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Abstract - Systems of heterogeneous parallel processing are studied such as arising in
parallel programs executed on distributed systems. A lower and an upper bound model are
suggested to obtain secure lower and upper bounds on the performance of these systems.
The bounding models are solved by using a matrix-geometric algorithmic approach.
Formal proofs of the bounds are provided along with error bounds on the accuracy of the
bounds. These error bounds in turn are reduced to simple computational expressions.
Numerical results are included. The results are of interests for application to arbitrary fork-
join models with parallel heterogeneous processors and synchronization.
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1. INTRODUCTION

The design of parallel processing systems requires the development of performance models
for the quantitative evaluation of such systems. Performance models can be used in the
design of parallel processing systems such as the evaluation of scheduling and resource
allocation policies, speedup and efficiency evaluation of parallel programs and
applications. Queueing networks represent a natural way to model parallel processing
systems; system structure can be modelled as a queueing system while programs or
applications, consisting of tasks with some precedence constraints, can be modelled as
precedence graphs whose nodes are the tasks and edges correspond to precedence
constraints. In a precedence graph we identify fork nodes when more than one edge leaves
the node, and join nodes when more than one edge enters the node. Fork and join nodes
represent, respectively, the starting point of parallel execution of tasks and the
synchronisation of tasks. A program is completely executed when all its tasks have been
completed. Figure 1 shows a simple example of precedence graph consisting of a single
fork node, N parallel tasks and a single join node. Parallel programs including fork and
join or parbegin/parend constructs, and parallel operations of write requests in a distributed
database system can be represented by such queueing models.
Models of parallel processing systems can be homogeneous or heterogeneous. The latter
represent the more general class of parallel processing systems composed by different
processing units and different parallel tasks. The performance indices of interest include
job and task response time, synchronization delay, queue length distribution and
throughput.

Cuncurrency and synchronisation make the solution of such performance models more
complex with respect to the classical queueing network analysis [12]. Exact analysis has
been carried out by Flatto and Hahn [7] who consider programs with a fork node, two
parallel tasks and a join node, and a system with two heterogeneous processing units, each
having its own queue. Each incoming job is split into two tasks which are allocated to the
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processing units. A task, after it has been processed, waits for its siblings in a join queue
before leaving the system. Under exponential assumption for the interarrival and service
time distribution they obtain the generating function of the system state probabilities. Some
limit results on the conditioned queue length are shown by Flatto [8]. Brun and Fajolle [4]
obtain the Laplace transform of the response time distribution for the same model and an
approximate solution has been proposed by Rao and Posner [17]. When the system
consists of N≥2 homogeneous exponential processing units and incoming jobs are formed
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Fig. 1 - Example of precedence graph.

by N parallel tasks, Nelson and Tantawi [14] present approximate solutions for the mean
job and task response time. Bounds on the average job response time for a system with
general service time and inter-arrival time distributions have been proposed by Varma and
Makowski [18]. A comparison between different parallel processing models in terms of
mean response time is presented by Nelson, Towsley and Tantawi in [15]. A more general
model with N≥2 heterogeneous servers and general arrival service time distribution is
considered by Baccelli and Makowski [1] who provide bounds for the job mean response
time, while Kim and Agrawala [9] obtain the transient and steady-state solution of the
virtual waiting time. More complex systems where processing units are connected in series
and parallel have been analysed by Baccelli et al. [2] deriving bounds on response time,
while Duda and Czachórski [5,6] present approximate solutions for performance indices.
Bounds on response time for systems with parallel dependent task have been derived by
Kumar and Shorey [13]. Heidelberger and Trivedi [10,11] propose different approximate
solution methods for models both with and without synchronisation.

Unfortunately, the main drawback of approximate but not bound methods proposed is the
lack of information on the introduced error, while bound methods do not allow an iterative
process to improve the bound accuracy, i.e. to reduce the spread of bounds. The main
contribution of this paper is the proposal of a method for the performance analysis of a
class of fork and join queueing networks. The method has two main characteristics; first it
provides an algorithm for the approximate solution of the steady-state probability
distribution of the joint queue length for heterogeneous systems. The other feature of the
proposed method is the following. Unlike other bound methods presented in literature
[1,2,13,18], it allows us to provide bounds on the queue length distribution, beside other
performance indices, and to control the spread of bounds to meet a given accuracy.
We consider a fork and join queueing system with N≥2 heterogeneous processing units
and N parallel tasks. We present two models which provide respectively upper and lower
bounds on performance indices and whose solution is obtained by applying an algorithm
approach, both in terms of stationary state probability distribution (i.e., the number of tasks
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in each queue) and other performance indices such as job and task mean response time,
synchronisation delay and speed up. The two proposed models are defined by considering
appropriate state space partitions and reductions which enable us to apply a matrix-
geometric approach [16]. We prove that the two models provide upper and lower bounds
on a set of performance indices of the original fork and join model, respectively. Moreover
we derive an expression of the bound width for the average performance indices. By
comparing the results obtained by the proposed method with both the exact numerical
solution and other approximate and bound solutions, we observe a good accuracy of the
proposed bounds. Moreover we show the improvement of the approximation accuracy, i.e.
the spread of bounds, by choosing the appropriate value of the modified model parameters.

The paper is organized as follows. In the next Section the model is introduced. Sections 3
and 4 present the upper and lower bound models, respectively defined by considering two
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Fig. 2 - Fork and join N-server queueing system.
different state space reductions. The algorithmic approach, its computational complexity
and the bound computation are presented in Section 5. In Section 6 numerical examples are
presented to compare the proposed bound solution with other solution methods. Finally,
Section 7 summarises the results and future research.

2. THE MODEL

Consider an open fork and join queueing system with N≥2 heterogeneous service centers,
as shown in Figure 2. A service center consists of a single server and an infinite capacity
queue with FCFS discipline. Arrival times of jobs at the systems are assumed to be
statistically independent random variable having the same probability distribution A(t).
Upon arrival a job splits into N tasks denoted by T1, T2,...,TN. Each server is dedicated
to execute specific tasks, i.e., task Ti is always executed by service center i, 1≤i≤N; service
times of task Ti are independent random variable with probability distribution Bi(t). Tasks
wait for their siblings in the join queue until the whole job is completed. We assume that
probability distributions A(t) and Bi(t), 1≤i≤N, have a Coxian or a phase-type
representation [12]. Hereafter, for the sake of simplicity, we consider exponential
distributions. However, the same approach can be used to analyse systems with more
general inter-arrival and service time distributions. A more detailed study of the method for
the case of more general distribution is out of the scope of the paper. Arrival rate is denoted
by λ and service rate of center i is denoted by µi,  1≤i≤N. Without loss of generality let

µ1≤ µ2≤ . . .≤ µN. By assuming that the stability condition holds, i.e., λ < mini µ i ,  we
analyze the system in steady-state condition.

System state is defined as n=(n1,...,nN), where ni  denotes the number of tasks in service
center i, 1≤i≤N. The number of tasks waiting in the join queue can be computed as
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Σ1≤i≤N  (n*-ni), where n*=max1≤i≤N  ni. It is easy to verify that n* also represents the
number of jobs in the system. The system evolution can be modelled by an homogeneous
discrete-space continuous-time Markov process with infinite state space

E ={n=(n1,...,nN), ni≥0, 1≤i≤N}

and transition rate matrix  Q=||qn,n' ||, n,n' ∈E, defined as follows :

qn,n'  =  λ if   n'=(n1+1, n2+1,...,nN+1) (1.1)
qn,n'  =  µ i if   n'=(n1,...,  ni-1, ni-1, ni+1,...,nN) and  ni>0, 1≤i≤N (1.2)
qn,n'  =  0 otherwise (1.3)

for n≠n' and

qn,n =  - Σn' ≠n  qn,n'  .
Formula (1.1) corresponds to the arrival of a job at the system, while formula (1.2)
corresponds to a completion of a task by server i.

