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Abstract. In this paper we discuss the problem of indexing a large collection of images where each
image is described by several features. Each feature de�nes a multidimensional space where images
are points, and the similarity between images is computed as the distance between points.

We propose to approach multiple features indexing by maintaining a separate index structure for
each feature, and merging the results during query processing. This approach, provides several ad-
vantages because allows di�erent metrics to be used or di�erent weights to be assigned to di�erent
features, leading to better retrieval quality. Some techniques for merging the sets retrieved by con-
sidering each feature separately are discussed, and experimental results on real as well as simulated
data are shown.

1 Introduction

Traditional approaches to database content modelling use alphanumeric data to represent documents.
Multimedia documents, containing image, audio and video components, can be described by attaching
textual descriptors (i.e., legends) to non textual and unformatted content. Indexing and retrieval is then
performed on such descriptors [1]. Limiting our discussion to image databases, a query submitted to an
image retrieval system would be composed by descriptors of the target image, and retrieval would take
place by comparing descriptors according to some similarity criteria.

A more ideal situation would be the one in which queries refer to features computed from the image
content: returned images could then be ranked according to the degree of actual content matching.

Simple systems tend to rely on a representation that is based on numerical vectors to describe features
such as color, shape, texture, direction of lines, and position of objects within images: queries are \by
example", i.e., an image is used as a query, whose vector is compared against those associated to the
database images, and similarity is evaluated by computing the distance or the correlation between them.

In this paper we discuss the problem of indexing a large collection of images each one described by
several features. Each feature de�nes a multidimensional space where images appear as points (spatial
databases) [14], and the similarity between images is computed as the distance between points.

Multiple features can be indexed according to two di�erent approaches: by merging the feature vectors
before creating a global index, or by leaving them apart, creating a separate index structure for each
feature, and merging the results during query processing. This latter approach, while less performing in
terms of indexing and retrieval time, provides several advantages because allows di�erent metrics to be
used or di�erent weights to be assigned to di�erent features, leading to better retrieval quality. Several
techniques can be devised for merging the sets retrieved by considering each feature separately.

This paper is organized as follows. In Section 2 we brie
y overview the relevant literature on content
based retrieval and multi-dimensional indexing. Section 3 describes the VAMSplit R-Tree indexing tech-
nique, well suited for indexing static collections, such as CD-ROMs databases. In Section 4 we propose
some techniques for processing multiple feature queries on separate index structures. Section 5 evaluates
the results obtained by the merge techniques used, and the conclusions are summarized in Section 6.

2 Related work

2.1 Content-based Image Retrieval

Several systems have been proposed in recent years in the framework of content-based retrieval, both for
still images and video sequences.



The QBIC system [8] allows queries to be performed on shape, texture, color, both by example and
by sketch using as target media images and video shots. It appears to require a substantial level of human
interaction during database population for features that require the interpretation of the image semantics.

The VIRAGE Engine [9] expresses visual features as image primitives. Primitives can be very general
or quite domain speci�c. The basic philosophy underlying this architecture is a transformation from the
data-rich representation of explicit image pixels to a compact, semantic-rich representation of visually
salient characteristics.

In [16] segmenting techniques of video clips are based on content analysis for identifying the shots
and the transitions between di�erent scenes.

In [5] color, shape and texture are represented by trees in which each level is a di�erent detail level of
the image for that feature. Not relevant images can be quickly discarded by examining only the higher
tree levels.

In [17] and [12] the authors work directly with pixel of images: in [17] patterns are identi�ed and oc-
currences of each pattern are counted; in [12] the vector representing the pixel linearization is compressed
with a statistic approach.

In [7] the authors propose to represent color information of image's subregions and to store only the
features di�erences between a region and its subregion using a so called inter-hierarchical distance (IHD).

In [13] additional levels of abstracted histograms are added between a low dimension index and the
original image histograms improving the performance.

2.2 Indexing techniques

Indexing on feature vectors is performed by hierarchical data structures that split the feature space in
sub-spaces which guarantee the whole space covering through clusters of limited size containing neighbour
elements.

Several structures and techniques have been proposed, which share some common aspects: �rst, all
leaves are at the same tree level, and contain entries of the form (Oid, point), where Oid is a reference to
the object in the database (the image), and point is the object descriptor (the feature vector). Second, an
intermediate node contains entries of the form (cp, area), where cp is the address of a child node in the
tree and area is the minimum area containing all the objects inside the child node; area representation
may vary for di�erent tree types. Third, every node and every leaf of the tree, except for the root, has a
minimum and a maximum capacity.

The R-tree [10] is a dynamic organization in which the node entry's �eld area is represented by a
(hyper-)rectangle with a minimum and a maximum bound for each dimension, and in which a volume
minimization criteria is used for inserting new objects or splitting over�lled nodes. Decisions on which
paths have to be traversed can be thus taken at higher tree levels.

