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Abstract—We discuss issues related to the design of a multi-
touch gesture sensing environment, allowing the user to execute
both independent and coordinated gestures. We discuss differ-
ent approaches, comparing frontal vs. back projection devices
and gesture tracking vs. shape recognition. To compare the
approaches we introduce a simple gesture language for drawing
diagrams. A test multitouch device built around FTIR technology
is illustrated; a vision system, driven by a visual dataflow
programming environment, interprets the user gestures and
classifies them into a set of predefined patterns, corresponding
to language commands.

I. INTRODUCTION

Natural interaction [1]–[3] has received great attention in
last years, due to progress in research about interaction devices
and to new applications, mainly in the Web2.0 area. Ubiqui-
tous computing and ambient intelligence compel us to rethink
our relations with information devices, trying to surpass the
traditional “window, icon, menu, pointing device” (WIMP)
style of interaction with multimodal and distributed interfaces.

The WIMP paradigm is, however, so well rooted that many
efforts to find more natural interaction styles through free
gesture interpretation are still based on the model of a pointer
moving in a limited area, commanding actions by “clicking”
on objects representing programs and documents. Indeed, the
2D desktop layout doesn’t leave too much space to freely
propose “real world” gestures, possible only in an immersive
environment and with constraints.

In this paper we argument about the choice of a gesture
sensing device and the design of a gesture language for it.
We discuss the pros and cons of different interaction styles,
and their impact on the gesture structure and interpretation. We
define a drawing-style gesture language suited for a multitouch
device based on the Frustrated Total Internal Reflection (FTIR)
technololgy proposed by Han [4], allowing users to interact
with real multitouch, independent gestures. The gesture lan-
guage is targeted to drawing simple graphs such as the ones
used in conceptual and mental maps. The operations permitted
are: create an object (a node), move an object, connect two or
more objects, write text labels, delete objects.

We have built a prototype system to experiment our pro-
posal. Gesture are captured and interpreted by a vision system
built around a dataflow programming environment; gestures
are classified into a set of predefined patterns corresponding
to the language commands. Having multiple pointers allows
the user to execute both parallel independent gestures (e.g., to
select many objects at the same time), or coordinated gestures
(e.g., to connect two objects).

The paper is organized as follows. After reviewing a few
recent proposals in multitouch devices in Section II, we
discuss the relationships between gestures, user perception
and sensing environment in Section III. Section IV compares
gesture vs shape recognition, justifying our choice to rely on
the latter. Section V discusses the gesture language design.
The prototype is presented in Section VI. Section VII draws
the concluding remarks.

II. GESTURES AND MULTITOUCH DEVICES

In the context of this paper a multitouch device is a surface
where multiple active contact points can be sensed at the
same time, which is able to acquire touch information at
reasonable spatial and temporal resolution. Our interest is
oriented to devices scalable up to large installations, apt to
support collaborative as well as personal applications.

Among the different interface types suited for gesture based
interaction two main classes can be identified: interfaces based
on pressure sensitive hardware and interfaces based on vision
systems, recognizing the user gestures in a 3D space or in a
2D projection of it. A third class of systems uses a pressure
sensitive surface, but the gestures are tracked by a vision
system revealing and interpreting the user touch on the surface.
While in principle gesture languages are independent of the
interface technology, a number of constraints are imposed by
the choice of a specific class.

Actually, interfaces based on pressure sensitive hardware
such as the DiamondTouch [5], the Apple iPhone/iPodTouch,
and Lemur, a control surface for audio device, based on a
patented multitouch technology [6], restrict the number of
simultaneous touch points sensed. More general solutions can
be programmed based on vision systems able to track the
position of a variable number of contact points. In most cases
touch is revealed by a FTIR device [4], where the number of
simultaneous light spots is limited only by the device size, the
spot size and the performance of the vision system. Microsoft
SurfaceTM, announced in 2007, is also based on a combination
of FTIR and multi-camera sensing [7].