Under irreducibility assumption there exists the stationary probability distribution of system
state, denoted by vector π , whose component π(n) is the probability of state n, and

Σn∈E π(n) =1. Probability distribution π  can be computed as the solution of the
following linear system:

πQ=0  , with π  1  =1 (2)

where 0  and 1  are the column vector with all zeros and all ones, respectively.

From vector π  the following performance indices can also be evaluated:
• mean job response time
• mean response time of task Ti ,1≤i≤N
• join queue length distribution
• mean synchronisation delay
• speedup, defined as the mean job response time using N processors divided by the

mean job response time using one processor.

In order to solve linear system (2) a numerical technique cannot be applied because of the
infinite state space E and it is not trivial to extend to N>2 the derivation of the generating
function of the state probability proposed for N=2 in [7]. On the other hand, classical
closed form solutions [3] do not hold for such models, because of the presence of fork and
join constructs. We shall now propose a bound solution.
In the next two sections, we introduce two modified models based on two different state
space reductions of the original model which lead to an upper bound and a lower bound
model. For both the models an algorithmic approach is applied to evaluate the stationary
state distribution and average performance indices.
The proposed solutions are based on the matrix-geometric algorithmic method for solving
Markov processes having a special structure known as quasi-birth-death processes (QBD)
[16]. We shall now recall the matrix-geometric algorithm for a Markov process with state
space E* and transition rate matrix Q*. By defining an appropriate partition of the state
space E*, we assume that process matrix Q* can be rewritten as shown in Figure 3, where
submatrices B and Ai, i=0,1,2, are square matrices of order a, with a>0. If stability
conditions are verified, then it is possible to efficiently compute steady-state probability
vector π* through the following algorithmic approach [16].
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Fig. 3 - Quasi-Birth-Death Markov process matrix.

Let vector π* be partitioned as π*=(π*0,π*1,π*2,...) where subvectors π*i, i≥0, have
dimension a. Let A=A0+A1+A2 be the infinitesimal generator of a finite Markov process
which is assumed to be irreducible. Therefore there exists the steady-state probability
vector x  defined by  x  A=0 , with x  1=1. Neuts proved the following theorem [16, chap.
1]:

Theorem 1. The Markov process with infinitesimal generator Q* is positive recurrent  if
and only if x  A2 1  > x  A0 1 . In this case there exists a non-negative matrix R, with
spectral radius less than 1, which is the unique non-negative solution of the matrix
quadratic equation
 A0 + R A1 + R2 A2 = Ø

Steady-state probability π* is given by

π*i = π*0 Ri  i ≥ 1 (3.1)
and 

π*0 (B + R A2) = Ø (3.2)
with

π*0 (I - R)-1 1  = 1.
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Fig. 4 - State transition diagram of a 2-node heterogeneous fork and join system:
first state space partition.

An iterative approach can be used to compute R as follows:

R(0) = Ø
R(n) =  - A0 A1-1 + R2(n) A0 A1-1 n≥0 (4)

and it can be shown that R(n) monotonically converges to R, as n goes to infinity [16].
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3. THE UPPER BOUND MODEL

In this section we construct a new model whose solution provides an upper bound on the
performance of the original fork and join queuing system. To this end, in order to apply the
matrix geometric method, we inspect the structure of process matrix Q defined by formulas
(1). State space E can be partitioned as follows :

  
E =  E

kk ≥0
U

E k ={n =(n1,n2 ,…,n N ) ∈ E, ∃i : ni = k,  n j ≤ k, j ≠ i,  1≤ i, j ≤ N}, k ≥ 0

where Ek contains all the states with k jobs in the system. For the simple case of the fork
and join system with N=2, the state transition diagram and the corresponding partition is
shown in Fig. 4.
By reordering system states according to this partition, matrix Q can be rewritten as
follows:

  

Q =

E0

E1

E2

M
Ek

M

Q00 Q01

Q10 Q11 Q12

Q21 Q22 Q23

L L L
Q kk-1 Qkk Qkk+1

L L L

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

(5)

The block tridiagonal structure of matrix Q derives from transition rates definition (1) and
from the space state partition. In other words, the only non-zero transitions from a state
n∈Ek, for k≥0, are to states belonging either to subset Ek+1 or Ek-1 (if k>0) or to Ek
itself. Unfortunately Q does not show a QBD structure (as the matrix in Fig. 3) because
subset Ek cardinality increases with k, which also implies that submatrices Qkj dimensions,
k-1≤j≤k+1, grow with k. However, by choosing an appropriate ordering of system's
states, it is possible to show that matrix Qkj is also submatrix of Qk+1j+1, k-1≤j≤k+1. In

this case we can define a reduced state space EU and a partition into subsets E k
U ⊆ E k ,

k≥0, to obtain a new process matrix which has a QBD structure. However, we can
consider various possible definitions of a new reduced process with a QBD structure and

whose state space partition does not necessarily satisfy condition E k
U ⊆ E k , k≥0. Then we

choose a different and simpler definition of the reduced state space EU and of its partition
which leads to a simple QBD structure of the associated Markov process.
The reduced state space EU is defined as follows:

E
U

= { n ∈ E : - U
ji

≤ n
i

− n
j

≤ U
ij

,  1 ≤ i, j ≤ N } (6)

where Uij are positive constant, 1≤i,j≤N, and

  E
U

=  E
k
U

k≥0
U ,

E k
U ={ n ∈EU : min1≤i≤Nni = k }    ,  Ek

U = k U    ∀ k ≥ 0.
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Therefore the corresponding new transition rate matrix QU has the QBD structure shown in
Fig. 3, where A0 = QU01= λ IkU , A1 = QU11, A2 = QU10, where each QUkj is derived

by formulas (1.1) through (1.3) from the corresponding submatrix of Q by considering
only the rows related to states of EUk and the columns related to states of EUj, for k,j≥0,

except for the diagonal elements in the diagonal submatrices QUkk, k≥0, which are given
by

µ

1

1 λλ

λ

λλ

0,0

1,1

2,2

3,3

5,3

2,1

3,2

4,3

1,2

2,3

3,4

1,00,1

3,1

4,2

2,0

λ

λ

λ

λ

λ

λ

1

1

1

1

2

2

2

2

2

0

1

3

λ

2

2

2

1

µ2

1

1

E

E

E

U

U

U

U

E

µ2

µ

µ

µ

µ

µ

µ

µ

2µ

µ

µ

µ

µ

µ

µ

µ

µ
1

1

µ

µ µ

2µ λ

2

Fig. 5 - State transition diagram for reduction (6) with N=2, U12=2, U21=1 and kU=4.

  

qn,  n
U =  -             qn, n'

U

n'  ∈ Ek-1
U Ek

U Ek + 1
UUU

∑ .

Figure 5 shows the reduced state space diagram EU of a system with N=2, U12=2 and U21
=1. By applying reduction (6) we define the reduced state space EU by discarding an
appropriate subset of system states so obtaining an approximate model for the fork and join
system. This reduced model can be exactly evaluated in terms of steady-state probability
distribution π U by using the matrix-geometric technique. Vector π U is the solution of the

linear system π UQU=0 with π U1=1 and is computed by applying the theorem, if the stability
condition is verified.