The R�-tree [2] is a variant of R-tree which introduces also a region overlap minimization criteria
during objects insertion. Furthermore during node splitting margin minimization is also applied, so that
the rectangles will take a more square shape, thus improving store e�ciency. These policies, together
with a dynamic reorganization of the tree, lead to less split operations and a better spatial distribution
of the tree entries. The QBIC system [8] uses an R�-tree indexing structure.

The SS-tree [19] is a dynamic organization in which the area �eld inside a node entry is represented
with a centroid and a radius: this requires less memory space to store the area information, and increases
node's capacity (therefore decreases tree's levels) speeding up the query processing. This structure pro-
vides, according to the authors, sensible improvements with respect to R�-tree. A new object is inserted
by choosing the node with the closest centroid. Over�lled nodes are split by �nding the dimension with
the highest variance, and then by choosing the split position in order to minimize the sum of the variances
on each side of the split. Like the R�-tree, this structure uses a forced reinsertion algorithm to dynamically
reorganizing the tree.

[11] is an improvement based on a tighter bounding (hyper-)sphere than the one used in SS-tree, which
also exploits the clustering property of the data by using a variant of the k-means clustering algorithm.

The M-tree [6] is a dynamic access method suitable for indexing generic \metric spaces", where the
function to compute the distance between any two objects satis�es the positivity, symmetry and triangle
inequality postulates. Similar to SS-tree, it de�nes a routing object instead of a centroid, and each entry
stores the distance from its routing object. The pre-computed distances are used during query processing
to reduce the number of nodes traversed, and the triangle inequality metric property accounts for less
computation. Experimental results show that M-tree performs better than R�-tree on high dimensional
vector spaces.



3 The VAMSplit R-tree indexing structure

The VAMSplit R-tree [18, 20] has a number of advantages over other index structures for static databases,
e.g., image databases stored on CD-ROMs, whose content is fully known at indexing time. It performs
better than R�-tree and SS-tree in terms of query performance, time for creating the index, and space
utilization, mostly because it minimizes or eliminates region overlap, and allows the tree nodes and leaves
to be completely �lled. The basic structure of VAMSplit R-tree is the same of R-tree and R�-tree; it uses
however a di�erent algorithm, that recursively (1) determines the split dimension as the dimension of the
dataset which has the maximum variance, (2) sorts the dataset with respect to that dimension, and (3)
chooses a split point that is approximately the median point.

In [15] a VAMSplit R-tree implementation as a C++ class library is described in detail. Several metrics
are implemented, which can be selected by the user, and di�erent searching techniques allow queries to
be processed by considering both a whole global space for all the features, and separate indexing spaces,
one for each feature, with query results merging. The following issues are faced:

{ the tree is parametric on the feature space dimension;
{ a disk block contains one node or one leaf (bucket), and disk block size resolves maximum node and
leaf capacity automatically, according to parameters set by the user;

{ the building process creates the tree in main memory and stores nodes and leaves on disk. The tree
leaves are stored and deleted from main memory as they are created. The process generates two �les,
one for the true index, (i.e, the internal nodes), and one for the dataset (i.e., the leaves). Nodes are
kept in main memory;

{ retrieval is implemented by a k-nearest neighbor strategy; besides the target image, represented by its
feature vectors, a query speci�es the number k of images to retrieve, the metric to use for distance
computation, and an approximation factor [18{20] which improves performance with a negligible
e�ect on the retrieval accuracy.

Three metrics are implemented, L1, L2 and L1, between two points (when searching inside the tree
leaves), and between a point and a hyper-rectangle (when searching inside the tree intermediate nodes).
The distances D1, D2 and D1, between a point (i.e., a feature vector) x in the hyper-space and a
hyper-rectangle with bounds fmin,maxg, are de�ned as:

D1(x; fmin;maxg) =

nX
k=1

dk

D2(x; fmin;maxg) =

vuut
nX

k=1

dk
2

D1(x; fmin;maxg) = maxk=1:::nfdkg

where n is the feature space dimension, and dk is de�ned as

dk =

8<
:
mink � xk if xk <mink

0 if mink � xk �maxk
xk �maxk if maxk < xk

4 Multiple features image retrieval

While retrieving images by content similarity, the user evaluates the quality of a query result according
to several features, e.g., color, shape, texture. The features usually bring di�erent contributions to image
similarity, and relevance feedback techniques [3, 4] can be used to tune the retrieval process by modifying
the weight of di�erent features in the global similarity evaluation.

We can devise two ways to cope with multiple features at index level:

1. combined features: one index tree for each combination of features is built, in which the vectors for
each image feature are joined to make a single longer descriptor. This solution doesn't require any
supplemental processing at query level, simply increasing the feature vector dimensions and the space
required for storing the indexes.



