
Pattern Recognition 40 (2007) 1393–1405
www.elsevier.com/locate/pr

Graph embedding using tree edit-union

Andrea Torselloa,∗, Edwin R. Hancockb

aDip. di Informatica, Università Ca′ Foscari di Venezia, via Torino 155 Mestre (VE), Italy
bDepartment of Computer Science, University of York, York YO10 5DD, UK

Received 16 July 2005; received in revised form 30 August 2006; accepted 8 September 2006

Abstract

In this paper we address the problem of how to learn a structural prototype that can be used to represent the variations present in a
set of trees. The prototype serves as a pattern space representation for the set of trees. To do this we construct a super-tree to span the
union of the set of trees. This is a chicken and egg problem, since before the structure can be estimated correspondences between the
nodes of the super-tree and the nodes of the sample tree must be to hand. We demonstrate how to simultaneously estimate the structure
of the super-tree and recover the required correspondences by minimizing the sum of the tree edit-distances over pairs of trees, subject to
edge consistency constraints. Each node of the super-tree corresponds to a dimension of the pattern space, and for each tree we construct
a pattern vector in which the elements of the weights corresponding to each of the dimensions of the super-tree. We perform pattern
analysis on the set of trees by performing principal components analysis on the vectors. The method is illustrated on a shape analysis
problem involving shock-trees extracted from the skeletons of 2D objects.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: 2D shape; Skeleton; Tree-union; Embedding

1. Introduction

The analysis of relational patterns, or graphs, has proved
to be considerably more elusive than the analysis of vectorial
patterns. Relational patterns arise naturally in the represen-
tation of data in which there is a structural arrangement, and
are encountered in computer vision, genomics and network
analysis. One of the challenges that arises in these domains is
that of knowledge discovery from large graph datasets. The
tools that are required in this endeavor are robust algorithms
that can be used to organize, query and navigate large sets
of graphs. In particular, the graphs need to be embedded in
a pattern space so that similar structures are close together
and dissimilar ones are far apart. This is a routine procedure
with pattern vectors, and may be addressed using a variety
of techniques including principal components analysis [1],
locally linear embedding [2], isomap [3] or the Laplacian

∗ Corresponding author. Tel.: +39 3498774166; fax: +39 0412348419.
E-mail addresses: torsello@dsi.unive.it (A. Torsello),

erh@cs.york.ac.uk (E.R. Hancock).

0031-3203/$30.00 � 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2006.09.006

eigenmap [4]. Collectively these methods are sometimes re-
ferred to as manifold learning theory. However, there are
few analogous methods which can be used to construct low-
dimensional pattern spaces for sets of graphs.

1.1. Background

There are two reasons why pattern vectors are more eas-
ily manipulated than graphs. First, there is no canonical
ordering for the nodes in a graph, unlike the components of
a vector. Hence, correspondences to a reference structure
must be established as a prerequisite. The second problem
is that the variation in the graphs of a particular class may
manifest itself as subtle changes in structure, which may
involve different numbers of nodes or different edge struc-
ture. Even if the nodes or the edges of a graph could be
encoded in a vectorial manner, then the vectors would be
of variable length. This problem becomes particularly acute
when the central clustering of graphs is attempted. Here an
explicit class archetype and correspondences with it must
be maintained [5,6]. This class archetype must capture both

http://www.elsevier.com/locate/pr
mailto:torsello@dsi.unive.it
mailto:erh@cs.york.ac.uk

1394 A. Torsello, E.R. Hancock / Pattern Recognition 40 (2007) 1393–1405

the salient structure of the class and the modes of variation
contained within it.

There has been work aimed at recovering such archetypes.
Munger et al. [7] have taken some important steps in this
direction by developing a genetic algorithm for searching
for median graphs. Variations in class structure can be
captured and learned provided that a suitable probability
distribution can be defined over the nodes and edges of
the archetype. As a concrete example, the random graphs
of Wong et al. [8] capture this distribution using a dis-
cretely defined probability distribution, and Bagdanov and
Worring [9] have overcome some of the computational dif-
ficulties associated with this method by using continuous
Gaussian distributions. There is a considerable body of
related literature in the graphical models community con-
cerned with learning the structure of Bayesian networks from
data [10].

