

Toward a Model-Based Approach to the Specification

of Virtual Reality Environments*

Daniela Fogli, Piero Mussio
Dipartimento di Elettronica per l’Automazione

Università degli Studi di Brescia
Via Branze 38, 25123 Brescia, Italia

fogli,mussio@ing.unibs.it

Augusto Celentano, Fabio Pittarello
Dipartimento di Informatica

Università Ca’ Foscari di Venezia
via Torino 155, 30172 Mestre (VE), Italia

auce,pitt@dsi.unive.it

Abstract

An approach to the specification of a Virtual Reality

(VR) interactive environment is presented, which merges

and generalizes two methods recently proposed in the

literature: the PCL characteristic pattern approach to

WIMP system design and the Interaction Locus approach

to interactive navigation in 3-D virtual spaces. The merg-

ing of the two points of view allows the refinement of the

model of interaction of a user with a virtual environment

and leads to the definition of “real” and “virtual” char-

acteristic pattern, which the discussion shows to be an

important concept for the designer to properly undertake

the design of complex virtual reality systems.

1. Introduction

This paper outlines a step toward the definition of a

model-based approach for the design of Virtual Reality

Environments (VRE). The approach evolves from the

Interaction Locus proposal for virtual space structuring

[15] generalizing the concept of characteristic pattern

introduced by the Pictorial Computing Laboratory (PCL)

[4].

The approach stems from the analysis of the differ-

ences between WIMP-based and 3D-based interaction.

At a first glance one could think of extending tradi-

tional WIMP-based models to 3D interfaces and to inter-

faces based on desktop virtual reality in a straightforward

way, e.g. by considering the visible projection of the 3D

world on the screen as a part of a WIMP-style window,

and consequently interpreting the user actions on the

screen as actions on the world components. However this

view is a purely formal extension which is hardly usable

for designing interaction processes and user interfaces

* A short version of a part of this paper has been presented at

HCC02, 2002 IEEE Symposia on Human-Centric Computing

Languages and Environments, Arlington, VA, September 3-6,

2002.

behavior. In fact, in a desktop virtual reality environment

the translation between the interaction with the screen

image and the interaction with the world objects, and the

consequent modification of the computation process, are

complex and must consider several aspects.

First, the part of the world visible on the screen is only

a part of the whole world with which interaction can take

place. The user can move in the world by revealing and

hiding portions of the world (i.e., bringing in and out from

the screen the 2D projections of the 3D world views).

This is similar to what happens in a WIMP interface when

the user moves a window partly off screen, but on a big-

ger scale. The 3D world is normally a large environment

in which movement (therefore selection of the visible

scene) is the primary interaction method, while in WIMP

interfaces desktop rearrangement is occasional. In terms

of interaction design this means that the identification of

the area subject to user interaction is more critical in a VR

scenario.

Second, the desktop is a 2D projection of a 3D scene.

The position of the user pointing device with respect to

the objects on the screen is not defined by the screen lay-

out, but requires additional information about the user

distance from the elements depicted (e.g., in terms of z-

axis coordinates). As a consequence, a click on an object

image does not correspond necessarily to a “click” (i.e., a

selection) on the object, and the same user action has dif-

ferent interpretations depending on position parameters

not immediately perceivable. The current state of the

computational process must take account of it, but this

state is completely hidden in the interface look. We do not

address here psychological issues related to user percep-

tion of position in virtual spaces. It is however evident

that the lack of information about accessibility of an ob-

ject in the virtual space impacts the interaction model.

We address these problems generalizing the PCL

model of Human Computer Interaction (HCI) to account

for VR entities. The characterizing features of this model

leads to the definition of an Interaction Modeling Space

in which each space dimension represents types of lan-

guages: 1) programming languages to specify system

computations; 2) user activity languages to specify user

activities; 3) characteristic structure languages, which

are languages devoted to deal with the physical character-

istics of the messages from the machine to the user, in

analogy with the languages of sculptures and paintings

introduced in a seminal work by Stiny and Gips [18].

The HCI model and the Interaction Modeling Space

constitute the frame in which a Virtual Reality Environ-

ment is specified. In a first step, the requirements to be

satisfied by the VRE are identified using the HCI model.

