0-1 Knapsack Problem in parallel
Progetto del corso di Calcolo Parallelo
AA 2008-09

Salvatore Orlando

0-1 Knapsack problem

- \(N \) objects, \(j=1,\ldots,N \)
- Each kind of item \(j \) has a value \(p_j \) and a weight \(w_j \) (single dimension)
- You can fill a knapsack, with an integer weight capacity of \(W \)

- How much worth (sum of values) can you transport in one trip?

\[
\text{maximize } \sum_{j=1}^{n} p_j x_j \\
\text{subject to } \sum_{j=1}^{n} w_j x_j \leq W, \quad x_j \in \{0,1\}, \quad j = 1,\ldots,n.
\]

Special case decision problem:
- weights equals to values: \(w_j = p_j \)
- *Given a set of nonnegative integers, does any subset of it add up to exactly \(W \)?*
- Equivalent to the *subset sum problem*
Bounded Knapsack problem

- There is a maximum integer value b_j of item j available to fill the knapsack.

\[
\text{maximize } \sum_{j=1}^{n} p_j x_j
\]

subject to \(\sum_{j=1}^{n} w_j x_j \leq W, \quad x_j \in \{0, 1, \ldots, b_j\}, \quad j = 1, \ldots, n \)

Knapsack

Single dimension problem: only weights

Which boxes should be chosen to maximize the amount of money, while still keeping the overall weight under or equal to 15 kg?

Multi dimensional problem: also consider the density or dimensions of the boxes.

Solution bounded knapsack problem: 3 yellow boxes and 3 grey boxes
Solution 0/1 knapsack problem: all boxes but the green one
0-1 Knapsack

- The obvious naïve solution consists in trying every possible combination
 - 2^n combinations

- A slightly better method is branch-and-bound
 - breadth-first search of the combination space, but prune branches that cannot lead to optimal solutions.

- A better solution follows from expressing the problem as a recurrence relation and taking a dynamic programming approach
 - *Dynamic programming* algorithmic technique is based on the knowledge of *optimal solutions for subproblems*
 - This knowledge is used to find the optimal solutions of the overall problem algorithm
 - *Dynamic programming* algorithms store information about common subproblems in a table
 - Fill the table until you reach the solution.

0-1 Knapsack: Dynamic Programming

- Weights are positive

- Dynamic programming table
 - let $A(j, Y)$ be the maximum profit that can be attained for the *subproblem* with weight less than or equal to Y using items from 1 to j.
 - then $A(N, W)$ if the maximum profit of the overall problem

- Solved in *pseudo-polynomial time*
 - its running time is polynomial in the *numeric value* of the input (which is exponential in the *length of the input* -- its number of digits).
 - in this case $O(NW)$, where the size of input W is $\log W$
 - $O(N 2^{\log W})$
0-1 Knapsack: Dynamic Programming

- \(N \times W \) table \(A \), indexed by an item number and a knapsack capacity

- We can define \(A(j, Y) \) recursively as follows:

 \[
 A(0, Y) = 0 \\
 A(j, 0) = 0 \\
 A(j, Y) = A(j - 1, Y) \quad \text{if} \quad w_j > Y \\
 A(j, Y) = \max \{ A(j - 1, Y), \quad p_j + A(j - 1, Y - w_j) \} \quad \text{if} \quad w_j \leq Y
 \]

 Item \(j \) cannot be inserted in the knapsack.

 Either item \(j \) is not considered, or

 \(j \) is inserted in a knapsack (of weight capacity of \(Y - w_j \)) optimally filled using items \(1 \) through \(j-1 \).

Dependencies

\[
\begin{align*}
A(j - 1, Y - w_j) & \\
A(j, Y) & \\
A(j - 1, Y) & \\
\end{align*}
\]
In general, if we have already computed the blue entries, we can exactly compute the red one $A(j, Y)$.

Example of Task Dependency Graph (obtained by partitioning the output)

- We fixed a average granularity of task (unit of scheduling)
- Note the data dependencies
- Can be implemented in either shared memory or message passing
Example of mapping (partitioning the output)

- You can enlarge the granularity by assigning more rows to each processor.

Pipelining

- Items 1 in Knapsacks of various capacities
- Items 1, 2 in Knapsacks of various capacities
- Items 1, ..., j in Knapsacks of various capacities
Pipelining

Matrix block: unit of scheduling

- Items 1 in Knapsacks of various capacities
- Items 1,2 in Knapsacks of various capacities
- Items 1,...,j in Knapsacks of various capacities

Example of mapping (partitioning the output)

- Replicated input
- The vertical dependency does not entail inter-proc. communications
- The other between processor Y and Y-wj

Processor 1 Processor Y Processor W
What is requested

- Write a parallel 0/1 knapsack solver, using POSIX threads and/or MPI

- Unit of scheduling can be assigned *statically* or *dynamically* (in the last case, also ensuring *load balancing*)

- The program must produce:
 - The optimal profit
 - A *binary vector* **Objs**, representing the objects chosen (1) and not chosen (0)
 - Total weight of the chosen objects
 - Running time in seconds.

 Example output for 3 objects:
 - Profit: 12
 - Objs: 011
 - Weight: 7
 - Time: 0.011 seconds

- It is important to evaluate
 - *speedup*
 - *scalability*, i.e. how does the overall completion time change by increasing both the problem size and the number of processors?
What is requested

- A short but complete description of the parallel solutions and tradeoffs
- A short but complete discussion on the performance of your programs
 - Comparison of sequential and parallel run-times
 - Speedup and scalability issues
 - Evaluating the changes of the input data, task granularities, number of processors employed, etc.

- Write a small scientific report ... in English !?
 - abstract, small introduction, problem statement, projects of the various parallel solutions, performance evaluation, conclusion that summarize main results)
- Prepare a short presentation supported by slides to present the project

Generator of Knapsack problems

- \texttt{http://www.diku.dk/~pisinger/generator.c}
- \texttt{generator n r type i S}
- n: number of items
- r: range of coefficients \(p_j \) and \(w_j \)
- type
 - 1=uncorr. \((p_j \) and \(w_j \) randomly distributed in \([1, R]\))
 - 2=weakly corr. \(w_j \) randomly distributed in \([1, R]\), and \(p_j \geq 1 \) randomly distributed in \([w_j - R/10, w_j + R/10]\))
 - 3=strongly corr. \(w_j \) randomly distributed in \([1, R]\), and \(p_j = w_j + 10 \)
 - 4=subset sum \(w_j \) randomly distributed in \([1, R]\), and \(p_j = w_j \)
- i: instance no
- S: number of tests in series (typically 1000)
- i and S determine the capacity W of the problem instance
Knapsack problem instances

```
orlando@ihoh:~/knapsack$ ./a.out
generator
n = 10
r = 4
t = 1
i = 1
S = 1000

orlando@ihoh:~/knapsack$ less test.in
10    // N number of objects
 1    2    1    // 1    p_1    w_1
 2    2    2    // 2    p_2    w_2
 3    4    4    // 3
 4    4    1
 5    1    2
 6    1    3
 7    1    3
 8    3    1
 9    2    3
10    2    4    // Knapsack capacity W
      5
```

How to create the problem instances for various \(n \)
- \(r = n/10 \)
- \(t = 1 \)
- \(i = 7 \)
- \(S = 1000 \)