An Unwinding Condition for Security in Imperative Languages

A. Bossi, C. Piazza, and S. Rossi

Department of Computer Science
University Ca’ Foscari of Venezia

{bossi,piazza,srossi}@dsi.unive.it

Protect Confidential Data in a Multilevel System

▷ **Information Flow Security** aims at guaranteeing that no high level (confidential) information is revealed to users at low level, even in the presence of any possible malicious process.

▷ **Non-Interference** [Goguen-Meseguer’82]: information does not flow from high to low if the high behavior has no effect on what low level can observe.

▷ **Development of Complex Systems**: it is important to preserve the security properties of interest during the development steps.
Active and Passive attacks

- **Active Attacks**: a high level malicious process sends down high level information to the low level user.
 - difficult to check - trojan horse

- **Passive Attacks**: the low level user observing the execution infers the high level behaviour.
 - easy to check - unwinding condition

Active Attacks \Rightarrow Passive Attacks
Security as Unwinding - Intuition

If the high level user can perform \(h \) reaching \(E'' \) from \(E' \), then also \(E''' \) is reachable from \(E' \) and \(E'' \) and \(E''' \) are undistinguishable for the low level user.

In process algebra many security properties are based on this schema.
Plan of the Talk

- The IMP language: syntax and semantics
- The SIMP Unwinding class
- Characterization and Properties
- A class of Secure Programs
- Conclusions
The IMP syntax

The locations X are partitioned into L and H.

The set A_{exp} of arithmetic expressions is:

$$a ::= n \mid X \mid a_0 + a_1 \mid a_0 - a_1 \mid a_0 \ast a_1$$

The set B_{exp} of boolean expressions is:

$$b ::= \text{true} \mid \text{false} \mid (a_0 = a_1) \mid (a_0 \leq a_1) \mid \neg b \mid b_0 \land b_1 \mid b_0 \lor b_1$$

The set Prog of programs of our language is:

$$P ::= \text{skip} \mid X := a \mid P_0; P_1 \mid \text{if } b \text{ then } P_0 \text{ else } P_1 \mid \text{while } b \text{ do } P \mid P_0 \parallel P_1$$
The IMP semantics - I

A state σ is a map from locations to values

An expression containing high level variables is high level

Semantics is given through labelled transition systems (LTS):

\triangleright the nodes of the LTS are pairs $\langle P, \sigma \rangle$ of programs and states

\triangleright the edges are labelled with a security level, i.e., high or low

$$\langle a, \sigma \rangle \rightarrow n \quad \frac{\langle X := a, \sigma \rangle \xrightarrow{\epsilon} \langle \text{end}, \sigma[X/n] \rangle}{a \in \epsilon}$$
The IMP semantics - II

\[\langle P_0, \sigma \rangle \xrightarrow{\varepsilon} \langle P'_0, \sigma' \rangle \]

\[\langle P_0; P_1, \sigma \rangle \xrightarrow{\varepsilon} \langle P'_0; P_1, \sigma' \rangle \quad P_0' \not\equiv \text{end} \]

\[\langle P_0; P_1, \sigma \rangle \xrightarrow{\varepsilon} \langle P_1, \sigma' \rangle \]

\[\langle b, \sigma \rangle \rightarrow \text{true} \]

\[\langle \text{while } b \text{ do } P, \sigma \rangle \xrightarrow{\varepsilon} \langle P; \text{while } b \text{ do } P, \sigma \rangle \]

\[\langle P_0, \sigma \rangle \xrightarrow{\varepsilon} \langle P'_0, \sigma' \rangle \quad P_0' \not\equiv \text{end} \]

\[\langle P_0 \parallel P_1, \sigma \rangle \xrightarrow{\varepsilon} \langle P'_0 \parallel P_1, \sigma' \rangle \]

\[\langle P_0, \sigma \rangle \xrightarrow{\varepsilon} \langle \text{end}, \sigma' \rangle \]

\[\langle P_0; P_1, \sigma \rangle \xrightarrow{\varepsilon} \langle P_1, \sigma' \rangle \]

\[\langle P_0 \parallel P_1, \sigma \rangle \xrightarrow{\varepsilon} \langle P_1, \sigma' \rangle \]