3.1 Performance indices

By using the matrix-geometric solution of the upper bound model, we can directly compute
other average performance indices such as the average number of jobs in the system and the
average job response time, respectively denoted by LU and WU. One can derive the
following expression:

LU =  πU,0 ( I -R)−1 α + πU,0 R (I-R)−21 
(7)



- 8 -

where π U,0 denotes the probability subvector of π U corresponding to subset EU0, R is the

matrix derived from the algorithm by formula (4) and vector α has the same number of
components as vector π U,0 and is defined as follows:

α (n) = max 1≤i≤k  ni for each n∈EU0.

The derivation of formula (7) is given in Appendix A.
Note that if the stability condition holds, the throughputs of the new model and the original
one are identical and equal to the arrival rate λ. Hence we can immediately derive the mean
job response time as follows:

WU = LU / λ.  (8)

The proposed reduction of state space E defined by (6) discards all those states for which
the difference between queue lengths i and j is greater than Uij, 1≤i,j≤N. Thresholds Uij
are the minimum values such that, for a given ε >0, Prob{ni-nj>Uij}<ε ,  1≤i,j≤N. The

value of ε represents an upper bound to the probabilities of the discarded states by the state
space reduction. From the system's viewpoint  the new model represents the following
behavior: when ni = nj + Uij  server j is blocked until a service is completed by node i. As
soon as a departure occurs from node i, the server of node j starts again servicing the tasks.
Therefore, roughly speaking, the mean number of jobs and the mean job response time of
the new model are upper bounds on those obtained by the original fork and join model,
because of the blocking of the servers.
We shall now formally prove that the new model provides upper bounds on a set of
performance measures of the original model, by following the approach in [19, 20].

3.2 Proof of upper bound

In order to provide the proof of the bound we first transform the continuous-time Markov
processes in corresponding discrete-time Markov process by uniformization [19].

Let M = [λ + µ i
i=1

N

∑ ] and denote by P and PU the corresponding uniformized Markov one-

step transition matrices with

p(n,n')= λ M-1 if n'=(n1+1, n2+1,...,nN+1) (9.1)

p(n,n')= µ i 1{ni>0}M-1 if n'=(n1,...,  ni-1, ni-1, ni+1,...,nN) 1≤i≤N (9.2)
p(n,n')=0 otherwise if n' ≠ n (9.3)
p(n,n)=1-  p(

n' ≠n
∑ n,n') (9.4)

and
pU(n,n')= λ M-1 if n'=(n1+1, n2+1,...,nN+1) (10.1)

pU(n,n')= µ i 1{ni>0}M-1 (10.2)
if n'=(n1,...,  ni-1, ni-1, ni+1,...,nN) 1≤i≤N

pU(n,n')=0 otherwise if n' ≠ n (10.3)

pU(n,n)=1-  pU (
n' ≠n
∑ n,n' ) (10.4)

For a given reward rate function r(.) at E let the function Vt(.) for t=0,1,2,… be defined by:
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V t (n)=   M−1

k=0

t-1

∑  pk  (
n'
∑ n,n' ) r(n' )= r(n) M−1 +  p(

n'
∑ n,n' ) V t-1(n') (11)

and similarly define Vt
U(.) with P replaced by PU. Then by standard Tauberian theorems,

the following limit is well defined and independent of the initial distribution π0(n) at E.

G =lim t→∞  
M
t

 π0  (
n
∑ n) V t (n) (12)

This value represents the expected average reward per unit of time of the original model
when using the reward rate r(.). Similarly, we define GU for the new model.

The following lemmas 1 and 2 will relate the performance measures G and GU. These
lemmas are a direct application of results in [19, 20] tailored to the above models.

Lemma 1. Let f(.) be a function such that for any n∈EU and t≥0:

  µi  1{n
i
>0}

i=1

N

∑ 1
{n-e

i
∉EU}

Vt (n - ei )-V t (n)  ≤  f(n) (13)

Then

 G - G U
 ≤   π U(n)

n
∑  f(n)  (14)

Proof. The proof is given in appendix B.

Lemma 2. G ≤ (≥) GU when

  µi  1{ni >0}
i=1

N

∑ 1
{n-e i ∉EU}

 V t (n ) - V t (n - ei )[ ] ≥  (≤) 0  (15)

Proof. The proof is given in appendix B.

The following lemma 3 will enable us to apply the above two lemmas for a general class of
performance measures G by appropriate choice of a reward rate r. Most notably it will
apply for instance to the following steady-state performance measures:

(16)
Lemma 3. With C = maxi M / (µi -λ) and arbitrary r(n) such that

0 ≤ r(n+ei) - r(n) ≤ 1 (17)

Case Measure Reward rate
1 total number of jobs n*= maxi ni r(n) = n*= maxi ni
2 total number of tasks n= n1+n2+…+nN r(n) = n= n1+n2+…+nN
3 tail probability for number of jobs

 Prob{n*>t}
r(n) = 1{n*>t}

4 arbitrary probability of joint task vector,
provided n∈EU ⇒  n+ei∈E ∀i
 π(n)

r(n) = 1{n∈E}
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for any n∈EU and t≥0:

0 ≤   Vt (n + ei )-V t(n) ≤  (n i +1) C (18)

Proof. The proof is given in appendix B.

By combination of lemmas 1, 2 and 3 the following result can be established.

Result 1. With C = maxi M / (µi -λ) and r(n) satisfying (17):

0 ≤   GU -G ≤  C

n∈˜ E U
∑  πU (n)  n i µ i = ∆U

i
∑ (19)

where ˜ E U  =  {n ∈EU| n - ei ∈EU    for some i} . Particularly it applies to any of the
measures form (16) and with the average response time of a job we obtain by Little’s law:

0 ≤   WU - W ≤  
∆U

λ (20)

Remark. Note that the condition in case 4 of (16) includes as a special case any set E of
the form E={n | ni > ti for 1≤i≤N}. In other words, the error bound ∆U also applies to
arbitrary tail probabilities of the joint population vector and thus also the detailed joint
probability distribution.

4. THE LOWER BOUND MODEL

Though relations (19) and (20) are of some practical interest as one can recursively solve
the upper bound model, they still contain the complication that this upper bound model is
infinite. In this section we therefore also consider a third but finite model. This model will
not only provide lower performance bounds on the performance of the original fork and
join queuing system, but it provides in addition computational error bounds.
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Fig. 6 - State transition diagram of a 2-node heterogeneous fork and join system:
second state space partition.

Similarly to the previous section we define a new appropriate state space partition for the
original model as follows:

  
E =  E

kk ≥0
U  E k ={n ∈ E : n1 = k },  k ≥ 0
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where Ek includes all the states with k jobs in the first queue. Figure 6 shows the state
space partition on the state transition diagram for the fork and join system with N=2.

By rewriting the transition rate matrix Q according to this new state space partition and by
considering an appropriate state ordering, we obtain the structure shown in (5) where
Qk+1k=µ1I, for k≥0, I denotes the identity matrix,

Q kk+1 =  λ

0 1

0 1

… …

 

 

 
 
 

 

 

 
 
 

     for k ≥ 0,

Qkk are identical for k≥1 and Q00=Q10+Q11.

In order to define a new process having a QBD structure we define the following state
space reduction EL of state space E:

EL ={ n ∈ E : n
i

≤ Ui,  2 ≤ i ≤ N } (21)

  
EL =  Ek

L

k≥0
U ,  Ek

L ⊆ Ek    for k≥ max 2 ≤ i ≤ N Ui     and E k
L = kL    for k≥ 0 

Ek
L ={ n ∈ E

L
 : n ∈ Ek  }  for k≥ max2 ≤ i ≤ N U i

where Ui are positive constant, 2≤i≤N, and all the subsets ELk have identical cardinality

kL= (U i
i =2

N

∏ + 1).