Recently there has been renewed interest how to learn the
class archetype for the purpose of clustering data abstracted
in terms of graphs. Lozano and Escolano [11], and Bunke
et al. [12] summarize the data by creating supergraph repre-
sentation from available samples. Jain and Wysotzki, adopt a
geometric approach which aims to embed graphs in a high-
dimensional space by means of the Schur–Hadamard inner
product [13]. Central clustering methods are then deployed
to learn the class structure of the graphs. The embedding
offers the advantage that it is guaranteed to preserve struc-
tural information present. Unfortunately, the algorithm does
not have a means of characterizing the modes of structural
variation encountered.

However, in general the problem of constructing class
archetypes has proved to be an elusive one. For this reasons
much of the work in the literature has turned to simpler
alternatives.

An alternative to constructing a class archetype, is to use
pairwise methods. Here the starting point is a matrix of
pairwise affinities between graphs. Using pairwise distances
both embedding and clustering can be effected. Graphs may
be embedded in a low-dimensional pattern space using either
multi-dimensional scaling [14] or variants of the ISOMAP
algorithm [15]. There are a variety of algorithms available for
performing pairwise clustering. One of the most popular ap-
proaches is to use spectral methods which use the eigenvec-
tors of an affinity matrix to define clusters [16,17]. Pairwise
methods have been successfully applied to the graph cluster-
ing problem using both graph edit-distance and more infor-
mal similarity measures [14,18]. However, pairwise methods
do not necessarily result in a pattern space where the dimen-
sions reflect the modes of structural variation of the trees.
Furthermore, pairwise distance algorithms consistently un-
derestimate the distance between patterns belonging to dif-
ferent clusters. When two graphs are similar, the node cor-
respondences can be estimated reliably, but as the graphs
move farther apart in pattern space the estimation becomes
less reliable. This is due to the fact that correspondences are
chosen to minimize the distance between trees and, as the

trees move farther apart, the advantage the “correct” corre-
spondence has over alternative ones diminishes, until, even-
tually, a match which yields a lower distance is selected.

A second alternative to the use of structural archetypes is
to extract feature vectors from the graphs and to use these to
construct a “proxy” pattern space representation. There are
a number of ways in which this can be realized for graphs.
One approach is to extract structural or topological features
from the graphs under study. Candidates here include diam-
eter, edge density or path length distribution. Graph spec-
tral features extracted from the eigenvalues and eigenvec-
tors of the adjacency or Laplacian matrices have also proved
effective here [19–21]. Specific examples include the use
of the Laplacian or adjacency matrix spectrum [19], or the
use of permutation invariants derived from graph polynomi-
als [21]. Once such feature vectors are to hand, then mani-
fold learning theory may be applied to the representation to
project them into a pattern space. However, this method has
the limitation that the “proxy” representation does not cap-
ture the underlying structural variation of the graphs under
study.

1.2. Contribution

This paper is concerned with the analysis of sets of trees,
and we focus on the problem of estimating a structural
archetype for a set of trees. Specifically, we address the
problem of how to organize trees into a pattern space
where (a) similar trees are close to one another and (b) the
space is traversed in a relatively uniform manner as the trees
are gradually modified. In other words, the aim is to embed
the trees in a vector–space where the dimensions correspond
to principal modes of structural variation. In many ways
this is a prerequisite to learning a representation for a set of
graphs.

To overcome the limitations of the approaches noted
above, here we take a different approach to the problem.
We aim to embed trees in a pattern space by mapping them
to vectors of fixed length. We do this as follows. We com-
mence from a set of trees, and from this we construct a
super-tree from which each tree may be obtained by the
edit operations of node and edge removal. Hence, each tree
is an edited subtree of the super-tree. The super-tree is con-
structed so that it minimizes the total edit-distance to the
set of trees. To embed the individual trees in a vector–space
we allow each node of the super-tree to represent a dimen-
sion of the space. Each tree is represented in this space by
a vector which has non-zero components only in the direc-
tions corresponding to its constituent nodes. The non-zero
components of the vectors are the weights of the nodes. In
this space, the edit-distance between trees is the L1 norm
between their embedded vectors.

The outline of this paper is as follows. In Section 2 we
detail how tree edit-distance is computed, and how it re-
lates to the concept of obtainability. Section 3 describes
our method for constructing the tree-union. This account is

A. Torsello, E.R. Hancock / Pattern Recognition 40 (2007) 1393–1405 1395

divided into two parts. We commence by describing how a
tree can be matched to a tree-union so as to minimize edit-
distance. Next, we describe how trees can be structurally
merged together, so that the resulting structure is itself a
tree. Section 4 describes how principal components analysis
can be applied to the resulting structure, so that the sample
trees can be embedded in a low-dimensional pattern space.
Section 5 describes experiments on clustering sets of shock-
trees, extracted from 2D shape silhouettes. Finally, Section
6 offers some conclusions and suggests directions for future
research.