2. separate features: a separate index is built and maintained for each feature. At query processing time
the images returned by consulting each index separately must be merged in some way to obtain a
single global rank. Several merge techniques could be used, as discussed later.

Combining the features together speeds-up the retrieval process but has several drawbacks, as we'll
discuss in Section 5, the most serious coming from the di�erent features value ranges that require an a

priori normalization and do not allow the selection of di�erent metrics or di�erent weights.
By following a separate feature approach such drawbacks can be avoided, provided that the answers

obtained by each index are merged in a correct way. Several merge algorithms can be, in principle, be
used.

As a �rst solution, the sets of the images returned by considering each features separately could be
simply intersected. The retrieval system would return to the user only the images that according to each
features have the highest similarity score, i.e., the smallest distance. Beyond the di�culty of evaluating
a threshold for the number of images to consider in each feature for getting a total of k-neighbor images,
this solution can give good results only if the ranking in each feature are comparable.

A better solution is to build a global list containing all the images returned by single feature evaluation,
ranked according some suitable function of the distances computed according to a single feature. The
function should normalize the distance values of di�erent features, and �nally mediate the distances for
the images returned in more than one feature evaluation, to obtain a single global distance for these one.
The �nal rank in the list is assumed as the global image distance from the query, and the query result is
the subset of the �rst k ranked images in the global list.

As for the distance normalization in each partial list, we propose two techniques:

norm1: for each element i in a ranked list of k elements having distance di from the query image, the

normalized distance is di
0

= di

dk
, where dk is the lowest ranked element;

norm2: the normalized distance is di
0

= di�d1

dk�d1
, where d1 and dk are respectively the highest and the

lowest ranked element.

Norm1 is suitable when the returned image set is not satisfactory with respect to a single feature; it
does not perform well if the retrieved images are similar to the query image, because the normalization
increases the distance between the images with respect to a single feature, worsening the global result
after the merge operation. Norm2 solves this problem since it includes the images more similar to the
query image with respect to the single feature result in the global result.

As for the combination of the partial distances into a global measure, we propose two mean distance
functions:

mean1: if an image appears in n ranked lists, its global distance is

d =
d1 + d2 + : : :+ dn

n

where di are the distances of this image inside the di�erent ranked lists in which appears;
mean2: the global distance is

d =
d1 + d2 + : : :+ dn

n2

Mean1 gives good performance if an image is similar to the query image according to several features
(hence it should appear in the global rank), but its global distance from the query image is greater
than the distance of an image close to the query image according to only one feature. Mean2 reduces
the problem by decreasing the globally computed distance for an image when the number n of features
according which it is relevant increases. Therefore, it shifts to higher (better) positions of the global rank
the images contained in more feature ranked lists.

The normalization techniques and the mean distance functions are combined to provide four di�erent
merge techniques based on the same parametric algorithm shown in Figure 1. For retrieving the �rst k
images most similar to a query image for n features, the algorithm's space complexity is �(n � k) and the
computational cost is O(n2 � k2).

5 Results and discussion

In this section we discuss the results obtained on some sample datasets. We have used a dataset of
about 400 images picturing cars, aircrafts and ships, that was also used to evaluate feature extraction



for each entry e in ranked list rl[1]

{ compute the normalized distance e.d';

add e to the global list gl

}

for each j > 1

for each entry e in ranked list rl[j]

{ compute the normalized distance e.d';

used = false;

for each entry g in the global list gl

{ if e.image == g.image

{ update g.d';

sort gl;

used = true;

break

}

}

if (not used) add e to the global list (sorted)

}

return the first k entries gl

Fig. 1. Algorithm for the merge operation

and relevance feedback techniques [3, 4], using color, shape and texture features. The color feature is
described by several vectors of 48 elements, representing the mean RGB, HSV, or HSB values in a 4 by 4
image segmentation. The shape is described by a vector of 200 elements representing the modi�ed Fourier
coe�cients which describe the borders of the image objects. The texture is described by a vector of 8
elements representing the image's mean color value (1 value), the image's line directionality (3 values)
and the image's granularity (4 values).

We have queried the dataset for combinations of color and shape, color and texture, and color, shape
and texture together.

We have also used several datasets of randomly generated data simulating feature values of up to 1'000
and 10'000 elements, according to di�erent clustered distributions, in order to test the time performance
for building and querying the index. 10'000 is representative of the number of compressed images the can
�ll a CD-ROM, so it has been considered a plausible limit for a large class of image retrieval applications.
Analytical results are described in [15].

A few tests performed by joining the features into a single global index have shown, as anticipated, that
color similarity is overestimated. A suitable weighting of the index elements could solve or mitigate this
problem. We proceeded instead in evaluating the use of separate indexes and the query result merging.