Therefore the corresponding new transition rate matrix QL has the QBD structure shown in
Fig. 3, where A0= QL01, A1= QL11, A2= QL10 = µ1IkL, for k≥0, where each QLkj is

derived by formulas (1.1) through (1.3) from the corresponding submatrix of Q by
considering only the rows of states of ELk and the columns of states of ELj, for k,j≥0

except for the diagonal elements in the diagonal submatrices QLkk, k≥0, which are given
by

  

qn,  n
L =  -             qn, n'

L

n'  ∈ Ek-1
L Ek

L Ek + 1
LUU

∑ .

The stationary solution of the new model, denoted by π L is derived by the solution of

linear system π LQL=0 with  π L1=1 and is computed by applying the theorem. Note that if
the original system is stable, this also guarantees that the stability condition of the new
model is always verified.

4.1 Performance indices

By using the matrix-geometric solution we derive, as given in Appendix A, the following
expression for the average number of jobs in the systems, denoted by LL:
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LL =     k   πL (n)
    n∈ EL
  
 maxi ni =k

∑  
k=0

max i  Ui −1

∑ +   maxi Ui   πL (n)
         n∈ Ek

L

      n1<  maxi  Ui ,

∃ j≠1 : n j =  maxi U i

∑   +  

        +  ρ1

max
i
 U

i
ρ

1

1−ρ1

 +max i Ui  (1- ρ1)
 

 

 
 

 

 

 
 

(22)

where π L,0 denotes the probability subvector of π L corresponding to subset  EL0. Note
that probabilities πL(n) in the first summation of formula (22) belong to subvectors π L,k
for 0≤k≤(maxi Ui)-1, and those in the second summation belong to subvector π L,k with
k=maxi Ui.

The throughputs of the new model, denoted by XL can be immediately computed by the job
arrival rate λ and the probability that a job is lost, denoted by Ploss, as follows

XL= λ (1− Ploss ) (23)
where

Ploss = πL,0    (I - R)
−1

 1   γ (24)

where vector γ is defined as follows: γ(n)=1  if ∃i : ni = Ui , 2≤i≤N, γ(n)=0 otherwise, for

each n∈EU0.
The derivation of formula (24) is given in Appendix A.

The mean job response time, WL, is given by the Little's theorem again as:

WL = LL / XL.  (25)
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Fig. 7 - State transition diagram for reduction (21) with N=2 and U2=2.

The new model is defined by the state space reduction (21) by assuming a limited capacity
Ui of queue length i, for 2≤i≤N. The first service center, which has the slowest service
rate, has infinite queue length. Threshold Ui can be defined as the maximum value such

that Prob{ni >Ui}<ε, 1≤i≤N, given ε >0. From the system's viewpoint the new model
represents the following behavior: when any of the queue lengths i, for 2≤i≤N, reaches its
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maximum capacity, i.e., ni = Ui , the job arrival process is “turned off” (or blocked) until a
departure occurs from server i. Because of the exponential inter-arrival time distribution,
we can also assume that an arriving job that find the system in a state n with at least one full
queue (2≤i≤N), is not accepted by the system and is lost.
Figure 7 shows an example state diagram for this state space reduction of a system with
N=2, U2 =2.
Informally, since the new model has a lower effective arrival rate than the original system,
due to the loss of jobs when one of the queues is full, it provides a lower bound on the
average response time of a job in the fork and join system.

As in the previous section again we will prove that the proposed model provides
performance bounds, in this case lower bounds, on a set of performance measures of the
original system. Moreover we obtain an expression of the bound width for the average
performance indices.

4.2 Proof of lower bound

As before, first consider the discrete-time Markov process obtained by uniformization of
the continuous-time Markov process.
For the reduction (21), Lemma 3 can still be applied and leads to the following result in
place of result 1 given by (19), as derived in appendix B.

Result 2.  With C = maxi M / (µi -λ) and r(n) satisfying (16):

0 ≤   G - G L ≤  C  n
n∈˜ E L
∑   πL (n) + C  N  πL ( ˜ E L )= ∆L (26)

where

 ˜ E 
L

 =  {n ∈ E
L

| ∃ i : 2 ≤ i ≤ N ,  n
i

= U
i
  }

and π( ˜ E L )  is the probability of subset ˜ E L .
In particular it applies to any of the measures form (16) and with the average response time
of a job:

0 ≤   W - W L  ≤  
∆L

λ . (27)

Bound ∆L from (26) can be expressed as follows:

∆ L =  C {  (n +N)

n∈˜ E L
∑   π L(n) }=  C {  (n +N)

n∈˜ E L

n
1

<  U
1

∑   πL (n) +  (n+N)

n∈˜ E L

n
1

≥  U
1

∑   πL (n) }

for a given constant U1>0. The evaluation of this bound ∆L can be performed by direct
computation of the first summation and by using the following a priori bound for the
second summation:

 (n1 +n 2 +…+nN +N)

n∈˜ E L

n1≥U1

∑   π L (n) ≤   U i
i≥2
∑  

n∈˜ E L

n1 ≥U1

∑   πL (n) +  

n∈˜ E L

n1≥U1

∑  (n1 +N)  πL (n) ≤
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≤ρ1

n
1 +U1 ρ

1
U1 − ρ

1
U1 + 1 

  
 

  + ρ
1
U1 + 1  

 
  
 

/ 1− ρ
1
U1 + 1 

 
 
 (28)

The derivation of expression (28) is given in appendix C.

Remark. (Computation of bound) Note that the lower bound solution with the
explicit computation of bound ∆L as per (28) can be used to derive both an upper and a
lower bound on the performance of the fork and join model as by:

GL ≤   G ≤  GL +  ∆L (29)

As ∆L can be computed by a finite summation of terms πL(n) up to the explicit error bound
(28), the form (29) is most appropriate for computational purposes.

5. SOLUTION ALGORITHM

The algorithm to evaluate the stationary joint queue length probability and average
performance indices of the fork and join model can be summarized as follows, given the
approximation bound ε.

1. Choose thresholds Uij and Ui in definitions (6) and (21), 1≤i,j≤N, as function of ε.
In case of definition (6), bounds Uij require the computation of probabilities
Prob{ni-nj >Uij}, i.e., the joint distribution of queue lengths i and j, 1≤i,j≤N. This
can be obtained by considering the isolated fork and join system with only two
service centers (i and j) and by using the result by [7].
In case of definition (21), bounds Ui require the computation of probabilities
Prob{ni>Ui} which can be easily calculated by considering the isolated service
center i which is an M/M/1 system with arrival rate l and service rate µi,  2≤i≤N.

Therefore one can write U i = log
ρi

ε 
 

 
    where   ρ i= λ / µi .

2. Define the reduced matrices QU and QL as given in Section 3 and 4, respectively.
3. Apply the matrix-geometric method (formulas (3) and (4)) to the QBD matrices QU

and QL to compute steady-state probability vectors π U and π L, respectively.
4. Derive the average performance indices form formulas (7), (8) and (22)-(25),

respectively.

The simple case of the two node fork and join system shall serve as example of model
solution. Let us apply the state space reduction defined by (21) to the original state space.
Matrix QL has the QBD structure shown in Figure 3 with kL=U2 and where submatrices
are defined as described in Section 4 as A2 = µ1 I3, and

A1 =  

u

µ2 v

… …
µ2 v

µ2 w

 

 

 
 
 
 

 

 

 
 
 
 

  A0  = λ 

0 1
0 1

… …
0 1

0

 

 

 
 
 
 

 

 

 
 
 
 
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with u = - (λ+ µ1), v = - (λ+ µ1+ µ2), w = - (µ 1+ µ 2), k≥0. All the submatrices are
square of order U2+1.