2. Tree edit-distance

We commence with some definitions that will be used
throughout the paper. A directed graph G = (V , E) is a pair
consisting of a node set V and a set of edges E ⊆ V × V .
Given two nodes a, b ∈ V , the node b is said to be adjacent
to a (denoted with a ∼ b) if (a, b) ∈ E. A path is a sequence
of nodes a1, a2, . . . , an such that ∀i =1, . . . , n−1, we have
ai ∼ aj . Node b is said to be reachable from node a (denoted
a�b) if there is a path where a is the first node and b is the
last node. A cycle is a path where the last node is the same
as the first node. A graph t = (V , E) is a rooted tree if

(1) There is no cycle in t .
(2) There is a node r ∈ V such that every other node in V

is reachable from it (∀n ∈ V \{r}, r�n).

Let t = (V , E) be a tree and let a, b, c ∈ V , a ∼ b and
a ∼ c, then a is said to be the parent of b and c, b and c

are said to be children of a, and b is said to be a sibling
of c. Furthermore, if a�b, then a is said to be an ancestor
of b and b is said to be a descendent of a. Given two trees
t1 = (V1, E1) and t2 = (V2, E2), a function � : V1 → V2 is
said to be a tree isomorphism if it is invertible and ∀a, b ∈
V1[(a, b) ∈ E1 ⇐⇒ (�(a), �(b)) ∈ E2]. Two trees t1 and
t2 are said to be isomorphic (denoted by t1 ≈ t2) if there
exists a tree isomorphism between them.

The idea behind edit-distance is that it is possible to iden-
tify a set of basic edit operations on nodes and edges of a
structure, and to associate with these operations a cost. The
edit-distance is found by searching for the sequence of edit
operations that will make the two graphs isomorphic with
one another and which has minimum cost. Formally, given
two trees t1 = (V1, E1) and t2 = (V2, E2), the edit-distance
between them is defined in terms of the sequence of basic
edit operations that make t1 and t2 isomorphic with one an-
other. Following common use, we consider three fundamen-
tal operations:

• Node removal: This operation removes a node and links
the children to the parent of said node.

• Node insertion: The dual of node removal, inserts a new
node between a parent and its children.

• Node relabel: This operation changes the weight or at-
tribute of a node.

Note that these operations cannot form cycles and maintain
a path from the root to any node remaining in the graph.
Hence, the edit operations transform trees into trees. Let
S1 and S2 be sequences of edit operations on trees t1
and t2, respectively, and denote with S1(t1) and S2(t2) the
transformed trees. We say that S1 and S2 form a match-
ing edit sequence if they transform the trees into isomor-
phic trees, i.e. if S1(t1) ≈ S2(t2). A matching sequence
is minimal if the sum of the cost of the edit operations
is the minimum over all possible matching sequences. The
edit-distance between t1 and t2 is defined as the cost of a
minimal matching edit sequence. By making the evaluation
of structural modification explicit, edit-distance provides a
very effective way of measuring the similarity of relational
structures. Moreover, the method has considerable potential
for error tolerant object recognition and indexing problems
[22–24].

Unfortunately, the task of calculating graph edit-distance
is a computationally hard problem [25]. The special case of
computing graph edit-distance for trees with an order rela-
tion among siblings is solvable in polynomial time [25,35].
However, the general case of tree edit-distance is still NP-
hard, hence, goal-directed approximations are necessary to
calculate it [26]. In Ref. [26] we presented an approxima-
tion algorithm. It works by associating with each possible
match between a node of one tree to a node of the other tree,
a max-clique problem, for a total of NM clique problems,
where N and M are the size of the trees to be matched.
The max-clique problems are then approximated using an
iterative algorithm that is guaranteed to converge to a fea-
sible but suboptimal solution. The complexity of each it-
eration is of order O(n2m2) where n < N and m < M are
the number of nodes in each tree that are descendents of
the nodes forming the match associated with the clique. As-
suming a constant number of iterations k, the complexity
turns out to be O(kN2M2). In this paper we will build upon
this matching algorithm to construct a pattern space for tree
structures.

