
Model-based Specification of Virtual Interaction Environments

A.Celentano, F. Pittarello
Dipartimento di Informatica

Università Ca’ Foscari di Venezia
{auce, pitt}@dsi.unive.it

D. Fogli
Dipartimento di Elettronica per l’Automazione

Università degli Studi di Brescia
fogli@ing.unibs.it

P. Mussio
Dipartimento di Informatica e Comunicazione

Università di Milano
 mussio@dico.unimi.it

Abstract

This paper discusses a model-based approach to the de-
sign of complex interaction environments like virtual worlds,
mixed and augmented reality. The environment a user inter-
acts with is seen as a virtual environment populated by vir-
tual entities, created and maintained active by a program
interpreted by the computer, which can be described by
specifying the behavior of the population. The specification
of the behavior occurs along three dimensions: 1) pro-
gramming languages to specify system computations; 2)
user activity languages to specify user activities; 3) percep-
tual languages to deal with the physical characteristics of
the messages from the machine to the user. These dimen-
sions define an interaction modeling space which constitutes
the frame in which the virtual environment is specified.

1. Introduction

A model-based approach to the specification of inter-
active environments allows a designer to reason in a rig-
orous way about several aspects, such as: the environ-
ment itself, which must be clearly organized in order to
allow a user to understand which are the interaction op-
portunities and how they are related each other; the inter-
action metaphor, which must be consistent with the user
profile and with the application domain; the interaction
dynamics, which must make the user aware of all the
changes in the system status; the user interface design,
which must help the user in finding information useful
for his/her task; and obviously the application itself and
its links with the components devoted to interacting with
the user. A formal model of the interaction process can
support design, implementation and validation activities
by providing a reference theoretical background and
automatic tools; also semi-formal approaches, often nec-
essary due to the complexity of real world applications,
are viable helps for designers.

This paper proposes a model-based approach for the
specification of complex virtual interactive environments.
It aims at building a reference model for environments
characterized by three-dimensional metaphors, multimo-
dal input and output, and navigation as primary interac-
tion style. The model supports the designers during their
tasks, as well as the final users, whose interaction should
be eased by the presence of well-defined rules along
which the design develops. Finally, it provides a back-
ground for the validation activity, since the expected be-
havior of the system can be described according to a rig-
orous description, hence can be compared with the actual
observation of its evolution.

The approach generalizes the model of human com-
puter interaction introduced by the Pictorial Computing
Laboratory (PCL) [2], which is based on the concept of

characteristic pattern. The generalized model accounts
for entities in virtual environments which extend the con-
cept of widget, common in WIMP interfaces. The charac-
terizing features of this model (which will be called PCL
model for brevity) lead to the definition of an Interaction
Modeling Space (IMS) [1] in which each space dimen-
sion represents, at an adequate level of abstraction, types
of languages: 1) programming languages to specify sys-
tem computations; 2) user activity languages to specify
user activities; 3) perceptual languages, which are lan-
guages devoted to deal with the physical characteristics
of the messages from the machine to the user.

The PCL model and the interaction modeling space
constitute the frame in which a Virtual Interaction Envi-
ronment (VIE) is specified. The environment is defined
in terms of the Interaction Locus model [3, 5], designed
for structuring virtual spaces in which users can perform
an organized series of interactive experiences. The re-
quirements of the VIE are identified using the PCL
model; then, the VIE is characterized in the Interaction
Modeling Space, obtaining the specification of VIE com-
putational and interaction characteristics.

Due to size constraints, in this paper the PCL model
and the Interaction Locus model will be briefly surveyed,
addressing the reader to the bibliography, and specifically
to [2, 5] for the rationale and the details of the two mod-
els.

2. Extending the PCL Model to Virtual Inter-
action Environments

In the PCL model, the human computer interaction
process is modeled as a sequence of cycles: in each cycle
the human detects the events generated by the machine,
such as a screen image or a sound, derives their meaning,
decides what to do next, and manifests his/her intention
by operating on the input devices of the system. The sys-
tem perceives these operations as a stream of input
events, interprets them, computes the response to human
activity and materializes the results through its output
devices.