Then the VRE is characterized in the Interaction Model-

ing Space, so obtaining the specification of VRE compu-

tational and interaction characteristics.

This paper is organized as follows: Section 2 gives an

overview of the literature relevant for our work. In Sec-

tion 3 the PCL model for WIMP systems and the Interac-

tion Locus concept are briefly reviewed. Section 4 revises

the Interaction Modelling Space introduced in [2]. Section

5 discusses a possible extension of the HCI model to Vir-

tual Reality. Section 6 presents a formalization of this

extension based on the Interaction Modelling Space re-

vised. Section 7 draws the conclusion and suggests further

development.

2. Related work

The model and the approach to VRE specification dis-

cussed in this paper was incrementally defined abstracting

and generalizing several experimental cases and was in-

fluenced and is related to several methods and results

documented in the literature. The model is a refinement of

the Norman’s cyclic model [10]. In fact, the Norman

model focus on the user’s view of the interaction, and

does not attempt to deal with the system communication

through the interface and its influence on system organi-

zation. Black box models – for example the PIE one [8],

first address the communicational aspects. The VRE ap-

proach starts from the PCL model [3] and takes care both

of the user and of the machine being holistic and syndetic.

It is holistic – in the sense of Preece et alt., [17] – in that

“the decision about the way an interface should look are

made in relation to how this will be physically communi-

cated to the users”. However, contrary to most holistic

approaches, the PCL formalizes the description of the

interaction process, allowing a designer to formally spec-

ify [4] his/her own conceptual model intended as a techni-

cally accurate model of the computer system created by

designers for their specific purposes.

In this way, the formalism responds to a requirement

often advanced in the literature [7, 9, 13] that a specifica-

tion has to take into account not only the computational

constructs (organization of data and programs) but also

explicitly address the organization of information on the

surface of the system.

The VRE design approach is syndetic [1] in that the

model of HCI interaction is framed in a “macro-theory” in

which a human – a psychological system- interacts with a

computational system, the VRE. The VRE “micro-theory”

is developed within the frame of the Interaction Modeling

Space, and linked to the Human micro-theory, by the HCI

model. The Interaction Modeling Space is developed in

analogy with the multilevel machine of Tanenbaum [19],

taking however into account the two new dimensions nec-

essary to characterize the system interactive behavior.

For what concerns 3D environments, there have been

very few efforts for the formalization of interactive

scenes. One of the most significant approaches has been

proposed by E. Jacob et al. [11, 12]; their work includes a

preliminary analysis that emphasizes how at present there

are a number of good specifications for current direct ma-

nipulation WIMP interfaces, but a substantial lack of for-

malization for 3D worlds.

The authors propose, as a solution to this scarcity, a

language that specifies all the aspects of the interaction;

their model and language map closely to the user's view

of the fine-grained interaction in a non-WIMP interface.

Their approach has two interesting points: the ability to

specify the user input, a feature missing in other interac-

tion languages like VRML, and the ability to describe

both non-WIMP and WIMP interfaces; this can be ex-

tremely useful with desktop virtual reality, where we can

have a mix of three-dimensional and bi-dimensional wid-

gets to control interaction.

In spite of these positive features, the proposed formal-

ization still misses support for authors, in terms of high

level vision and reusability.

For what concerns the problem of navigation, one of

the main interaction tasks in 3D virtual worlds, an inter-

esting approach has been advanced by R.P. Darken and

J.L. Silbert [6]; they suggest the need of a wise design of

the structure of the environment and of navigational helps

to improve navigation. Their work stems from a critic

analysis of the navigation problem in the real word, lead-

ing the authors to the conclusion that in many cases de-

sign principles from the reality can be applied to the vir-

tual worlds.

3. Modelling interaction in WIMP and VR

interfaces

3.1. The PCL Human Computer Interaction

Model

The Pictorial Computing Laboratory approach models

the HCI process as a sequence of cycles: the human de-

tects a set of events generated by the machine – the image

on the screen, a sound from the microphone, etc. –, de-

rives their meaning, decides what to do next, manifests

his/her intention by an activity performed operating on the

input devices of the system; the system perceives these

operations as a stream of input events, interprets them,

computes the response to human activity and materializes

the results through its output devices, so that they can be

perceived and interpreted by the human. In principle, this

cycle is repeated until the human decides that the process

has to be finished, because the task has been achieved or

failed.

