSTICC Press; 2010. p. 254–65.
[17] Halder R, Cortesi A. Observation-based fine grained access control for xml documents. In: Proceedings of the 10th international conference

on computer information systems and industrial management applications (CISIM’11), vol. 245. Kolkata, India: Springer CCIS; 2011. p. 267–76.
[18] Halder R, Pal S, Cortesi A. Watermarking techniques for relational databases: survey, classification and comparison. Journal of Universal Computer

Science 2010;16:3164–90.
[19] Halder R, Cortesi A. A persistent public watermarking of relational databases. In: Jha S, Mathuria A, editors. Proceedings of the 6th international

conference on information systems security (ICISS’10), Lecture Notes in Computer Science, vol. 6503. Gandhinagar, Gujarat, India: Springer; 2010.
p. 216–30.

[20] Halder R, Cortesi A. Persistent watermarking of relational databases. In: Proceedings of the 1st IEEE international conference on advances in
communication, network, and computing (CNC’10). Calicut, Kerala, India: IEEE Computer Society; 2010. p. 46–52.

[21] Halder R, Cortesi A. Cooperative query answering by abstract interpretation. In: Proceedings of the 37th international conference on current trends
in theory and practice of computer science (SOFSEM’11), vol. 6543. Novy� Smokovec, Slovakia: Springer LNCS; 2011. p. 284–96.

[22] Benzaken V, Schaefer X. Ensuring efficiently the integrity of persistent object systems via abstract interpretation. In: Proceedings of the 7th
workshop on persistent object systems, Cape May, New Jersey, USA, p. 72–87.

[23] Benzaken V, Schaefer X. Static integrity constraint management in object-oriented database programming languages via predicate transformers. In:
Proceedings of the 11th European conference on object-oriented programming (ECOOP’97). Finland: Springer-Verlag LNCS; 1997. p. 60–84.

[24] Ioannidis YE, Poosala V. Histogram-based approximation of set-valued query answers. In: Proceedings of the 25th international conference on very
large data bases. Edinburgh, Scotland, UK: Morgan Kaufmann Publishers Inc.; 1999. p. 174–85.

[25] Codd EF. A relational model of data for large shared data banks. Communications of the ACM 1983;25th Anniversary Issue 26:64–9.
Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

Halder R, Cortesi A / Computer Languages, Systems & Structures] (]]]])]]]–]]] 35
[26] Codd EF. Relational completeness of database sublanguages. Database Systems 1972:65–98.
[27] Kuhns JL. Answering questions by computer: a logical study. In: Report RM-5428-PR. Santa Monica, California: The Rand Corporation; 1967. p. 137.
[28] Codd EF. A database sublanguage founded on the relational calculus. In: Proceedings of 1971 ACM-SIGFIDET workshop on data description, access

and control. San Diego, California: ACM Press; 1971. p. 35–68.
[29] Jarke M, Koch J. Query optimization in database systems. ACM Computing Surveys (CSUR) 1984;16:111–52.
Please cite this article as: Halder R, Cortesi A. Abstract interpretation of database query languages. Computer Languages,
Systems & Structures (2011), doi:10.1016/j.cl.2011.10.004

dx.doi.org/10.1016/j.cl.2011.10.004

	Abstract interpretation of database query languages
	Introduction
	Preliminaries
	Basic mathematical notation
	Semantic interpretation of well-formed formulas in first-order language
	Abstract interpretation

	Abstract syntax
	Environment and state
	Environment
	State and state transition

	Formal semantics of expressions
	Formal semantics of program instructions
	Semantics of SELECT statement
	Semantics of UPDATE statement
	Semantics of INSERT statement
	Semantics of DELETE statement
	Formal semantics of non-SQL statements

	Some inference rules for composite commands
	Soundness of the denotational semantics of SQL with respect to the standard semantics
	Abstract semantics of SQL embedded applications
	Abstract databases
	Syntax and semantics of statements in abstract domain
	Abstract pre-conditions
	Abstract syntactic functions in abstract SELECT statements
	Abstract GROUP BY function
	Abstract ALL and abstract DISTINCT
	Abstract ORDER BY function
	Abstract aggregate functions

	Abstract UPDATE, INSERT, and DELETE statements
	Soundness of abstract SQL statements
	Abstract UNION, INTERSECTION, MINUS operations
	Abstract UNION operation
	Abstract INTERSECTION operation
	Abstract MINUS operation

	Abstract control statements

	Formal semantics of SQL statements with co-related and non-co-related subquery
	SELECT statement with co-related subquery
	Formal semantics of SELECT statement with co-related subqueries
	Illustration of the semantics of SQL statement with co-related subquery using an example

	SELECT statement with non-co-related subquery
	Formal semantics of SELECT statement with non-co-related subqueries
	Illustration of the semantics of SELECT statement with non-co-related subquery using an example

	Formal semantics of UPDATE/INSERT/DELETE statement with co-related subquery
	Formal semantics of UPDATE/INSERT/DELETE statement with non-co-related subquery

	Applications
	Observation-based fine grained access control
	Persistent watermarking
	Cooperative query answering
	Static analysis framework for the transactions to optimize the integrity constraint checking
	Property-based querying and approximate query answering

	Related works
	Conclusions
	Acknowledgment
	References