The human interprets the machine output by recogniz-
ing characteristic structures (cs), i.e., sets of system gen-
erated events perceived as functional or perceptual units;
the system plays the role of the second interacting entity,
through a set of application programs which compute the
system reaction to the user activity. The computer inter-
pretation creates and maintains active a set of entities,
that we call virtual entities (ve), which extend the concept
of widgets and virtual devices, being more independent
from the interface style and including interface compo-
nents possibly defined by users at run time.

An interactive system appears to the user as an envi-

ronment constituted by virtual entities interacting one
another and with the user through the input/output de-
vices. The environment is obtained by a set of elementary
virtual entities. Virtual entities can be recursively com-
posed, from elementary to complex ones through suitable
composition rules.

A virtual entity is created and maintained active by a
set of programs VEP = 〈IOP, AP, 〈IF,OF〉〉, where IOP is
the set of input and output programs materializing and
maintaining the cs of the ve on some output device, and
capturing user activity related to the ve; AP is the set of
application programs computing the ve reaction to the
user activity; IF and OF are the set of input and output
functions that compute the inputs to AP by relating the
input events produced by IOP to cs, and map the results
of AP to commands for IOP. At each instant, the state of
a ve is defined as a characteristic pattern cp = 〈cs, u, 〈int,
mat〉〉, where:

- cs is the characteristic structure defining how the ve
manifests itself to the user. It consists of a set of per-
ceivable events which allow the user to evaluate the
state of the ve. The events can be multimodal, i.e.
visual, haptic or audio. The cs definition specifies the
events that IOP has to generate in digital form;

- u specifies the state of the program AP being inter-
preted by the computer system to determine the cur-
rent behavior of the ve;

- int is an interpretation function mapping the activi-
ties which can be performed by the user on the cs of
the ve into u; int specifies the computation of IF;

- mat is a materialization function mapping u into the
output manifestation of the ve, i.e. into the cs; mat
specifies the computation of OF.

The global state of the interaction environment is de-
scribed by a multimodal sentence (ms), a special cp
whose cs is the whole multimodal message to be inter-
preted by the human and by the system. Coherently with
the definition of a characteristic pattern, a multimodal
sentence is specified as a tuple ms = 〈m, u, 〈int, mat〉〉,
where m (message) is the whole cs perceived by the user,
u specifies the current state of all programs whose execu-
tion rules the interactive environment, int and mat define
the relations of elements of m with components of u.

Actually, cps can be composed to form more complex

ones. In the design of an interactive system, a finite set of
equivalence classes of cps, called atomic classes, and a
set of rules for their instantiation and combination are
defined from which more complex cps, up to mss, are
derived.

In each interaction cycle, a multi-modal sentence ms1
is transformed into a multi-modal sentence ms2 as the
consequence of some human activity act. A user activity
act is specified as act = 〈op, cs〉, where op is the physical
operation (or a set of physical operations) performed by
the user, represented as digital events, and cs is the char-
acteristic structure on which op is performed. The system
relates op on the cs to a cp, and interprets it as a com-
mand from the user. Then it fires the consequent compu-
tation, referred to in the u associated to the cs, which of-
ten implies the change of the appearance of the cs.

3. VIMs in the Interaction Modeling Space

The interaction process was modeled in [1] within an
Interaction Modeling Space. In this space a partially or-
dered set of interaction machines is represented, in anal-
ogy with the hierarchy of real and virtual machines used
in computing systems. In modeling ves, the sets of appli-
cations programs AP can be specified through languages
at different levels of abstraction. In order to define the ve
with reference to the interaction process, it is also neces-
sary to define (a) the user activities act as perceived by
the machine, which constitute the inputs determining the
development of the computation in time, and (b) the out-
put of the ve dynamics, i.e. the css which allows the user
to decide which activity to perform. They can be de-
scribed starting from a set of atomic elements to set up
more complex ones. Therefore, we speak of “activity
languages” [8] and of “perceptual languages” (a generali-
zation of pictorial languages to multimodality) of css.