Let us restrict to WIMP interaction, which was studied

by the PCL in details [3]. On one side, in each cycle, the

human interprets the image on the screen by recognizing

characteristic structures (cs), i.e., sets of image pixels

which he or she perceives as functional or perceptual

units. The css recognition and interpretation results into

the association of a meaning with a structure. Identifica-

tion and interpretation (or misinterpretation) of css are

influenced by the similarity (dissimilarities) with real

tools and graphical constructs traditionally adopted by the

user community to perform and document their activity.

The human deduces the meaning associated with the

whole image by combining the meanings of the css rec-

ognized in it.

On the other side, in each cycle, the system plays sev-

eral roles. First, it is the medium conveying the messages

on which interaction is based: a set Pi of hardware tools

and hardware implemented algorithms maintain and dis-

play the images on the screen. Second, the system plays

the role of the second interacting entity, as a set of appli-

cation programs (Ap): some of its sub-programs compute

the system reaction to the user activity. The input to Ap

are computed by a set of devices and programs which

capture and digitize the input operations performed by the

human, relate them to the image on the screen and assign

them a meaning: this third set of devices and programs

plays the role of the tools used by the human to manifest

his/her intention. Last, there are some programs which

send to Pi the results of the computation performed by Ap,

determining the image on the screen, acting as the materi-

alization tools for Ap. From the designer point of view,

the system is a modular entity, arising from the composi-

tion of several sub-systems.

To specify the system structure and behavior, the con-

cept of virtual entity (ve) is introduced. Virtual entities are

computational entities which manifest their appearance

allowing a user to interact with an application program,

i.e., they receive user inputs and convey messages from

the application program to the user.

A virtual entity ve is generated by a software system

which organizes four (sets of) programs: the programs Pi

acting as image support, the program Ap acting as a sec-

ond communicant, and programs FI and FO acting as I/O

tools. A ve is therefore specified as ve = <Pi, Ap,
<FI,FO>>.

3.2. The Interaction Locus model

The Interaction Locus concept was introduced in the

context of a research that aimed at finding weaknesses in

the current interaction modalities in 3D environments

such as virtual worlds. Navigation is a primary task in

interacting with virtual environments: it is often the main

activity performed by the user and, due to the explorative

approach that characterizes interaction in virtual environ-

ments, it is a prerequisite for more sophisticated behav-

iors. In spite of that current 3D interfaces don’t offer satis-

factory solutions to support this task.

In order to increase the quality of interaction in virtual

worlds a better formalization of the navigation problem

was given in [16], distinguishing three related primary

issues: identification of the scene structure, orientation

and navigation. A number of guidelines for virtual worlds

were critically extrapolated from the analysis of the real

world and applied to virtual environments; these guide-

lines included also a strong attention toward a parallel

aspect characterizing the real world: multimodality, which

means giving and receiving different information simulta-

neously from different senses [14]. The concept of Inter-

action Locus (IL) incorporates these guidelines, helping

the user to identify the scene structure using multimodal

communication channels, e.g., visual, auditory, tactile,

hypertextual, etc.

But the introduction of the Interaction Locus concept

has not only navigational benefits. In a well defined 3D

environment there should be no dichotomy between mor-

phology and function, and in many situations there is a

coincidence between the division of spaces and activities

performed in them. This is not a casualty, but it is gener-

ally the result of a designer’s work; in that situations the

morphology of space has a sense in itself but also it helps

to identify areas characterized by precise functions.

 The Interaction Locus concept incorporates this two-

fold morphologic-functional vision. Therefore in a well

defined 3D environment we can associate to the Interac-

tion Locus not only a tuple of coordinated multimodal

messages that informs the user about the nature of that

portion of space, but also a set of possible interaction ac-

tivities.

If we consider the authoring of 3D experiences, with

the Interaction Locus concept the author is enabled to

build virtual interactive experiences evidencing the areas

that are characterized by coherent morphologic features

and by homogeneous interaction modalities; i.e., the au-

thor is enabled to superimpose to the 3D scene a virtual

entity whose task is to inform the user about the nature of

the part of the scene he/she’s entered and to present and to

mediate the possible interactions inside the area controlled

by it.