Some systems rely on recognizable markers to spot the user
actions. MagicBoard [8] aims at improving the capabilities
of a normal whiteboard by tracking the movement of the
user pen, revealed by a marker and a camera. The movement
is translated into an electronic copy of the user drawing.
Markers of different colors allow several users to be tracked
simultaneously.
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Fig. 1. Two vision based installations for gesture interaction: (a) frontal
projection, (b) back projection

Reactable [9] is a back-projection system for the collabora-
tive creation of electronic music performances on a multitouch
tangible interface. Several performes can operate by manipu-
lating marked physical objects representing the components of
a synthesizer, which are tracked by a fiducial tracker following
the markers exposed to an infrared light.

More complex vision systems are based on immersive
environments, like virtual and augmented reality. HandVu [10]
is an augmented reality system, composed of a camera placed
on the user head to cover the visual filed of the user, able
to track the user hands and some postures, to which specific
meanings are assigned.

Dream space by IBM [11] is one of the first experiments
to build a natural interface. Based on the interpretation of the
user posture and hand gesture, it was aiming at putting the
user at the center of the interaction space, but the project has
been discontinued.

III. SENSING USER GESTURES

According to Ishii and Miyake [12] one of the drawbacks of
WIMP interfaces is the lack of visual correspondence between
the user sight and the pointer. The user sees the effect of
the pointer movement in a visual space different from the
gesture space. Touch screens are a partial remedy to this
situation, but the current technology limits their generality
by alternatively constraining the precision (if using fingers,
which allow multitouch gestures) or the gesture variants (if
using a stylus, which can differentiate gestures only through
timing and menu options). Designers have invented artifices
to differentiate gestures and commands in these cases.

With reference to vision based systems, which do not limit
the number of simultaneous pointers, the system perception of
the user gestures is thus depending on the device installation.
Two main cases occur: (a) a frontal projection approach, where
the workspace image projector and the sensing camera are
positioned in front of the interaction surface, tracking the
position of the user’s hands or fingers acting as pointers;
(b) a back projection approach, where the workspace image
projector and the sensing camera are behind the interaction
table, usually built around the FTIR technology to reveal the
touch point. Figure 1 illustrates two stereotypes of frontal and
back projection.

Fig. 2. Correcting a gesture

In the frontal projection configuration of Figure 1(a), the
identification of the user pointer may be ambiguous, since part
of the user body is in the working area. The user hands or
fingers to be tracked need to be artificially marked, diminishing
the natural interaction effect.

In the back projection configuration of Figure 1(b) there is
no “hover” state, since the gesture is sensed only when the user
is touching the sensible surface. Simmetrically, in the frontal
configuration of Figure 1(a) there is no “touch” state (unless
explicit markers are used), and the start of a gesture is implicit
in any user movement. A feasible solution to overcome this
problem is to rely on timing, e.g., assuming that “hovering” on
an object for some time means to touch it, and staying still for
a defined amount of time means the gesture end. Such artificial
patterns, besides lessening the natural approach to interaction,
are prone to errors and misunderstanding and cannot be used
for robust gesture recognition.

We claim that back projection is to be preferred, lacking
the feedback of the hover state but gaining in deterministic
identification of a gesture start and end.

IV. GESTURE VS. SHAPE RECOGNITION

Independently from the specific application, a vision based
interface must execute three basic functions: sensing, identi-
fying, and tracking. Sensing is the action of perceiving the
presence of an event or of a phenomenon: for example, there
is a (moving) touch point. Identifying is the action of inter-
preting the event or the phenomenon; for example, the user is
executing a gesture with such (geometric) features. Tracking
is the result of observing the evolution of the phenomenon,
computing its actual state and relating it with the past states;
for example, the user has drawn a shape recognized by the
system [13].

Recognizing a user gesture can be done by continuously
interpreting the dynamics of the gesture, or by interpreting
the shape traced, much like a drawing. Both have pros and
cons.

A. Gesture interpretation

If the gesture meaning is defined by its dynamic evolution,
variants in the execution might be interpreted as variants in
the meaning. For example, drawing a shape clockwise or
counterclockwise could lead to different results. The greater
flexibility of the gesture language is paid in terms of possible
misinterpretations and mistakes.