Since activities and css can be described at different
levels of abstraction, close to the machine or user and
task-oriented, we can define concrete and abstract inter-
preters of activities and css. The combination of program,
activity and cs interpreters into one abstract or concrete
machine is a ve generator, capable of interpreting the user
actions and generating css. We call it a Virtual Interactive
Machine (VIM).

Tasks

Actions

Gestures

CS
complex

CS IL

C++ & graphic libraries

VRML

IL language

Activity language

Programming language

Perceptual language

VIM1
VIM2

Figure 1. The Interaction Modeling Space for 3D interaction

Figure 1 shows an extension of the Interaction Model-
ling Space presented in [1] to multimodal interaction in a
3D space. On each axis, close to the origin, languages at
the lowest level of abstraction are put. Each point in this
space represents a set of VIMs, i.e. a set of hypothetical
interactive systems defined by their activity languages,
their programming languages and their perceptual lan-
guages. The levels on the programming language axis are
specified using the languages currently used for pro-
gramming 3D scenes. The VIMs in the set are different
instances of the same functional behavior at that level of
abstraction.

We can identify the sets of virtual machines used by
the different categories of users that act in virtual envi-
ronments. We shall focus our analysis on interaction
through VRML browsers [7], that may be used for desk-
top virtual reality or mixed reality situations [4] where a

3D output is displayed on a PDA while the user moves in
the real world.

The first level, C++ & graphics libraries, refers to
languages used by skilled programmers; they use effi-
cient languages and graphics libraries (such as OpenGL)
that allow them to avoid direct references to low level
constructs. A consistent trend aims at incorporating the
implementation of those libraries into the hardware level
of graphics cards, therefore they are not represented in
the figure. VRML is positioned at a higher abstraction
level; it implements constructs for geometry description
and a set of interaction primitives for catching the user
input and for guiding the modification of the 3D scene.
Customized languages for 3D interactive scene authoring
stand at the highest abstraction level. The Interaction
Locus Language, which is described in Section 4, is lo-
cated at this level.

Among the VIMs that we consider, the virtual interac-
tion machine used by the developer of VRML engines for
browsing 3D worlds (VIM1) is the closest to the real in-
teraction machine, i.e., to the hardware. Developers use
efficient programming languages and graphics libraries
for developing VRML browsers. They use raw input
coming from user gestures to define different categories
of actions that will be used by authors of 3D worlds. For
example, they may build the action goto extrapolating
from the mouse movement the position associated to the
final mouse click and using this position for changing the
viewpoint on the scene, ignoring the intermediate mouse
motions. Developers also use basic css (such as points
and polygons) to derive complex css (such as cubes,
spheres and cones). Therefore the virtual interaction ma-
chine VIM1 is specified by the coordinates 〈C++ &
graphics library, cs, gestures〉.

At a higher abstraction level we place the VIM used by
authors of VRML 3D worlds (VIM2 in Figure 1). They
use a higher level language, VRML, to describe an inter-
active world, combining low level interaction primitives
in order to build complex behaviors. From a communica-
tional point of view, they aggregate simple audio and
visual primitives to communicate more complex mean-
ings, e.g., aggregating three boxes on the ground they
obtain a portal. Concerning the activity language, they
take user actions as input for the evolution of the 3D
world. Therefore VIM2 is defined by the coordinates
〈VRML, complex cs, actions〉. VIM2 exists in the World
Wide Web, and lies on the top of a well defined middle-
ware system [6]. Its users can use distributed resources
without being bored by low level management activities
but being constrained by the grain induced by the mid-
dleware tools adopted.