3.3. Specifying the state of the interaction process

and its dynamics

Given a ve = <Pi, Ap, <FI, FO>>, its current state is

called characteristic pattern (cp), defined as a triple cp =

<cs, u, <int,mat>> linking the current state u of the pro-

gram Ap to the digital events perceivable by the user and

generated by the computation. The set of digital events is

the generated characteristic structure cs: in the WIMP

case it is the set of pixels visible on the screen; in a virtual

reality space it is the set of voxels which shape a 3-D ob-

ject; in a multimodal environment it is the set of perceiv-

able elements generated by a ve having a specific and

recognizable function during the interaction. The func-

tions int (interpretation) and mat (materialization) describe

the relations of components of the cs with components of

u as computed by FI, and the relations of components of u

with components of the cs as computed by FO.

The state of the overall process is described as a triple

vs = <i,u,<int,mat>>, where i is the array of pixels consti-

tuting the current image, u is a suitable description of the

current state of the process Ap, int and mat define the rela-

tions of elements of i with components of u. This triple is

called visual sentence (vs). According to this definition, a

visual sentence is a special cp whose cs is the whole im-

age on the screen, i.e. its image part i is the current mes-

sage to be interpreted by the human and by the system. A

vs describes the state of the computation performed by the

set of programs which constitutes the VRE.

The characteristic pattern describes the state of the

computation performed by (sub)programs constituting a

ve. The dynamics of the interaction are described intro-

ducing the concept of transformation, which links the

activities performed by the user and recognized by the

system to the computation under execution.

The environment with which a user interacts is seen as

a virtual environment in which a population of virtual

entities ve is present, and which can be described specify-

ing the behavior of the population. The dynamics of a ve

during the interaction process is specified as a rewriting

system, whose rules describe how the current cp (i.e., the

current state of a ve) evolves in reaction to the user activi-

ties on the system.

In each interaction cycle, a visual sentence vs1 is trans-

formed into a visual sentence vs2 as the consequence of

some human activity a. In a WIMP system, the human

performs an activity operating on an input device – say

clicking a mouse button – in relation to some cs recog-

nized on the screen. The system relates the operation to

the current active cs (in WIMP systems, the one pointed

to by the mouse pointer) and interprets it as a command

from the user. Then it fires the consequent computation,

referred to in the u associated to the cs in the correspond-

ing cp, which often implies the change of the appearance

of the cs.

The designer describes the human activity as a pair a =

<operation, cp> and specifies the transformation as tr =

<a,<vs1,vs2>>, where cp in a is present in vs1. The inter-

action process is specified as a sequence of such trans-

formations. In a transformation, vs1 and vs2 share a com-

mon part, while the variable part of vs1 is transformed

into the variable part of vs2 through the application of a

transformation rule in the form tr = <ai, r>, where ai ∈A is

the user activity and r is a rewriting rule. A rewriting rule

is a triple r = <ant, cond, cons>, where ant (antecedent) is

a set of cps, cond is a condition on ant, and cons (conse-

quent) is a second set of cps. A rule is applied transform-

ing vs1 into vs2 if ant appears in vs1 and cond is satisfied.

Let TR be a set of transformation rules [5]. The possibly

infinite set of all the sequences of vss that, starting from

the initial vs0, are determined by all the sequences of ex-

ecutable user actions and system computations is a visual

language called Interactive Visual Language (IVL). Each

sequence in IVL describes a specific user-computer inter-

action session. On the whole, IVL is specified as IVL=

<vs0, TR>, from which every sequence of admissible

transformations can be computed.

With reference to the Interaction Locus approach, the

interaction can be described in terms of the HCI model

introduced above: each virtual entity ve present in the

environment can be enriched by the capability of mani-

festing information which help users in understanding the

characteristics of the ve and how to interact with it.

Therefore the interaction locus is viewed as a portion of

environment in which virtual entities deputed to interac-

tion exist and are perceivable to the user supporting

him/her during exploration.

The PCL approach can be extended to virtual reality

spaces modelled by the interaction locus approach, by

defining a hierarchy of characteristic structures cs and

computation processes u which allow a designer to split

the complexity of the interaction design in levels, starting

from a very abstract one, in which the three components

of the cp and user activity are defined using high level

metaphors, down to the elementary digital events, compu-

tational elementary steps and elementary user activities

and the metaphors for interaction defined in desktop vir-

tual reality interfaces.