Note that matrix A=A0+A1+A2 is the infinitesimal generator of the M/M/1/U2 queue with

parameters λ and µ2, for which the steady-state solution x  can be immediately obtained
under the stability condition, as observed in [17]. However, note that it is not even
necessary to check the stability condition, since this model has been proved to be a lower
bound for the original model and hence it is stable if the original model is stable.
Moreover bound ∆L on the difference between the lower bound and the original model can
be evaluated by using (28) so providing also an upper bound on the original fork-join
model.

5.1 Computational complexity

The computational complexity of the proposed method is strictly related to the dimension of
submatrices Ai (0≤i≤2) and B which are square matrices of order a, where a = kU and a =
kL  for the upper and lower bound model, respectively.

In order to compute steady-state probability π  we have to compute matrix R through the
iterative approach (4) with a computational cost estimated as O(m a3), where m is the
number of required iterations. Once matrix R has been obtained, probability subvectors π0
is computed by solving linear system (3), which requires a computational cost of O(a3).
Finally, probability subvector π i, i>1, can be recursively computed as π i = π i-1 R, whose

complexity is O(a2). Therefore the overall computational cost can be estimated as O(m a3).

In conclusion the computational cost of the method is related to the dimension a of the
submatrices, which can be determined as a function of system parameters as the number of
service centers N and the required approximation bound ε. For instance, in the case of N=2
service centers for the upper and lower state space reduction, respectively, we find
a=U12+U21+1, b≤(kU)2, and a=U2+1. For the general fork and join system with N>2 it
can be proved that the computational complexity is low polynomial with Ui and Uij for the
two models, but combinatorial in the number of servers.

6. NUMERICAL RESULTS

In this Section, we present some numerical examples to show the effectiveness of the
proposed method, in the evaluation of the bounds on the stationary probability distribution
of system state and average performance indices.

We consider both homogeneous and heterogeneous fork and join systems. We assume for
each numerical example the arrival rate λ=1.
The first example is a homogeneous fork and join model with two servers. Since both the
joint queue length probability distribution and the mean response time of this model can be
exactly computed [7, 15], then it is possible to test the accuracy of the proposed method.

We consider the system utilization ρ varying from 0.1 to 0.9, which corresponds to
various values of the service rates of the two servers. Table I shows the average job
response time for various values of thresholds U1, U12 and U21. The table contains the
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exact values, the lower (LB) and the upper (UB) bounds on the average job response time.
The first two thresholds U12 and U21 for the upper bound model have been calculated by

assuming ε=0.5 10-2,  while threshold U1 for the lower bound model is obtained by

ε=10-2. Note that for this homogeneous model U12 = U21. Table I shows the difference
between the upper and the lower bounds and the percentage error, which is defined as
follows:

max
Exact − LB

Exact
,
UB − Exact

Exact
  
 

  
 
  100%

We observe that the bounds are very tight.

To test the accuracy of the method in the evaluation of joint queues length probability
distribution, we calculated for the upper, lower and exact model, and for each value of ρ,
the steady-state probability on a subset Z of state space, such that it guarantees that the
following conditions hold:

       πL (n1,n 2 )
(n1,n2 )∈Z

∑  ≥  0.99  (30)

Table I: Homogeneous two servers model: first set of experiments.

       πU (n1,n 2 )
(n1,n2 )∈Z

∑  ≥  0.99 (31)

       π(n1,n 2 )
(n1,n2 )∈Z

∑  ≥  0.99 (32)

Experimental results can be summarized as follows.
The maximum discrepancy between exact and approximate results has been observed for
state (0,0) for the lower bound model and for each value of ρ. For the upper bound model
the maximum difference between exact and approximate results has been observed for
states (0, U12 ) and (U21, 0). These results are perfectly consistent with respect to the
definition of the two approximate models. The most significant approximation errors have

Utilization U1 LB Exact UB U12 Spread of
Bounds

Percentage
Error

0.1 2 0.161811 0.165278 0.165505 2 3.70 10-3 2.1

0.2 3 0.361654 0.368750 0.371428 2 9.78 10-3 1.92

0.3 4 0.613625 0.626786 0.640465 3 2.70 10-2 2.1

0.4 5 0.940366 0.966667 0.978392 3 3.81 10-2 2.72

0.5 7 1.404751 1.437500 1.439488 6 3.52 10-2 2.27

0.6 9 2.074521 2.137500 2.152190 6 7.71 10-2 2.94

0.7 13 3.198019 3.295833 3.306008 10 1.08 10-1 2.97

0.8 21 5.434605 5.600000 5.623753 15 1.89 10-1 2.95

0.9 44 12.08890 12.48750 12.50644 38 4.17 10-1 3.19
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been observed for state (0, 0) and are presented in Table II for various values of system
utilization.

In order to illustrate the trade-off between computational cost and accuracy of the proposed
method to obtain the two bounds, we have solved the homogeneous fork and join model by
varying thresholds U1, U12 and U21. Threshold U1 has been calculated by assuming

ε=10-3, while U12 and U21 have been calculated by assuming ε=0.5 10-3. Numerical
results for the joint queue length distribution are shown in Table III, for various values of
system utilization ρ, by considering conditions (30), (31) and (32). Similarly to the first set
of experiments the maximum percentage error has been observed for state (0,0) for the
lower bound model and for states (0, U12) and (U21, 0) for the upper bound model. The
maximum percentage error has been observed for state (0, U12) and (U21, 0). Numerical
results are shown in Table IV.
By comparing Tables I and II with Tables III and IV, respectively, we observe how the
improvement of the approximation accuracy affects both the computational cost, which is
related to thresholds U1 and U12, and the percentage error. Like the previous case, we
observe the most significant approximation error for state (0, 0).
The second example is a fork and join model with two heterogeneous servers. We consider
system utilization ρ = λ/µ1 varying from 0.1 to 0.9. For this model the joint queue length
distribution can be exactly computed [7], while there are no exact results for the mean job
response time. The presented numerical examples allow us to make the following
observations: first we compare the bounds obtained by proposed method with those
obtained by applying the bounding technique proposed in [1], in terms of spread of bounds

Table II: Homogeneous two servers model, first set of experiments: lower bound
approximation for state (0,0).

Utilization U2 πL(0,0)
Lower Bound

π(0,0)
Exact

Percentage
Error

0.1 2 0.854823 0.853672 0.135
0.2 3 0.716855 0.715541 0.181
0.3 4 0.587271 0.584724 0.435
0.4 5 0.466900 0.464758 0.461
0.5 7 0.355083 0.353553 0.433
0.6 9 0.254676 0.252982 0.670
0.7 13 0.165542 0.164316 0.746
0.8 21 0.090164 0.089442 0.807
0.9 44 0.031923 0.031622 0.952
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Table III: Homogeneous two servers model: second set of experiments.

Table IV: Homogeneous two servers model, second set of experiments: lower bound
approximation for state (0, 0).

of the job mean response time. Then we study how the service rate of the second server
affects the spread of bounds (note that by assumption µ1≤µ2). To this aim we have

performed, for each different value of ρ, three experiments varying the service rate of the
second server as follows: µ2=1.5µ1, µ2=2.0µ1 and µ2=3.0µ1.
Table V shows the numerical results for the combination of service rate values. For each
utilization ρ we consider the thresholds already determined for the first set of experiments
of the homogeneous model.
Table V shows the results obtained by the lower (LB) and upper bound (UB) of the
proposed method and the bounds proposed by Baccelli and Makowski in [1], which are
shown in column 6 (BM-LB) and 7 (BM-UB).
We observe that the proposed method provides tighter bounds than those obtained with the
technique proposed in [1]. In particular, the approximation accuracy of the approach
proposed in this paper is very good even for high system utilization (i.e., ρ → 1). On the
other hand, the computational cost of the method proposed in [1] is negligible with respect
to that characterizing the method proposed in this paper. However, note that the proposed
method provides both the average job response time and the joint queue length distribution.
In order to illustrate the trade-off between computational cost and accuracy of the bounds,
we analyze the heterogeneous fork and join model by varying thresholds U1, U12 and

U21. U1 has been calculated by assuming ε=10-3, while U12 and U21 with ε=0.5 10-3.
Table VI shows the numerical results of the proposed bounds for various combinations of
service rates.