VRML is one of the few available languages that al-
lows programmers to specify both the geometry and the
behaviors of the entities that populate the 3D interactive
scene. Using the VRML language, an interactive se-
quence where the user is requested to click a door in or-
der to open it can be programmed as a touch sensor asso-
ciated to the door geometry; the touch event is sent to a
script node managing the modification of the door ge-
ometry in order to open it. Such an abstraction level
doesn’t help authors with low level of expertise in VRML
internals, that would be more comfortable programming
the interaction sequence with constructs such as

user.click(door) -> system.open.(door), possibly through
a visual interface.

4. The Interaction Locus for high level author-
ing

VRML doesn’t put any constraint about the location of
the 3D scene where the action may take place. While this
freedom can be useful in a few cases, in most situations
this contrasts with the ordinary experience where actions
take place in specific zones that have a morphologic iden-
tity and that are deputed to performing specific actions.
To overcome such problems, some of the authors of this
paper have introduced in previous works [3, 5] the con-
cept of Interaction Locus (IL) as a means to structure a
3D scene in a number of well defined areas, characterized
by specific morphological identities, and associated to the
performance of specific actions. ILs typically are organ-
ized in sets and contain active objects the user interact
with. The user experience is progressively built as a se-
quence of related actions happening in different areas.
Both ILs and interactive objects are categorized in
classes, like in real world situations where different loca-
tions and objects may belong to the same typology, such
as the stands of a virtual fair, or the showcases in the fair
pavillions. Actions themselves are categorized in classes
and are selectively available to the user depending on the
location he/she’s currently navigating.

The introduction of the IL concept has a twofold na-
ture, being useful both for formalization and for improv-
ing interaction. As a formal aid, it favors environment
analysis, monitoring and transformation into lower or
higher level descriptions. As an interaction aid, it in-
creases, through a set of multimodal stimuli, the user
awareness of the location where he/she’s interacting, and
can limit interface overcrowding by making available to
the user only the types of actions that are appropriate for
that specific locus.

The IL language, used for defining the 3D scene inter-
activity, is a high-level programming language that uses
as constructs the IL, defined in terms of spatial
boundaries and a set of multimodal attributes characteriz-
ing its identity. The IL language uses VRML constructs
Tasks

Actions

Gestures

CS

complex
CS IL

C++ & graphic libraries

VRML

IL language

Activity language

Programming language

Perceptual language

VIM3d

VIM3b

VIM3c

VIM3a

Figure 2. The VIMs for high level authoring

a
t
c
l
(
i
i

m
a
f
s
V

w
a
g
a
o
i
t
l

5
t

p
b
e

s
t
g
r
n
(
u
g
t
p
a
n
t

e
a
F

for knowing which events must be considered and modi-
fies the scene graph accordingly.

Finally, the presentation engine renders the visual
elements of the modified 3D scene on a clipped bi-
dimensional surface (label 3 in Figure 3), renders the
audio elements using the resources of the underlying
hardware and manages interoperation with the host appli-
cation (the web browser) for complementary presentation
tasks, such as the visualization of web pages requested
by the active components of the 3D world.

A correspondence exists between the components of
the architecture described above and the program VEP
implementing a virtual entity defined in Section 2:

- IOP is made by the presentation engine that material-
izes the virtual world on the screen and on the avail-
VRML
parser

1

3

VRML
document

presentation
engine

execution
engine

virtual world description

scene graph
sensor
nodes

audio-visual
nodes

script
nodes

events

user
input output

2

route
graph

Web browser
VRML browser

VRML
prototypes

Figure 3. A VRML based architecture for VIEs
s building blocks. In particular, classes of ILs and ac-
ions can be built using their lower level programming
onstructs, and stored in repositories available to high
evel authors. With the IL language a high level author
the IL author) is enabled to organize the 3D experience
n a set of locations suitable for interaction, and can spec-
fy for each locus which actions are allowed or forbidden.

While the IL author uses the IL language as program-
ing language, he/she takes advantage of perceptual and

ctivity languages at different levels of abstraction; there-
ore, as evidenced in Figure 2, the author uses VIM in-
tances belonging to four different classes: VIM3a,
IM3b, VIM3c and VIM3d.