Moreover, the merging of characteristic pattern and in-

teraction locus approaches allows the distinction between

“real” and “virtual” characteristic patterns, which is an

important concept for the designer to properly undertake

the design of complex virtual reality systems.

4. Three language dimensions: pictorial,

programming and user activity

The interaction process was modeled in [2] by the in-

troduction of an Interaction Modeling Space. In this space

a partially ordered set of interaction machines is repre-

sented, in analogy with the hierarchy of real and virtual

computing machines used in operating systems and dis-

cussed for example in [19]. In the classical OS approach,

real and virtual machines were defined through the lan-

guages in which the algorithms of interest are described.

These languages are defined at different levels of abstrac-

tion, from the machine language level to the high level

languages. In modeling ve the computational process can

be specified in analogy, describing a program Ap, whose

interpretation determines the sequence of states of compu-

tation u. However, to define the ve with reference to the

interaction process, it is also necessary to define a) the

user activities a as perceived by the machine, which con-

stitute the inputs determining the development of the

computation in time; and b) the output of the ve dynam-

ics, i.e. the cs which allows the user to decide which ac-

tivity to perform.

The set of user activities as well as the set of css can be

described starting from a set of atomic elements to form

more complex ones. For this reason we speak of activity

languages and of perceptual languages of css. As for pro-

grams, also activities and css can be described at different

levels of abstraction, by the definition of low level – close

to the machine events – or high level – user and task-

oriented languages –. Accordingly, we can define con-

crete and abstract interpreters of activities and css. The

combination of program, activity and cs interpreters into

one abstract or concrete machine is a ve generator, capa-

ble of interpreting the user actions and generating css. In

other words, it is an Interactive Machine, which can be a

Virtual Interactive Machine (VIM) or the Real Interactive

Machine (RIM).

Figure 1 shows a generalized version of the Interaction

Modelling Space presented in [2]. On each axis, close to

the origin, languages at the lowest level of abstraction are

put. Each point in this space represents a set of VIMs, i.e.

a set of hypothetical interactive visual systems defined by

their user activity language, their programming language

and their characteristic structure language. Each point is

positioned in the space according to the processes of ab-

straction which have been performed along the three axes

to create it. The VIMs in the set are different instances of

the same functional specifications implementation at that

level of abstraction.

This space is here extended to a general case of ves

which manifest their existence not only generating a 2-D

image but also sound and which are defined in a 3-D

space. The characteristic structure of the ve becomes in

this case the current visual appearance and other multi-

modal manifestations of the 3-D ve, which are now the

elements of a Characteristic Structure Language.

The sets of virtual machines in the space are partially

ordered by translation relations among interpreters on

each axis. This set admits a minimal, i.e. a set of IMs gen-

erating a ve which are less abstract than any other along

the three axis. These IMs are the Real Interactive Ma-

chines, from which the others are derived by abstraction

processes applied to one or more axis.

5. From 3D models to characteristic

patterns

In 3D virtual environments, we observe that the corre-

spondence between a characteristic structure defined as a

portion of screen image (a set of pixels) and the ve it

represents is not direct, but mediated through a chain of

translations. Let us illustrate this concept with an exam-

ple.

A virtual world is made of ves some of which provide

information, some are interaction elements (in a wide

sense, they are sensors of the user actions) and some oth-

ers are passive elements which have been put on the 3D

world to give a structure to the scene or to enrich it pro-

viding a sense of realism. The scene can be described as a

set of ves having some properties, rendered according to a

metaphor, a set of geometries, and a set of drawing de-

tails, assuming the definition of a virtual interaction ma-

chine in which activities, css and programs are defined at

the desired level of abstraction. We limit our example to a

basic sequence of interaction steps made of a selection of

a ve of the world, and the modification of such ve (e.g. a

change in the shape) showing a visible feedback of the

user action. The screen layout is defined and generated by

a sequence of translations:

1. the ves are built as 3D shapes (simple or complex),

having physical properties in terms of size, position in

a reference space, color, texture, and other optional

Figure 1. The Interaction Modelling Space

features (e.g. transparency, softness, etc.) with associ-

ated computational properties.