2.1. Obtainability

To commence, we provide some results concerning edit
operations on trees that are instrumental to the construction
of a structural archetype for a set of trees. The idea central
to this development is that by transforming node insertions
in one tree into node removals in the other allows us to use
only structure reducing operations. This, in turn, means that
the edit-distance between two trees is completely determined
by the subset of nodes remaining after the optimal removal
sequence.

To pursue this development we need to restate some of the
results presented in Ref. [26]. The closure of a tree t=(v, E),
denoted by C(t), is a graph G = (V , E′) that has the same

1396 A. Torsello, E.R. Hancock / Pattern Recognition 40 (2007) 1393–1405

node set as the original tree and an edge set that satisfies
the condition (a, b) ∈ E′ ⇐⇒ a�b in t . Let C(t) be the
closure of tree t and Ev(t) be the edit operation that removes
node v from t . We can define an equivalent edit operation
Ev(C(t)) that removes v from the closure as follows: we
remove the node v and any edge adjacent to v, i.e. that has v

either as origin or destination. The first result is that edit and
closure operations commute, i.e. Ev(C(t)) = C(Ev(t)). For
the second result we need some more definitions: we call a
subtree s of C(t) obtainable if for each node v of s there
cannot be two children a and b so that (a, b) is in C(t). In
other words, for s to be obtainable, there cannot be a path in
t connecting two nodes that are siblings in s. We can, now,
introduce the following:

Theorem 1. A tree t̂ can be generated from a tree t with a
sequence of node removal operations if and only if t̂ is an
obtainable subtree of the directed acyclic graph C(t).

By virtue of the theorem above, the node correspondences
yielding the minimum edit-distance between trees t and t ′
form an obtainable subtree of both C(t) and C(t ′). Hence,
we reduce the problem to that of searching for a common
substructure, or the maximum common obtainable subtree
(MCOS).

2.2. Distance between weighted trees

Formally, we are interested in the problem of comput-
ing the edit-distance between the trees t1 = (V1, E1) and
t2 = (V2, E2) where V1 and V2 are the node sets of the trees
and E1 ⊆ V1 × V1 and E2 ⊆ V2 × V2 are their edge sets.
Further suppose that S1 and S2 form a matching sequence
of edit operations, that R1 and R2 are the sets of nodes of
t1 and t2, that are removed by S1 and S2, respectively, and
that M1 =V1\R1 and M2 =V2\R2 are the nodes that are left
after editing the trees. Since S1 and S2 form a matching
sequence, there will be at least one isomorphism � : M1 →
M2. We say that M ={(x, �(x))|x ∈ M1} is a set of matches
induced by the matching sequence. According to these def-
initions, the edit-distance between two trees is completely
determined by the set of nodes that are not removed by the
edit operations and, therefore, have a possible set of matches
in the set M . In fact, the edit-distance between the trees t1
and t2 is given by

d(t1, t2) = min
S

⎡
⎣ ∑

v∈R1

rv +
∑
u∈R2

ru +
∑

(v,u)∈M

mvu

⎤
⎦ , (1)

where ru and rv are the costs of removing nodes u and v,
respectively, and muv is the cost of matching node u to node
v. That is, the cost of relabeling nodes u and v so that the
attributes or weights associated with the two nodes are the
same.

This can be rewritten as

d(t1, t2) = minS

⎡
⎣ ∑

v∈R1

rv +
∑
u∈R2

ru +
∑

(v,u)∈M

mvu

⎤
⎦

= minS

⎡
⎣∑

v∈V1

rv +
∑
u∈V2

ru

−
∑

(v,u)∈M

(rv + ru − mvu)

⎤
⎦ . (2)

Since
∑

v∈V1
rv and

∑
u∈V2

ru are constant and independent
from S, the edit-distance is completely determined by the
set of matches that maximize the utility

U(M) =
∑

(v,u)∈M

(rv + ru − mvu). (3)

Here we are interested in weighted graphs. Accordingly we
assume that there is a weight wt

i assigned to each node i of
tree t . The cost of matching a node i of tree t1 to a node
j of tree t2 is equal to the modulus of the difference in
node weight, i.e. |wt1

i −w
t2
j |. In this case the edit-distance is

given by

d(t1, t2) = min
S

⎡
⎣∑

v∈V1

wt1
v +

∑
u∈V2

wt2
u

− 2
∑

〈v,u〉∈M

min(wt1
v , wt2

u)

⎤
⎦ (4)

and the utility of the match M becomes

U(M) =
∑

〈v,u〉∈M

min(wt1
v , wt2

u).