Utilization U1 LB Exact UB U12 Spread of
Bounds

Percentage
Error

0.1 3 0.164837 0.165278 0.165288 3 4.50 10-4 0.26

0.2 4 0.367032 0.368750 0.368781 4 1.74 10-3 0.46

0.3 6 0.621365 0.626786 0.627195 4 5.83 10-3 0.86

0.4 8 0.964247 0.966667 0.966878 6 2.26 10-3 0.25

0.5 10 1.437026 1.437500 1.437757 8 7.31 10-4 0.33

0.6 14 2.130400 2.137500 2.138956 9 8.50 10-3 0.32

0.7 19 3.284116 3.295833 3.297013 14 1.28 10-2 0.35

0.8 31 5.574794 5.600000 5.603072 22 2.82 10-2 0.45

0.9 66 12.43011 12.48750 12.48951 52 5.94 10-2 0.46

Utilization U1 πL(0,0)
Lower Bound

Model

π(0,0)
Exact

Percentage
Error

0.1 3 0.853911 0.853672 0.0239
0.2 4 0.715796 0.715541 0.0254
0.3 6 0.585800 0.584724 0.1842
0.4 8 0.464888 0.464758 0.2810
0.5 10 0.353564 0.353553 0.0322
0.6 14 0.253108 0.252982 0.0125
0.7 19 0.164413 0.164316 0.0588
0.8 31 0.089517 0.089442 0.0836
0.9 66 0.031651 0.031622 0.0917
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The joint queue length probability distribution has been evaluated for this heterogeneous
model and the experimental results confirm the behaviour observed for the homogeneous
model.
Finally, the third set of experiments is a fork and join model with three homogeneous
servers. System utilization ρ = λ/µ1 varies from 0.1 to 0.8. To the best of our knowledge,
no exact method has been proposed for this model to evaluate the stationary state
probability distribution, while there are several methods to calculate approximate job mean
response time. We compare our bounds on the mean job response time with those obtained
by the recently proposed method by Varma and Makowski [18].
Table VII shows the numerical results for various values of system utilization. The table
includes the average job response time obtained by the lower (LB), the upper bound (UB)

Table V: Heterogeneous two servers model: bound comparison.

Utilization µ2 LB UB Spread of
Bounds

BM-LB BM-UB Spread of
Bounds

0.1 1.5 µ1 0.136934 0.138341 1.41 10-3 0.126670 0.139061 1.24 10-2

0.1 2.0 µ1 0.126810 0.127570 7.60 10-4 0.116671 0.128028 1.13 10-2

0.1 3.0 µ1 0.118726 0.119064 3.38 10-4 0.108337 0.119278 1.10 10-2

0.2 1.5 µ1 0.303229 0.306183 2.95 10-3 0.254562 0.308608 5.40 10-2

0.2 2.0 µ1 0.281280 0.282611 1.33 10-4 0.234586 0.284188 4.96 10-2

0.2 3.0 µ1 0.264699 0.265137 4.38 10-4 0.217984 0.265873 4.79 10-2

0.3 1.5 µ1 0.509666 0.517257 7.60 10-3 0.391676 0.520677 0.138

0.3 2.0 µ1 0.474273 0.477505 3.23 10-3 0.361511 0.480042 0.118

0.3 3.0 µ1 0.449214 0.450178 3.86 10-3 0.337015 0.451447 0.114

0.4 1.5 µ1 0.774955 0.781258 6.30 10-3 0.551928 0.795009 0.243

0.4 2.0 µ1 0.724836 0.726733 1.90 10-3 0.510560 0.734885 0.224

0.4 3.0 µ1 0.691624 0.692180 5.56 10-4 0.478712 0.695513 0.217

0.5 1.5 µ1 1.136201 1.138330 2.13 10-3 0.755432 1.166667 0.441

0.5 2.0 µ1 1.068470 1.068805 3.25 10-4 0.701211 1.083333 0.382

0.5 3.0 µ1 1.028042 1.028067 2.50 10-5 0.662636 1.033333 0.371

0.6 1.5 µ1 1.658744 1.661672 2.92 10-3 1.038192 1.705128 0.667

0.6 2.0 µ1 1.574211 1.574531 3.20 10-4 0.969377 1.595238 0.626

0.6 3.0 µ1 1.528754 1.528767 1.30 10-5 0.925132 1.535714 0.610

0.7 1.5 µ1 2.457140 2.467553 1.40 10-2 1.481257 2.571969 1.090

0.7 2.0 µ1 2.407225 2.407244 1.90 10-5 1.397166 2.434295 1.037

0.7 3.0 µ1 2.360258 2.360266 8.00 10-6 1.349487 2.368450 1.020

0.8 1.5 µ1 4.168701 4.168805 1.04 10-4 2.326987 4.253968 1.930

0.8 2.0 µ1 4.064488 4.064490 2.00 10-6 2.231347 4.095238 1.860

0.8 3.0 µ1 4.021976 4.021977 1.00 10-6 2.185053 4.030303 1.850

0.9 1.5 µ1 9.124710 9.124870 1.60 10-4 4.802873 9.214286 4.410

0.9 2.0 µ1 9.041762 9.041926 1.64 10-4 4.715021 9.068182 4.350

0.9 3.0 µ1 9.012592 9.013258 6.66 10-4 4.680464 9.019480 4.330



- 20 -

Utilization µ2 LB UB Spread of
Bounds

0.1 1.5 µ1 0.138127 0.138240 1.13 10-4

0.1 2.0 µ1 0.127470 0.127515 4.50 10-5

0.1 3.0 µ1 0.119030 0.119043 1.30 10-5

0.2 1.5 µ1 0.304757 0.305053 2.29 10-4

0.2 2.0 µ1 0.281952 0.282046 9.40 10-5

0.2 3.0 µ1 0.264921 0.264940 1.90 10-5

0.3 1.5 µ1 0.511872 0.512084 2.12 10-4

0.3 2.0 µ1 0.475017 0.475066 4.90 10-5

0.3 3.0 µ1 0.449381 0.449388 7.60 10-6

0.4 1.5 µ1 0.778222 0.778258 3.60 10-5

0.4 2.0 µ1 0.725677 0.725694 1.70 10-5

0.4 3.0 µ1 0.691954 0.691958 4.00 10-6

0.5 1.5 µ1 1.138053 1.138161 1.08 10-4

0.5 2.0 µ1 1.068764 1.068774 1.00 10-5

0.5 3.0 µ1 1.028061 1.028063 2.00 10-6

0.6 1.5 µ1 1.660599 1.660662 6.50 10-5

0.6 2.0 µ1 1.574390 1.574395 5.00 10-6

0.6 3.0 µ1 1.528763 1.528766 3.00 10-6

0.7 1.5 µ1 2.507407 2.507408 1.00 10-6

0.7 2.0 µ1 2.407231 2.407243 2.00 10-6

0.7 3.0 µ1 2.360258 2.360266 9.20 10-5

0.8 1.5 µ1 4.168771 4.168779 8.00 10-6

0.8 2.0 µ1 4.064488 4.064490 2.00 10-5

0.8 3.0 µ1 4.021967 4.021977 1.00 10-5

0.9 1.5 µ1 9.124710 9.124861 1.50 10-4

0.9 2.0 µ1 9.041765 9.041915 1.50 10-4

0.9 3.0 µ1 9.012594 9.013247 6.53 10-4

Table VI: Heterogeneous two servers model: second set of experiments.

and the approximation proposed in [18] (VM-APP), and the spread of bounds. Note that
the bounds proposed in [18] provide results at a negligible computational cost, but only for
homogeneous systems and the method does not provide the joint queue length probability
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Table VII : Homogeneous three servers model.

distribution. For this set of experiments we observe a very good accuracy of the proposed
method. Note that for high utilization the results can be improved by choosing larger values
of parameters Ui and Uij in order to obtain higher accuracy.