The VIMs used by the final user interacting in the 3D
orld belong to the same class of those used by the IL

uthor. In fact, the final user faces with the same lan-
uages used by the author; he/she may use both actions
nd tasks for input, recognizes the complex cs projected
n the 2D place because they represent objects available
n the everyday experience, and may recognize the struc-
ure of the 3D world thanks to the presence of interaction
oci.

. Mapping virtual entities on the implementa-
ion architecture

To implement the model of VIE so far discussed, we
ropose an architecture based on a standard VRML
rowser, whose principal components are the parser, the
xecution engine and the presentation engine (Figure 3).

The VRML parser scans the VRML document de-
cribing the interaction environment and, optionally, ex-
ernal VRML prototypes, in order to build the scene
raph (label 1 in Figure 3), which is a data structure rep-
esenting the nodes defined in the VRML document: the
odes that can be perceived in the generated 3D world
audio-visual nodes), the sensor nodes for catching the
ser input and the script nodes for modifying the scene
raph at run-time. The parser uses the routes described in
he VRML document for building the route graph map-
ing the communication channels (i.e., the relations)
mong the different nodes of the scene graph. The inter-
al representation of the virtual world is given by all
hese data structures.

During the interaction phase all the events generated
xternally by the user or by the nodes inside the 3D world
re communicated to the execution engine (label 2 in
igure 3); the execution engine queries the route graph

able sound devices and by the VRML browser tools
which capture and digitize the user operations;

- AP is represented by the execution engine and the
structures of the virtual world description that control
its evolution (the script nodes and the route graph);

- IF is made by the scripts associated to the sensor
nodes that catch the user input and map them into ac-
tivities;

- OF is made by the set of programs producing and
modifying the audio-visual nodes.

Establishing a suitable mapping between the imple-
mentation architecture of a VRML browser and the ve
concept allows considering the VRML browser as a mid-
dleware that can be used for the definition of a superior
layer presenting to authors and users a structured vision
of a 3D interactive world. This layer takes advantage of
the concepts of virtual entity and Interaction Locus, for
building a more intuitive representation of the 3D scene,
both for authors and users.

6. References

[1] P. Bottoni, M. F. Costabile, D. Fogli, S. Levialdi, P. Mus-
sio. Multilevel Modelling and Design of Visual Interac-
tive Systems, in Proc. IEEE Symp. on Human-Centric
Computing Languages and Environments, Stresa, Italy,
256-263, 2001.

[2] P. Bottoni, M. F. Costabile, P. Mussio. Specification and
Dialog Control of Visual Interaction, ACM Trans. on
Programming Languages and Systems, 21(6), 1077-1136,
1999.

[3] A. Celentano, F. Pittarello. Observing and Adapting User
Behavior in Navigational 3D Interfaces, in Proceedings of
AVI 2004, Working Conference on Advanced Visual Inter-
faces, Gallipoli, Italy, 2004.

[4] P. Milgram, F. Kishino. A Taxonomy of Mixed Reality
Visual Displays” IEICE Transactions on Information Sys-
tems, vol. E77-D (12), 1994.

[5] F. Pittarello. Accessing Information Through Multimodal
3D Environments: Towards Universal Access. Universal
Access in the Information Society Journal, 2(2), 189-204,
2003.

[6] T. Plagemann. Middleware + multimedia = multimedia
middleware? Multimedia Systems, 8, 395-396, 2002.

[7] Virtual Reality Modeling Language. ISO/IEC DIS 14772-
1, http://www.vrml.org/VRML97/DIS, 1997.

[8] A.I. Wassermann, P. A. Pircher, D. T. Shewmake, M. L.
Kersten. Developing interactive information systems with
the user software engineering methodology. IEEE Trans.
on Software Engineering, 12(2), 326-345, 1986

	1. Introduction
	2. Extending the PCL Model to Virtual Interaction Environme
	3. VIMs in the Interaction Modeling Space
	4. The Interaction Locus for high level authoring
	5. Mapping virtual entities on the implementation architect
	6. References