We would like to extend the concept of edit-distance to more
than two trees so that we can compare a tree t∗ to a set of
trees T . Moreover, we would like to determine how a new
sample relates to a previous distribution of tree structures.
Formally, we would like to locate the match that minimizes
the sum of the edit-distances between the new tree t∗ and
each tree t ∈ T , with the added constraint that if node a in
the new tree t∗ is matched to node b in a tree t1 ∈ T and
to node c in another tree t2 ∈ T , then b must be matched to
c, i.e.

(a, b) ∈ M ∧ (a, c) ∈ M ⇒ (b, c) ∈ M , (5)

where M ⊆ V1 × V2 is the set of Cartesian pairs represent-
ing correspondence matches between the nodes of tree t1
and those of tree t2. One way of locating the set of matches
would be to search for the maximum substructure that can
be obtained from any tree in a set by removing appropri-
ate nodes. Unfortunately, by discarding unmatched nodes,
we lose information concerning the structure of the pattern

A. Torsello, E.R. Hancock / Pattern Recognition 40 (2007) 1393–1405 1397

space for the trees. The main problem is that the set of com-
mon nodes becomes marginal and we lose information about
how the nodes distribute in the various structures. To use
Bunke’s [27] analogy, the maximum common substructure
gives us information about the mean of the set of trees, but
it completely discards any information about how sample
trees distribute around this mean. To overcome this limita-
tion we can calculate a union of the nodes. This is a structure
from which we can obtain any tree in our set by removing
appropriate nodes, as opposed to the common substructure,
which provides the intersection of the nodes.

3. Tree-union

In this section we describe our procedure for constructing
the tree-union from a set of trees D. The tree-union is a
superstructure of the original trees, that is, a directed acyclic
graph such that each tree t ∈ D can be obtained from it with
a sequence of node removal operations. More formally, let
G= (V , E) be a superstructure of D, for each t ∈ D there is
an edit sequence St , composed only of node relabeling and
removal operations, such that St (G) ≈ t . The tree-union is
a superstructure that minimizes the total distance

dtot =
∑
t∈D

cost(St). (6)

We commence by noting that as with edit-distance, the edit-
union of two trees is completely determined by the set of
matched nodes. Hence, we can form the union by iteratively
merging nodes that are matched. Upon completion of this
procedure, the result is a directed acyclic graph with multiple
paths connecting various nodes (see Fig. 1). This structure,

g

f

h

h

f

a

d dc

e

b

e

b

a

e

c

a

b

f

g

g

d

Fig. 1. Edit-union of two trees.

α

βα

α

α

β

β

β

UnionIntersection

b

b

a

c

a

b’

c

a

b’

c

a

c

Fig. 2. Edit-union is not always a tree.

thus, has more links than necessary and in order to obtain
the original trees using node removal operations alone, the
superfluous edges need to be removed. If in Fig. 2 we elimi-
nate the edges connecting node b to nodes e, f and g, we ob-
tain a tree. Hence commencing from this tree, we can obtain
either one of the original trees by node removal operations
alone. Furthermore, the order relation defined by this tree
and the one defined by the unaltered structure are identical.

We would hope that such a structure would always be a
tree, so that we can use the matching technique already de-
scribed to compare a tree to a group of trees. Unfortunately,
it is not always possible to locate a tree such that we can
edit it to obtain the original trees. An example is provided
in Fig. 2. In this figure � and � are subtrees. Because of the
constraints posed by matching subtree � to the subtree �,
nodes b and b′ cannot be matched and neither one can be
a child of the other. The only alternative is to keep the two
paths separate. In this way we can obtain the first tree by
removing the node b′ and the second tree by removing node
b. Actually, removing the nodes is not sufficient. The reason
for this is that shortcutting edges need to be removed. How-
ever, once again, the transitive closure of the union minus
node b′ is identical to the closure of the first tree.

3.1. Matching a tree to a union

As shown above, the union of two trees is, in general, a
directed acyclic graph. Our approach can only match trees,
and would fail on structures with multiple paths from one
node a to a descendent node b, since it would count any
match in the subtree rooted at b twice. Hence, we cannot
directly use our approach to compare a tree to a tree-set or
a distribution of trees.