2. The 2D css are rendered with appropriate colors and

surface textures properties by projecting the scene

from the specific user point of view onto the screen

plane.

3. The projected scene is clipped by the size of the user

window.

Step 1 is executed at the beginning of the virtual world

instantiation. Steps 2 and 3 are repeatedly executed as the

user moves or changes her/his orientation in space. User

interaction is handled in the same way:

a) The user selects a cs on the screen, the projection of

the 3D virtual shape of the ve on the screen. The in-

terpreter verifies the user z-axis coordinate in order to

check if the selection occurs on a ve or not. If not,

there is really no interaction and the scene does not

change.

b) If yes, the ve is identified, and a message is sent to the

3D ve in the virtual world model.

c) The behaviors associated to the ve are checked, and

the ve modified accordingly. This generates a change

in the world, therefore steps 1-3 above are executed

with the new world configuration. Figure 2 summa-

rizes this process.

The dynamics of ve under selection is specified by a a

set TR3D of transformations linking user activities to re-

writing rules. The rules describe the dynamics of the ve as

3D object and are applied in the 3D virtual world. Note

that the cp = <cs,u, <int, mat>> now links a 2D cs – what

is perceivable by the user on the screen – to a computa-

tional construct u which describe the state of a 3D ve. The

programs implementing int and mat must verify where the

activity of the user occurs in the 3D space as well as are in

charge of projecting the 3D shape of ve onto the cs taking

into account the user point of observation and vice versa.

Hence in a rewriting rule the condition cond requires

that the user activity occurs on the ve in the 3D space to

be satisfied.

With a reference to the PCL model the above process

could be described in only one step by assuming that the

int and mat functions corresponding to the current visual

sentence take care of the different levels of computations

needed. Indeed, this is what is perceivable by the user,

who clicks and sees the ve changing its shape, i.e., from

the state cp1 = <cs1,u1,<int,mat>> the systems goes to the

state cp2 = <cs2,u2,<int,mat>>, where:

- cs1 is the area of the screen related to the selected ve

before the click, cs2 the same portion after the ve

shape modification;

- u1 is the state of the computational process before the

ve selection, u2 the state after the ve selection and

modification are completed;

- int and mat are the two functions which, through dif-

ferent levels of data transformation, carry on the com-

putation process.

This view, illustrated in Figure 2, does not make evi-

dent the different steps involved, which can be made ex-

plicit through a generalization of the concepts of charac-

teristic structure, characteristic pattern and interaction

process.

6. Managing the abstraction levels in VRE

design

To implement a system starting from an abstract defi-

nition of VIM at level (i,j,k), i.e. belonging to VIMijk, it is

necessary to express the activities, the computational

states, and the css of the abstract machine in terms of the

execution performed on a real machine. The point (0,0,0)

in the Interaction Modelling Space identifies a set of

computationally equivalent Real Interaction Machines, in

which each program, activity and cs is considered at the

lowest concrete level of abstraction. u0, a0 and cs0 are

directly interpreted by the real machine, and a high level

specification in VIMijk

can be translated into a Real Inter-

action Machine RIM in VIM000, through a set of transfor-

mations which define the VIM behavior in terms of RIM.

A transformation is defined by a characteristic struc-

ture csi, an action aj and a state of program uk. Therefore:

• csi, defined at level i, must be translated to level 0

(cs0)

• aj, defined at level j, must be decomposed to level

0 (a0)

• uk,,defined at level k, must be interpreted to level 0

(u0)

Figure 2. Interaction transformation between 2D and 3D

• the int function is defined as inti,k, mapping csi to

uk, and must be decomposed to operate on cs0 and

u0

• similarly, mati,k is defined on csi and uk, and must

be decomposed to operate on cs0 and u0.

The definition of cp as the current state of a virtual en-

tity is related to the actual visible behavior of the comput-

ing system. We use the term “real cp” to denote this proc-

ess. For each real cp, a topological structure (a partially

ordered set) of virtual cps is defined, where a cp specifi-

cation at one level of the topology offers some utilities to

the higher level and hides the details of the cp specifica-

tions at lower levels, as much as in the partially ordered

set of virtual machines.