In general, the retrieval performance for separate features is good, because the di�erent features can
provide comparable contributions. The merge technique that gives the best results is the one based on
norm1 and mean2 operations. This can be explained by observing that norm1 normalization performs
better than norm2 when the images of a ranked list are di�erent from the query but similar each
other: in this case the �nal contribution after normalization is scarce, because the normalized distances
approach the maximum value. Mean2 computation provides better results than mean1 because if an
image appears in many more ranked lists, the computed mean distance is smaller, and the image rank
will be higher in the global similarity list.

The retrieval e�ciency is measured by comparing the construction time (Table 1) and the query
statistics (Tables 2 and 3) of di�erent parameter values: \Nds" and \Lvs" are respectively the average
number of internal nodes and leaves accessed for a query; \t (ms)" is the average time in milliseconds for
completing a query. The tests shown are referred to combined color and shape retrieval.

Table 1 shows that building a single tree for multiple features requires less time than building a tree
for every feature. Considering the queries, combined features (Table 3) are faster than separate features
(Table 2) because in the latter case it is necessary to search each index and then merge the results. We
notice that for larger values of k, the performance of separate features vs. combined features indexing is
worse, because the merge time grows polynomially in k. Moreover, the sum of leaves visited in di�erent
indexes for separate features is always equal or greater than the number of leaves visited for combined
features.

Table 4 show the build time in milliseconds for random feature data on indexes of increasing size up
to 10'000 elements.



color shape texture construction time

� 196

� 507

� 115

� � 627

� � 210

� � � 656

Table 1. Build times of the trees measured in msec

color shape merge
L1 L2 L1 L1 L2 L1

Nds 3.9 3.5 2.8 8.5 5 4.3
k = 5 Lvs 16.5 12.1 7 18.4 6.5 3.5

t (ms) 13.1 9.6 6.3 26.7 9.1 5.6 0.2

Nds 4 3.9 3.3 10.1 6.2 5.1
k = 25 Lvs 20.8 17.7 12.5 27.7 12.4 8.2

t (ms) 20.7 18.4 15.8 40.1 21.4 16.2 4.1

Nds 4 4 3.9 11.1 7 5.8
k = 50 Lvs 23.2 20.5 17.3 32.4 15.9 11.6

t (ms) 27.3 28.6 25.1 56.3 32.5 26.9 15.2

Table 2. Statistics for separate color and shape

metric k Nds Lvs t (ms)

L1 5 16 29.2 41.3
L1 25 10.9 18.2 33.6
L2 50 17.5 36.8 68.5

Table 3. Statistics for combined color and shape

n 100 500 1'000 5'000 10'000

build time 37 327 807 6372 15172

Table 4. Build time for large indexes measured in msec



Fig. 2. Statistics for n = 10000 depending on di�erent metrics

Fig. 3. Complexity of merge operation

Table 2 and Figure 2 show that both in the real dataset of 400 images and in randomly generated
distributions the metric which provides better performance is L1, then L2 and �nally L1; however,
performance is inversely proportional to the retrieval accuracy, which is better with L1, then with L2 and
�nally L1 metric.

Figure 3 veri�es, for the merge operation, the computational complexity estimated in Section 4, which
is polynomial on the number n of features requested by the query and the number k of images to be
retrieved.

In spite of the worse time performance of separate features with respect to combined features, keeping
the features separate provides a number of important advantages:

{ combining features requires a (new) tree to be built for each feature combination;
{ they allow the user to specify a di�erent metric for each index during the query. For some features
di�erent metric can provide sharper discrimination among images;

{ in an iterative relevance feedback process unsatisfactory query results are easily to manage, because
it is possible to change the metrics or the merge technique (e.g., by changing the normalization
algorithm) in order to generate di�erent results without the need of repeating the index search (as
long as intermediate search results are stored in cache or temporary memory);

{ since the ranked lists for each feature query are available, it is possible to inspect them separately,
thus providing a good tuning tool during the development of speci�c image retrieval applications.

6 Conclusion

In this paper we have discussed the issue of building and querying high-dimension indexes representing
image features for content based retrieval systems. We have discussed di�erent approaches to the problem



of querying multiple features. A good indexing structure for static databases (VAMSplit R-tree) and
techniques for merging the query results have been applied to sample datasets, both real and simulated,
in order to compare combined features versus separate features analysis. While combined features indexing
provides more e�cient results in term of computation time, separate features indexing shows acceptable
time and space performance, and o�ers greater 
exibility for iterative searches and relevance feedback
analysis.

Promising directions for future work are (1) the extension of VAMSplit R-tree index structure for
managing very large image databases, where the possibility of building the tree directly in secondary
storage is important; (2) an implementation of a dynamic VAMSplit R-tree in which periodic reorgani-
zations can be kept to a reasonable low level, and (3) the integration in the merge process of relevance
feedback techniques.
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