Fortunately, we do not need to perform a match between
two generic directed acyclic graphs. The reason for this is

1398 A. Torsello, E.R. Hancock / Pattern Recognition 40 (2007) 1393–1405

that in an edit-union we have multiple paths between node a
and node b, but each tree can have only one; hence multiple
paths are mutually exclusive. If we constrain our search to
matching nodes in one path only, we can match any tree
to the union, being still guaranteed not to count the same
subtree multiple times. Interestingly, this constraint can be
merged with the obtainability constraint. We say that a match
is obtainable if for each node v there cannot be two children
a and b and a node c such that there is one path, possibly of
length 0, from a to c and another from b to c. This constraint
is reduced to the previously defined obtainability for trees
when c = b, but it also makes it impossible for a and b

to belong to two separate paths joining at c. Hence, from
a node where multiple paths fork, we can extract matches
from one path only.

We wish to locate the match consistent with the ob-
tainability constraint that minimizes the sum of the edit-
distances between the new tree and each tree in the set. For
this purpose we can maximize the sum of the utilities

U(M) =
∑
t∈T

∑
(u,v)∈M,u∈Vt

(rt
u + rt ′

v − mt ′
uv). (7)

Here M ⊂ Vt × NT is the set of matches between the
nodes Vt of the tree t and the nodes NT of the union
structure of the set of trees T . Furthermore, rt

u is the cost
of removing node u from tree t , rt ′

v is the cost of removing
node v from t ′, and mt ′

u,v is the cost of matching node u

of t to node v of t ′. When the edit-distance is uniform (all
weights are unity), the utility produced by a single match
is equal to the number of trees that have an instance of
that node (see Fig. 3). On the other hand, when we use

UnionIntersection

1

1

1

1 1

1

1

2

2

1

Fig. 3. The weight of a node in the union account for every node mapped
to that node.

the weights associated to the nodes of the trees, we have
rt
u+rt ′

v −mt ′
uv =wu+wt ′

v −|wu−wt ′
v |=min(wu, w

t ′
v), where

wu is the weight associated to node u and wt ′
v is the weight

associated to node v in t ′. By solving the modified weighted
clique problems, we obtain the correspondence between the
nodes in the new tree and the nodes in each tree in the
set. Moreover, the edit-distance obtained is the sum of the
distances from the new tree to each tree in the set T .

It is worth noting that this approach can be extended to
match two union structures, as long as no more than one
of them has multiple paths to a node. To do this we iterate
through each pair of weights drawn from the two sets. To
do this, we define the utility as

U(M) =
∑

t∈T1,t ′∈T2

∑
(i,j)∈M

(rt
u + rt ′

v − mtt ′
uv), (8)

where M ⊂ NT1 × NT2 is the set of matches between
the nodes of the union structures T1 and T2, rt

u is the
cost of removing node v from tree t , and mtt ′

uv is the cost of
matching node u of tree t in T1 to node v of t ′ in T2. The
requirement that no more than one union has multiple paths
to a node is necessary to avoid double counting.

3.2. Joining multiple trees

In the previous section we have seen that it is possible to
construct the edit-union of a set of trees, and we have con-
sidered how a tree can be compared to this superstructure.
We now wish to show how to construct such a structure. Lo-
cating the super-structure that minimizes the total distance
between the trees in a set is computationally infeasible, but
we propose a suboptimal iterative approach which at each
iteration extends the union by adding a new tree to it. This
is done by matching the tree to the union and then using the
matched nodes to construct the union of the two structures.
That is, we select a new tree t∗ and we match it against the
current union T(t), to obtain the updated union T(t+1). We
proceed in this way until we have joined every tree.

In order to increase the accuracy of the approximation, we
wish to merge the trees with the smaller distance first. The
reason for this is that the smaller the distance between two
trees, the higher is our confidence regarding the extracted
correspondences. We start with the full set of trees, merge
them and replace them with the union. We reiterate this
procedure until we obtain a single structure. At each iteration
we select two trees t1 and t2 such that the distance d(t1, t2) is
minimal, merge the two tree and reinsert the union structure
T1,2 in the set of trees to be merged. Unfortunately, since
we have no guarantee that the edit-union is a tree, we might
attempt to merge two graphs with multiple paths to a node,
and this is something that our matching algorithm cannot
cope with. For this reason, we discard any union that is not
a tree and attempt to merge the next-best match. When no
trees can be merged without duplicating paths, we randomly
select one union and merge the remaining structures to it in

A. Torsello, E.R. Hancock / Pattern Recognition 40 (2007) 1393–1405 1399

random order. In this way we are guaranteed to merge at
most one multi-path structure at each step.