The intepretation of the gesture evolution implies that the
interpretation takes place while the gesture is executed. Hence,
the execution must be continuous and coherent. This process,



Fig. 3. The standard shapes recognized by the prototype

Fig. 4. An incorrect interpretation of an almost straight line

while deterministic at last, might go through phases where
the user action could correspond to many different gestures.
A simple example is the tracing of a curved line (an arc) that
could also be interpreted as the initial tracing of a closed figure
(e.g., a contour enclosing objects). The interpreter needs to
face an intrinsic ambiguity in the gesture analysis, processing
the gesture in two times: waiting until the gesture is finished
to assign it to a specific class (e.g., an arc or a closed contour),
then interpreting its dynamics such as the direction, the timing,
the pauses, and so on, according to the class identified.

The dynamic interpretation of a gesture impacts also on
the possibility to correct it. Since the complete evolution of
the gesture is interpreted and not only the final trace, it is
impossible to undo or to correct the gesture.

B. Shape interpretation

Shape recognition is easier both from the user and from the
system perspective: the problems noted above can be overcome
because recognition takes place after the gesture has been
completed. On the negative side, lines and figure borders are
not oriented, unless some visible convention is used to mark
the initial point of contact; timing is also not relevant.

As the user action is interpreted only when it is complete,
errors and uncertainty in the drawing can be corrected to some
extent, e.g., by repeating part of a gesture. In Figure 2 the first
shape represents a correct gesture, interpreted as a straight line;
the second shape deviates from a straight line and could be
interpreted erroneously. The user can correct it by insisting on
drawing a more linear path, forcing the system to interpret it
correctly.

We claim that shape recognition is to be preferred because
it is more robust and easier to implement. In the context of
the chosen domain a dynamic gesture analysis gives no real
advantage. We feel also that the user, confirming the gesture
only after completion, can act in a more comfortable way,
even if a proof of our feeling will come only after a usability
evaluation.

C. Shape analysis and recognition

The system starts the gesture analysis when a touch point is
sensed. A dynamic bounding box is incrementally built around
the gesture until the user stops touching. The bounding box
is sampled into a 7x7 grid, whose cells are marked if crossed
by the gesture trace.

Shape recognition is done against a set of predefined
standard shapes, computing a similarity measure and selecting
the most similar one, provided it is over a suitable threshold.
Figure 3 shows the set of shapes recognized by the prototype
implementation, as visually defined in the VVVV program-
ming environment (see Section VI).

Two cases in the shape interpretation are handled as special
cases: small figures and straight horizontal and vertical lines.

Due to the use of the fingers as pointing devices and to
the physical properties of FTIR sensing, the light spots sensed
have a dimension which prevents a correct interpretation of
very small shapes. The sampled matrix would have most cells
marked due to the relative size of the light spot and the trace.
Therefore, gestures whose size is below a threshold are sensed
as simple touch points and not as shapes.

Straight horizontal and vertical lines are handled as special
cases, by demoting the shape to a line if the ratio between the
longer and the shorter side of the bounding box is higher than
a threshold. The reason for such a choice is related to the same
constraints exposed above about the ability to discern touched
from untouched cells in a small space. Figure 4 illustrates
the problem: the (almost) horizontal line on the left could
be interpreted as the “/\” gesture which activates a virtual
keyboard (the third shape in Figure 3); since its elongation
trespasses a threshold (actually a ratio of 3 between the sides)
it is demoted to a horizontal line.

V. THE INTERACTION LANGUAGE

The interaction language is modeled on the statechart for-
malism, where each state represents a phase of gesture recog-
nition, and the internals of the state describe how that phase
is exploited. Three state classes are defined, borrowing the
terminology from UML: pseudo-states marking the beginning
and the end of the gesture recognition; description states,
representing the persistence of a condition in the gesture exe-
cution (e.g., the user is tracing a line, or the user touch is over
an object); superstates, grouping states with similar functions,
thus representing interpretation processes at a coarser level of
detail. States are connected by transitions which in principle
can be time triggered or event triggered. We shall comment
on time-triggered transitions later.

Due to the large number of gestures the user can do, among
which only a few are meaningful for the application evolution,
we make three assumptions: (1) each gesture is continuous;
(2) the gesture start and end events can be unambiguously
identified; (3) each gesture is traced while it is executed, but
its shape is interpreted only after it has been completed.