Behavioral equivalences establish equalities among programs
Example

\[
\begin{align*}
H &:= 1; \\
L1 &:= 1; \\
L2 &:= 1
\end{align*}
\]
Low Level Bisimulation

Idea: it is a mutual step-by-step simulation on low level locations

\[\langle P, \sigma \rangle \sim_l \langle P', \sigma \rangle \quad \text{and} \quad (\sigma[H/1])_L = (\sigma[H/2])_L \]
The Unwinding Condition

\[\langle F, \psi \rangle \rightarrow \langle M, \mu \rangle \] iff for all \(\pi \), such that \(\pi =_L \psi \), there exist \(R \) and \(\rho \) such that \(\langle F, \pi \rangle \rightarrow \langle R, \rho \rangle \) and \(\langle R, \rho \rangle \sim_l \langle M, \mu \rangle \)

\[LReach(\langle P_0, \sigma_0 \rangle) = \{ \langle P_n, \theta_n \rangle \mid \text{there exist } n \geq 0, P_0, \ldots, P_n, \sigma_0, \ldots, \sigma_n, \theta_0, \ldots, \theta_n \text{ such that } \sigma_i =_L \theta_i \text{ and } \langle P_i, \theta_i \rangle \rightarrow \langle P_{i+1}, \sigma_{i+1} \rangle, 0 \leq i \leq n \} \]

\[\mathcal{W}(\sim_l, \rightarrow, LReach) \overset{\text{def}}{=} \{ \langle P, \sigma \rangle \in \text{Prog} \times \Sigma \mid \forall \langle F, \psi \rangle \in LReach(\langle P, \sigma \rangle) \]
if \(\langle F, \psi \rangle \overset{\text{high}}{\rightarrow} \langle G, \varphi \rangle \) then \(\exists \langle M, \mu \rangle \) such that \(\langle F, \psi \rangle \rightarrow \langle M, \mu \rangle \) and \(\langle G, \varphi \rangle \sim_l \langle M, \mu \rangle \} \]
Characterization and Soundness

P is in $W(\sim_l, \rightarrow, LReach)$ iff

$\langle F, \psi \rangle \in LReach(\langle P, \sigma \rangle)$ and $\langle F, \psi \rangle \xrightarrow{\text{high}} \langle G, \varphi \rangle$ imply that for each π such that $\pi_L = \psi_L$ there exist R and ρ such that $\langle F, \pi \rangle \rightarrow \langle R, \rho \rangle$ and $\langle R, \rho \rangle \sim_l \langle G, \varphi \rangle$

If P is in $W(\sim_l, \rightarrow, LReach)$ then for each σ and θ such that $\sigma_L = \theta_L$, if $\langle P, \sigma \rangle$ reaches $\langle \text{end}, \sigma' \rangle$, then $\langle P, \theta \rangle$ reaches $\langle \text{end}, \theta' \rangle$ with $\sigma'_L = \theta'_L$
Examples

\[P \equiv \text{if } (L = 1) \text{ then } H := H + 1 \text{ else } L := L + 1 \]

is secure

\[R \equiv H := 4; L := 1; \text{if } (L = 1) \text{ then skip else } L := H \]

is secure

\[S \equiv L := 4 \]

is secure

\[\text{BUT } R \| S \text{ is not secure} \]
A Class of Secure Programs

Let H be a high level location, L be a low level location, a_h and b_h be high level expressions, and a_l and b_l be low level expressions. The class of programs C is recursively defined as follows.

1. skip is in C;

2. $L := a_l$, $H := a_h$, and $H := a_l$ are in C;

3. $P_0; P_1$ is in C if P_0, P_1 are in C;

4. if b_l then P_0 else P_1 is in C, if P_0, P_1 are in C;

5. if b_h then P_0 else P_1 is in C if P_0, P_1 are in C and $P_0 \sim_l P_1$;

6. while b_l do P_0 is in C, if P_0 is in C;

7. $P_0 \parallel P_1$ is in C, if P_0, P_1 are in C.
Conclusions

▶ We introduce an unwinding condition which ensures the absence of passive attacks in the context of an imperative concurrent language

▶ We provide a syntactic characterization of a class of secure programs

▶ We are studying semantics decision procedures to check security

▶ We are extending the framework to relax non-interference condition (downgrading)