7. CONCLUSIONS

An algorithmic approach for the performance evaluation of a fork and join system with
synchronisation has been presented based on two models which provide upper and lower
bounds on the system performance. The solution model is given in terms of steady-state
joint queue length probability distributions from which other performance indices, such as
synchronisation delay, job and task response time, can be derived. The proposed algorithm
shows a low polynomial computational complexity.
The two models have been proved to provide lower and upper bounds on the system
performance. Moreover computation error bounds have been derived.
A number of extensions seem possible such as to job and task response time probability
distributions and other synchronization conditions for parallel processors.
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APPENDIX A

Performance indices of  the upper bound model

The average number of jobs in the upper bound model is defined as follows:

LU =   πU (n)
n∈ EU

∑  (max i ni ) =   πU,k
k=0

∞
∑  (α +  k 1) =

       =  (   πU,k
k=0

∞
∑ ) α + k  πU,k

k=0

∞
∑  1 =  

       =  πU,0 (   Rk

k=0

∞
∑ ) α + πU,0  R (I- R)-21  =

       =  πU,0 ( I -R)-1 α +  πU,0  R (I-R)-21

where vector α has the same number of components as vector π U,0 and is defined as
follows:

α (n) = max 1≤i≤N  ni for each n∈EU0.

We assume the same state ordering within each subset EUk, k≥0. Note that subvector π U,0
is obtained by the solution of linear system (3.2) for the upper bound model.
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Performance indices of  the lower bound model

The average number of jobs in the lower bound model is defined as follows:

LL =   πL (n)
n∈ EL

∑  (maxi ni)=  k
k=0

∞
∑   πL (n)

         n∈ EL

       max
i
 n

i
=k

∑  =  

       =      k
k=0

maxi  U i − 1

∑   πL (n)
         n∈ EL

       maxi  n i=k

∑  +  maxi Ui   πL (n)
         n∈ Ek

L

       n1 <  maxi  U i ,

  ∃ j≠1 : n j= max i  Ui

∑    +

               +  maxi Ui  πL (n)
n∈ EL 

n
1
= max

i
 U

i

∑  +    k
 k= max i  Ui + 1

∞
∑     πL (n)

     n∈ E
k
L

  max i n i = k

∑  

(A.1)

The first and the second summations include only elements of the subvectors π L,k for

k=0,…,maxi Ui-1, each corresponding to a subset ELk. The fourth summation in
expression (A.1) can be rewritten as follows:

         k
k >  maxi Ui

∑     πL (n)
    n ∈ Ek

L

     n
1
= k

  

∑  (A.2)

where the internal summation is the marginal probability of k tasks in node 1 and it can be
easily computed by the M/M/1 queue length distribution with arrival rate λ(1-Ploss), where

Ploss denotes the probability that a job is lost, and service rate µ1. Let ρ1=λ(1-Ploss)/µ1.
Hence, the third and fourth summations in expression (A.1) can be rewritten as follows:

 ρ1

maxi Ui ρ1

1−ρ1

 +max i Ui  (1- ρ1)
 

 

 
 

 

 

 
 

which by substitution in (A.1) leads to formula (22).

Therefore the computation of LL only requires the first  maxi Ui  subvectors π L,k from
π L,0.
The probability Ploss that a job is lost is defined as follows:
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P loss =  πL (n)
n∈ EL 

∃ i : 2≤ i ≤N, ni =  Ui

∑   =  

          =     πL (n)
n∈ EL 

n1=  k, ∃ i : 2≤i ≤ N, n i =  Ui

∑   =
k=0

∞
∑  

            =   πL(n) 1
∃ i : 2≤i ≤N, ni =  Ui{ }n∈ E

k
L 

∑
k=0

∞
∑  =

            =  πL,k   γ  =
k=0

∞
∑   πL,0 (  Rk 1 )  γ  =

k=0

∞
∑   πL,0 (I − R)-11  γ 

where vector γ is defined as follows:

γ (n) = 1 {∃i : ni = Ui , 2≤i≤N} for each n∈EU0

which is the indicator function that at least one queue i, 2≤i≤N, is full. We assume the
same state ordering within each subset ELk, k≥0. And this completes the proof.

APPENDIX B

Proof of Lemma 1

By using the second relation from (11) and the fact that PU remains restricted to EU which

is a subset of E, for arbitrary state n∈EU we can write:

(VU
t - Vt )(n) =  (P UVU

t - 1 -P V t - 1 )(n) =  (P U - P) V t - 1 (n) + P U (VU
t - 1 -  Vt - 1 )(n) =

=  …  =  
k =0

t -1
∑ PU

k  [(PU - P)Vt -k -1](n) (A.3)

where the latter equality follows by iteration and the fact that V0(.)=VU
0(.)=0.

Further, by substituting (9) and (10) and h=M-1, for any s we have for n∈EU:

(PU -P )V s(n) =  

=  {  h µi
i

∑  1{ni >0} 1
{n -e i ∈EU}

Vs(n - ei ) + [1- h λ -  h µi
i

∑ 1{ni >0} 1
{n-e i ∈EU }

] Vs(n)} 

  −{  h µ i
i

∑  1{ni >0}  Vs(n - ei ) +  [1- h λ -  h µ i
i
∑ 1{n i >0}  ] Vs(n)}=  

=   h µi
i

∑  1{ni >0} 1
{n -e i∉EU}

 [Vs(n - ei )-V s(n)] 
(A.4)
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Now by choosing π0(.)=πU
0(.)=πU(.), the steady state distribution of the reduced model

in order to apply formula (12). Then by substituting (13) and (A.4) and since the transition
matrix PU leaves its steady state distribution unchanged, we obtain from (A.3):

  πU (n)
n
∑  [VU

t
- V

t
](n)  =  

=  
k=0

t-1

∑  π U(n)
n
∑   P U

t

m
∑ (n,m) (P U − P)V

t - k -1
(m) =  

=  
k=0

t-1

∑  π U(m)  (PU − P)V
t - k -1

(m)
m
∑  ≤  t h  πU (m) f(m)

m
∑

Substituting  h=M-1 and employing (12) completes the proof.

Proof of Lemma 2

Directly by substituting (A.4) in (A.3) and observing that the matrix PU is nonnegative so

that PU g ≥0 if g≥0 componentwise.

Proof of Lemma 3

The proof will follow by induction in t.
Clearly, (18) holds for t=0 as V0(.)=0. Suppose that (18) holds for t=k. Then for t=k+1
we obtain by applying (14) in state n+ei and n:

V k+1(n + ei ) -  V k+1(n) =

={ r(n + ei )+h λ V k (n + ei +1)  +

                    +  h µ j
j≠ i
∑  1{n j >0}Vk (n + ei - ej ) +h µ iV

k(n) +

                    + [1-h λ -  h µ j
j≠i
∑  1{n j>0} -h µ i ] V

k (n + ei ) }−  

- { r(n)+h λ V k (n + 1) +

              +  h µ j
j≠ i
∑  1{n j >0}Vk (n - e j)  +h µi 1{ni >0}Vk (n - ei ) +

              + [1-h λ -  h µ j
j≠i
∑  1{n j>0} -h µ i 1{n i >0}] Vk (n) }=  
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=  [r(n + ei )- r(n)]+h λ [V k (n + 1)-V k (n)]+

                             +  h µ j
j≠ i
∑  1{n j >0}[Vk (n + ei - ej )-V k(n - ej )]+

                             + h µi 1{ni >0}[Vk (n)-V k (n - ei )] +h µi  1{ni =0}[V k (n)-V k (n)] + 

                             + [1-h λ -  h µ j
j≠i
∑  1{n j>0} -h µ i1{n i >0} -h µ i1{ni =0} ] [V k (n + ei )-V k (n)] .