These assumptions allow us to define only the statecharts
for the gestures that are recognized as correct, and change the
state of the system, while the gestures that are not explicitly
recognized are simply discarded, returning the system to the
state it had before the gesture start. Visually, that means that
the trace projected by following the gesture on the surface
while it is executed is deleted after completion; the trace of a
recognized gesture is replaced by the new state of the interface,
e.g., a node or an arc is drawn, or the virtual keyboard is
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Fig. 5. The state diagrams for create, move and delete gestures

displayed. Indeed, the recognition process is very flexible and
gives the user much freedom while getting a high rate of
matches; discarding a shape is not so frequent in large gestures.
Since small gestures are considered as points, the system must
be calibrated according to the size of the panel.

The assumption (1) above is important because it simplifies
the definition of the system states by identifying the starting
pseudo-state with the user touch on the sensing surface.
Gestures in a frontal projection system are more difficult to
analyze, because the user hands are always in the viewfield
of the capturing camera, and the start of a gesture cannot be
associated to the act of touching. Hence the need, in general,
to introduce also transitions based on time delays signaling
the start and end of a user action.

Figure 5 illustrates three diagrams corresponding to the
analysis of the create, move and delete gestures. The diagrams
are simplified with respect to the prototype, showing only
the most relevant events occurring in gesture analysis. The
analysis is done in parallel on all the defined gestures, but at
most one is recognized.

The top diagram illustrates the creation of a node, which
occurs when the user draws a closed figure, e.g. a circle or
a square. As long as the user touches the sensing surface the
contact point is visually traced as a line. The shape recognition
state, after the gesture has been completed (release event),
interprets the shape and emits the closed shape event if the
shape is similar to the fifth pattern of Figure 3, otherwise
emits a fail event and goes to an idle state. The diagram is
relevant if the user starts a gesture out of an object. The middle
diagram describes the move gesture, started by touching an
already created object; a shadowed object is drawn at the touch
point as long as the user moves the finger. When the user
releases touching, the object is drawn in the new place. The
bottom diagram describes the delete gesture, which is made
by “crossing out” an object with a straight line. The gesture
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Fig. 6. The object selection diagram in frontal projection

is started, as in the creation case, by touching the sensing
surface out of an object. If the trace crosses an object (on over
event) the object is highlighted to give user a visual feedback,
and tracing continues until the user releases the contact. If
the contact is released when still on the object, the gesture is
discarded, otherwise the shape is interpreted; if it is a straight
line and crosses the object, then the object is deleted, otherwise
(e.g., the line ends on the object) the gesture is discarded.

In a front projection installation environment, the assump-
tions made at the beginning of this section are no longer valid,
since the user action is continuous and, in principle, there is
no way to mark the start of a gesture as different from free
movement and positioning. To give a flavour of the problems
occurring in this scenario, in Figure 6 the state diagram of a
generic object selection action is shown; the selection occurs
if the user “points” to the object for some time t longer than
a threshold x, t > x. The action is started when the system
recognizes the user hand or finger over the object (start (over)
event). While the user stays on the object nothing happens until
exceeding the time threshold x, then the action is executed.
If the user leaves the object before the threshold time has
elapsed, the system returns to an idle state.

VI. A PROTOTYPE

We have built a prototype around a home-made FTIR
sensing plate of plexiglas, not different from the one described
by Han in [4], using a low cost webcam modified to cap-
ture only infra-red light. The goal of the prototype, besides
exercising the basic gestures defined to evaluate issues such
as ambiguity and size limits in shape recognition, was not
to test the hardware, which doesn’t present features worth
to be discussed here. Indeed, the main goal was to test
a visual dataflow programming (VDP) environment, namely
the VVVV toolkit [14], designed for audio and video real-
time processing, to analyze and interpret the gestures without
developing own tracking algorithms. The VDP environment of
VVVV (like Max/MSP [15], well known and widely used by
multimedia performers) is based on the iterative and timed
processing of frames, which are the states of multimedia
information (video in our system, audio and video in general)
processed by devices like filters, comparators, multiplexers,
etc., called patches; patches correspond to the functions of
a conventional programming language, visually connected by
arcs representing signal flow paths.