In this structure, a lowest level is always present, de-

noted here by cp0,0 = <cs0, u0, <int0,0, mat0,0>>. Higher

level specifications of virtual cps are not totally ordered,

since they can belong to different abstraction kinds, i.e.,

different metaphors. An order relation can be established

between the components of different cps, i.e. between

pairs of virtual css1, of states of the process u, and of int

and mat functions.

This can be formalized by specifying, for each compo-

nent in a cpi,k = <csi, uk, <inti,k, mati,k>> in the structure, a

process of translation, or interpretation, or combination

from one level to the lower one.

A translation process maps one (virtual) cs into the cs

at the lower abstraction level. For example, at a high

level, the cs of a 3D ve can be regarded as a connected 3D

space, which is translated at the lower level into a cs con-

stituted by the set of points in the 3D space identifying the

ve. Going to a lower level again, this cs can be translated

into a cs constituted by the 2D points representing the

projection from 3D to 2D of the ve. More in general, let

us call g the translation function which allows the transla-

tion of a characteristic structure csi+1 at a higher level

into a characteristic structure at a lower level csi, csi =

gi(csi+1), where gi is the translation function of the i-th

level.

An interpretation process is carried out, at a low level,

to interpret the computational construct uk of a higher

level cpi,k. Let us call fk the conversion function which

allows the conversion of a computational construct uk+1 at

a higher level by a computational construct at a lower

level uk. Therefore, uk is equal to fk(uk+1).

At the lowest level, the virtual characteristic pattern

cp0,0 corresponds to the real characteristic pattern as de-

1 The characteristic structure according to the PCL model is

the perceivable aspect of a virtual entity, therefore the cs of the

more abstract levels have to be regarded as virtual.

fined above, that is to the state of a ve as generated by a

computational process at a given instant.

In particular, the characteristic structure cs0 is obtained

by chain of translations through the application of func-

tions g0, g1,..., gn-1, i.e.,

cs = cs0 = g0(g1(...gn-1 (csn))).

Similarly, the state of the computational construct u0 is

obtained by a chain of conversions through the applica-

tion of functions f0, f1, ..., fm-1, i.e.,

u = u0 = f0(f1(...fn-1 (um))).

Finally, a combination process is used for int and mat

functions to implement the interpretation of user mes-

sages and materialization of system messages both at a

low level. The interpretation and materialization function

at the level (0,0) are obtained by the combinations of the

translation and conversion functions in the two processes.

On the activity dimension, activities defined at a high

level of abstraction ai+1 is mapped into lower level activi-

ties by a function hj, aj = hj (aj+1).

The families of functions f, g and h are thus used to

specify how a VIM at a certain level can be translated into

a machine of different level.

7. Conclusion

In this paper we have recalled the PCL Interactive Vis-

ual Language model based on the concept of characteris-

tic pattern, which relates the visible properties of the in-

teraction entities to the state of the computational process

through a pair of interpretation and materialization func-

tions. The interaction between a user and a machine can

be described as a sequence of cp transformations. We

have then considered the interaction paradigm in a desk-

top virtual reality environment based on the concept of

Interaction Locus, a coherent set of morphologic features

and homogeneous interaction modalities for exploration

of virtual worlds.

We have then extended the PCL model to interaction

in a virtual world by introducing a set of characteristic

pattern definitions, able to describe the relationship be-

tween the user perception, activities and computation

processes at different levels of abstractions. Translations

between different levels can map abstract interaction with

3D world objects onto their 2D representation on the user

screen. Conversely, the user perceives modifications in

the 3D world through a mapping of the scene on the

screen.

The presence of different levels of virtual characteristic

patterns help the designer to model the interaction in a

complex environment such as a virtual world by separat-

ing the computation related to the interpretation of the

user tasks from the computation needed to interpret, at

low level, the user gestures. It can also support the design

of re-usable interaction experiences by translating the

same behavior at a high level of abstraction into different

concrete implementations, e.g., desktop VR at one side

and immersive VR at the other side.

While most of the ideas have been discussed with a

reference to the visual interaction, in principle also other

interaction modalities can be grounded on the same

model. Further work will be directed to investigate spe-

cific properties of audio and tactile interaction, possibly

extending the concept of characteristic structure to generic

multimodal perception of information and interaction en-

tities.