Here it is noted that indeed the term with coefficient 1{ni=0} is indeed equal to 0. This term
however is kept in for clarification of an argument below. First, by substitution of the
lower limit  r(n+ei) - r(n) ≥ 0 in addition to the induction hypothesis Vk(n+ei)-Vk(n) ≥ 0

for all i, one directly verifies Vk+1(n+ei)-Vk+1(n) ≥ 0. Next, by substituting the upper limit

r(n+ei) - r(n) ≤ 1  in addition to the induction hypothesis Vk(n+ei)-Vk(n) ≤ (ni +1) C, by
noting that all coefficients sum up to 1 (recall that they represent transition probabilities)
and by substituting C ≥ 1/h (µi -λ), we obtain:

V k+1(n + ei ) -  V k+1(n) ≤

≤ 1+h λ [n i + λ] C +  h µ j
j≠i
∑  1{n j>0}  [n i +1] C +  

    + h µi 1{ni >0} n i C +0 + [1-h λ -  h µ j
j≠i
∑  1{n j>0} -h µ i ] [n i +1] C  ≤

≤ 1+h λ C + [h λ +  h µ j
j≠ i
∑  1{n j >0} +h µi  ] [ni +1] C -  h µi C +

    + [1-h λ -  h µ j
j≠i
∑  1{n j>0} -h µ i ] [n i +1] C  ≤

≤  [n i +1] C + [ 1+ h λ C - h µ i C ] ≤
≤  [n i +1] C (A.5)

Proof of Result 2

For reduction (21) all the steps performed for the upper bound model remain identical. In
particular, let PL denote the uniformized Markov one-step transition matrices corresponding

to the continuous time process matrix QL. Lemma 3 can be applied up to relation (A.4). In
this case the reduction (PL matrix) would lead to

(P L -P )V
s
(n) =  h λ  1{ni =Ui  for some i} [V

s
(n)-V

s
(n + 1)]

By (18) we can conclude:
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0 ≤  [Vt (n+ 1)-V t(n)] =

  =  [Vt (n+ 1)-V t(n +1 - e1)] + [V t (n + 1 - e1)-V t (n)] ≤

  ≤  (n1 +1) C  + [V t (n + 1 - e1)-V t (n + 1 - e1 - e2 )] +

                        + [Vt (n + 1 - e1 - e2 )-V t (n)] ≤  …
   ≤  (n1 +1) C + (n 2 +1) C +  …  ≤

   ≤  
i

∑ (n i +1) C =  (n+N) C  

(A.6)
so that (19) here becomes:

0 ≤   G - G L ≤  C  n
n∈˜ E L
∑   πL (n) + C  N  πL ( ˜ E L )= ∆L

where ˜ E L  =  {n ∈EL | n =U i   for some i} . This proves (26).

Proof of formula (27)

To prove (27) first note that clearly λL≤λ. Τhis can be proven either similarly to lemma 2
and a lower estimate or as in (18) of lemma 3 by using r(n)=1{ni≥Ui for some i} or by
using sample path arguments. By Little’s law furthermore we have

WL= LL/ λL W= L/ λ
Hence, by applying (26) with GL= LL and G= L we obtain

WL= LL/ λL ≤ LL/ λ ≤ L/ λ = W
and

WL= LL/ λL ≥ [L-∆L]/ λL ≥ [L-∆L]/ λ ≥ W - ∆/ λ
from which (27) follows.

APPENDIX C

Derivation of formula (28)

In order to derive expression (28) we consider bounds on the probability π L based on a
system which is obtained by the original system by considering batch arrivals and without
the fork and join nodes. Let π 2 denote the probability of this batch arrival system on state

space E2
 superset of EL and let P2 denote the uniformized Markov one-step transition

matrices corresponding to the continuous time process matrix Q2. We prove the following
lemma.

Lemma A.1
For any g∈M = { g :  E2→R  | g(n+ei) - g(n) ≥ 0 for all i=1,…,N} :

 
n
∑   π L(n) g(n) ≤   

n
∑   π2 (n) g(n)

In order to prove lemma A.1 we prove some preliminary results.
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Lemma A.2
For any g∈M  :   PL

k (n) g(n) ≤  P2
k (n)  g(n)

Proof. By induction in k. For k=0 it holds as   PL
0 (n) g(n) =  P2

0 (n)  g(n) =  g(n) .
Assume it holds for k=t. Then:

  (P2
t +1 g − PL

t+1 g)(n) =  (P2 − PL )(P2
t  g)(n) + PL[(P2

t  − PL
t ) g ](n) .

Further for any f∈M  we have:
  (P2 − PL ) f( n) = λ 1{ni =Ui   for some i≥2}(f(n + 1) − f( n)) ≥  0

The proof is thus completed by induction to t and lemma A.3 below.

Lemma A.3
For any f∈M  :  P2

t  f ∈M (A.7)

Proof. Let f∈M . Then:
  P2  f(n + ei ) − P2  f(n) =  λ h [f( n +1 + ei )  - f ( n +1)]+

                                     +
j≠ i
∑ µ j h [f(n - e j + ei )  - f ( n - e j)]+

                                    + µi h 1{ni >0}[f( n ) -f(n - ei )]+

                                    + µi h 1{ni =0}[f(n ) -f(n)]+

                                    + [1- λ h -  h 
j

∑ µ j 1{n j >0}  - µ i h] [f(n + ei ) -f(n)] ≥  0

Here the latter inequality follows by using that f∈M . Hence we have shown (A.7) for t=1
by

 P2 f ∈M for any f∈M . (A.8)
Now for t>1 we proceed by induction as follows: suppose that (A.7) holds for t=k. Then

for t=k+1 we have:  P2
t+1  f = P 2 (P2

t  f) ∈M  as per induction hypothesis and (A.8). The

induction completes the proof.

Corollary A.1
With  ρ1 = λ / µ1 < 1 :

 
n1≥U1

∑   πL (n) ≤   
n1≥ U1

∑   π 2(n) ≤    ρ1
n1

(A.9)

 
n1≥U1

∑  n1 πL (n) ≤   
n1≥U1

∑   n1 π2(n) ≤    {U1 (ρ1
U1 −ρ1

U1+1
) + ρ1

U1 +1
} /  (1- ρ1 ) (A.10)

Proof. First by taking n=(0,…,0) and k→∞  in lemma A.1 we get

 
n
∑   π L(n) g(n) ≤   

n
∑   π2 (n) g(n)      for any g ∈M (A.11)
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Now take
g(n) =   1{n

1
≥U

1
}             for (A.9)

g(n) =   n1 1{n
1

≥U
1
}              for (A.10)

(A.12)

to prove the first inequalities. To prove the second inequalities in (A.9) and (A.10) note that
the summation in (A.11) is over all states n while the function g as per (A.12) only
concerns component ni. We are thus calculating the expected values of the function g for
just the first queue. This is clearly equal to just that of an isolated M/M/1 queue as there is

no other dependence between the queues than by a common arrival.