VVVV is free for non commercial use; it has been chosen
for its video processing capabilities and because a large
community of users exists, providing patches for several
applications. The main drawbacks of VVVV with respect



Fig. 7. The prototype multitouch panel (top), the create (middle) and delete
(bottom) gesture interpretation

to other products, like Max/MSP, are a weaker performance
and the availability only in the Windows platform. Both such
drawbacks are not relevant for our goal.

The experiment has been successful in demonstrating the
advantages of a VDP environment: it eases the development
of vision based applications; it naturally handles the “multi”
part of user touch and interaction; it fits well the state based
design of the interaction language; finally, it is also well suited
for rapid prototyping, due to its fully interpreted behaviour.

Due to the limited size of this paper, only a small example
of the prototype action can be illustrated. In Figure 7 the
two top images show the multitouch panel prototype and the
infrared image sensed by the camera when the user touches
the surface. The middle four images show snapshots of the
gesture interpretation output by VVVV. As the user releases
the contact with the panel, the light spot of the touch point
disappears and the interpreter evaluates the shape. Since it
is a closed figure similar to the ”O” shape in Figure 3 it is
interpreted as a node creation command, and the bounding box
of the trace is drawn.

The bottom four images of Figure 7 illustrate the node
deletion gesture, executed by crossing out an object with a
line. When the contact is released the shape of the gesture
is evaluated: if it is an open figure and crosses an object
by traversing its opposite sides, then a delete gesture is
recognized, and the object is deleted.

VII. CONCLUSION

We have discussed the design of a sensing environment
and a gesture language aiming at introducing the bases for
the development of natural interaction systems. The prototype
needs to be tested to reveal its pros and cons, to drive further
investigation on this field, but some outcomes are already
perceivable.

The hardware quality plays a role in the ability to move
from a demonstration of feasibility to a usable product. The

large dimension of the light spot, a consequence of the FTIR
technology evident in Figure 7, is a serious drawback for
applications with high density of information on the interaction
panel, which is only partly balanced by the low cost of
the installation. Hence, precision in the touch position is
hard to obtain. Such a limitation prevents the designer from
developing real drawing applications, favoring instead the use
of such interfaces for interacting with object representations; it
is a step towards the tangible interfaces, where the objects are
usable per se and not through their virtual representations. The
lack of precision is known in all the interfaces based on the
use of hands and fingers as pointers, and leads the designers to
introduce artificial gestures such as pointing at the two sides of
a central point which is the real target, as done, for example,
in the DiamondTable applications.

The use of VVVV as a prototyping environment has been
demonstrated highly effective due both to the interpretive
programming environment, but mainly to the dataflow frame
based approach, which makes the interpretation of multiple
traces easy. The low efficiency problems revealed might be
corrected by future releases of the software, and by switching
to more robust commercial environments like Max/MSP.
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[2] N. O. Bernsen, “Natural human-human-system interaction,” in Frontiers
of Human-Centred Computing, On-Line Communities and Virtual Envi-
ronments, R. E. R. Guedj, A. van Dam, and J. Vince, Eds. Springer
Verlag, 2001, ch. 24, pp. 347–363.

[3] A. Valli, Natural Interaction Homepage. Florence, Italy: Media
Integration and Communication Center, University of Florence, 2003.
[Online]. Available: http://naturalinteraction.org

[4] J. Y. Han, “Low-cost multi-touch sensing through frustrated total in-
ternal reflection,” in UIST ’05: Proceedings of the 18th annual ACM
symposium on User interface software and technology. New York, NY,
USA: ACM Press, 2005, pp. 115–118.

[5] P. Dietz and D. Leigh, “Diamondtouch: a multi-user touch technology,”
in UIST ’01, Proc. 14th annual ACM Symp. on User Interface Software
and Technology, 2001, pp. 219–226.

[6] JazzMutantTM, “Lemure,” 2005. [Online]. Available:
http://www.jazzmutant.com/lemur overview.php

[7] Microsoft, “SurfaceTM,” 2007. [Online]. Available:
http://www.microsoft.com/surface/index.html

[8] F. Bérard, “The magic table: Computer-vision based augmentation of
a whiteboard for creative meetings,” in PROCAM Workshop, IEEE Int.
Conf. in Computer Vision, 2003.
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