8. Acknowledgments

This work is supported by Italian Ministry of Univer-

sity and Research, MIUR, in the framework of the project

Specification, Design and Development of Visual Interac-

tive Systems, PRIN 2000.

9. References

[1] P. Barnard, J. May, D. Duke, D. Duce, “Systems,

Interactions and Macrotheory”, ACM Trans on HCI,

7(2), 222-262, 2000.

[2] P. Bottoni, M. F. Costabile, D. Fogli, S. Levialdi, P.

Mussio, “Multilevel Modelling and Design of Visual

Interactive Systems”, in Proceedings IEEE Symp on

Human-Centric Computing Languages and Envi-

ronments, Stresa, Italy, 256-263, 2001.

[3] P. Bottoni, M. F. Costabile, S. Levialdi, P. Mussio,

“Defining Visual Languages for Interactive Comput-

ing”, IEEE Trans. on SMC, 27(6), 773-783, 1997.

[4] P. Bottoni, M. F. Costabile, P. Mussio, “Specifica-

tion and Dialog Control of Visual Interaction”, ACM

Trans. on Programming Languages and Systems,

21(6), 1077-1136, 1999.

[5] P. Carrara, D. Fogli, G. Fresta, P. Mussio, “Toward

overcoming culture, skill and situation hurdles in

human-computer interaction”. To appear in Interna-

tional Journal Universal Access in Information So-

ciety, 2002.

[6] R. P. Darken and J. L. Sibert, “Wayfinding strategies

and behaviors in large virtual worlds”, in Proceed-

ings of CHI’96, ACM, pp. 142-149, 1996.

[7] G. de Haan, “ETAG. A formal model of Compe-

tence Knowledge for user interface design”, SIKS

Dissertation No. 2000-4, 2000

[8] A. Dix, J. Finlay, G. Abowd, R. Beale, Human

Computer Interaction, Prentice Hall, London, 1998.

[9] T.R.G. Green, F. Schiele, S.J. Paine, “Formalization

Models of User Knowledge in HCI”, in C.G. van

DerVeer et al. (eds), Working with Computers: the-

ory versus outcome, Academic Press, 3-46. 1988.

[10] E.L. Hutchins, J.D. Hollan, and D.A. Norman, “Di-

rect Manipulation Interfaces”, in D.A. Norman and

S.W. Draper (eds), User Centered System Design:

New Perspectives on Human-computer Interaction,

87-124, Lawrence Erlbaum, Hillsdale, N.J., 1986

[11] R.J.K. Jacob, “A specification language for direct-

manipulation user interfaces”, ACM Transactions on

Graphics, 5(4), 283-317, 1986.

[12] R.J.K. Jacob, L. Deligiannidis, S. Morrison, “A

software model and specification language for non-

wimp user interfaces”, ACM Transactions on Com-

puter-Human Interaction, 6(1), 1-46, 1999.

[13] T. P. Moran, “The Command Language Grammar: a

representation for the user-interface of interactive

systems”, Int. Journal of Man- Machine Studies,

15(1), 3-50, 1981.

[14] D.A. Norman, Things that make us smart - Defend-

ing human attributes in the age of the machine. Ad-

dison-Wesley, 1993.

[15] F. Pittarello, A. Celentano, “Interaction locus: a mul-

timodal approach for the structuring of virtual

spaces”, in HCITALY 2001, Human-Computer In-

teraction Symposium, Florence, Italy, September

2001.

[16] F. Pittarello, “Multi sensory guided tours for cultural

heritage: the Palazzo Grassi experience”, Interna-

tional Cultural Heritage Informatics Meeting

(ICHIM), Milan, September 2001.

[17] J. Preece, Y. Rogers, H. Sharp, D. Benyon, S. Hol-

land, T. Carey, Human-Computer Interaction. Addi-

son-Wesley, 1994.

 [18] G. Stiny, J. Gips, “Shape Grammars and the Genera-

tive Specification of Paintings and Sculptures”,

Proc. IFIP Congress’71, 1971.

 [19] A. S. Tanenbaum, Structured Computer Organiza-

tion, Prentice Hall, Upper Saddle River, 1999