4. Pattern spaces from union trees

The tree-union provides a route to embedding trees of
the same class in a pattern space. To do this we use the
correspondences with the union tree to map each tree onto
a pattern vector. The components of the vector are unity
if the corresponding sample has a corresponding node, and
zero otherwise. We perform principal components analysis
for the sample trees assigned to each class. To do this we
compute the covariance matrix for the pattern vectors, and
project the pattern vectors onto the space spanned by the
leading eigenvectors of the covariance matrix.

We place the nodes of the union tree T in any arbitrary
order. To each sample tree t we associate a pattern vector
�xt = (x1, . . . , xn)

T ∈ Rn, where n is the number of nodes in
the super-tree model T. The component xt (i) of vector �x is

xt (i) =
{

wt
i if the tree has a node mapped to the

ith node of the sample,
0 otherwise.

In other words, we associate a pattern vector �xt with the
sample tree whose components are equal to the weight of the
corresponding node in the union tree, if the node is present,
and are zero otherwise. For the union tree T we compute
the mean pattern vector

�̂x = 1

|T |
∑
t∈T

�xt

and covariance matrix

� = 1

|T |
∑
t∈T

(�xt − �̂x)(�xt − �̂x)T.

Suppose that the unit eigenvectors of the covariance ma-
trix (ordered to decreasing eigenvalue) are �e1, �e2, . . . , �en.
The leading lsig eigenvectors are used to form the columns
of the matrix E = (�e1|�e2| . . . |�elsig). We perform PCA on
the sample trees by projecting the pattern vectors onto the
leading eigenvectors of the covariance matrix. The projec-
tion of the pattern vector for the sample tree indexed t is
�yt =ET �xt . The distance between the vectors in this space is
DPCA(t, t ′) = (�yt − �yt ′)

T(�yt − �yt ′).

5. Experimental results

We evaluate the application of the new graph embedding
approach on the problem of shock-tree matching. The shock-
tree is a graph-based representation of the differential struc-
ture of the boundary of a 2D shape. It is obtained by locating
the shape skeleton, and examining the differential behavior
of the radius of the bitangent circle from the skeleton to the

object boundary, as the skeleton is traversed [28]. The so-
called shocks distinguish between the cases where the local
bitangent circle has maximum radius, minimum radius, con-
stant radius or a radius that is strictly increasing or decreas-
ing. We abstract the skeletons as trees in which the level in
the tree is determined by their time of formation [22,28].
The later the time of formation, and hence their proximity
to the center of the shape, the higher the shock in the hi-
erarchy. While this temporal notion of relevance can work
well with isolated shocks (maxima and minima of the radius
function), it fails on monotonically increasing or decreasing
shock groups. To give an example, a protrusion that ends on
a vertex will always have the earliest time of creation, re-
gardless of its relative relevance to the shape. To overcome
this drawback, we augment the structural information given
by the skeleton topology and the relative time of shock for-
mation, with a measure of feature importance. We opt to
use a shape-measure based on the rate of change of bound-
ary length with distance along the skeleton as outlined in
Ref. [29]. The nodes in our trees are the skeletal branches
which are assigned a weight which is the length of the bound-
aries associated with the relevant skeletal branch. The edges
indicate connectivity of the skeletal branches, while the level
of a node in the tree is determined by the time of formation
of the corresponding skeletal branch. At the top level of the
structure is a “dummy” root node which does not correspond
to any branch, but rather to the barycenter of the shape.

We compare the embedding obtained using the union ap-
proach with 2D multi-dimensional scaling of the pairwise
edit-distances. Multi-dimensional scaling is a well-known
statistical technique for visualizing data which exists in the
form of pairwise similarities rather than ordinal values [30].
Stated simply, the method involves embedding the objects
associated with the pairwise distances in a low-dimensional
space. This is done by performing principal components
analysis on a centered and sphered matrix of pairwise simi-
larities, and projecting the original objects into the resulting
eigenspace. The objects are visualized by displaying their
positions in the space spanned by the leading eigenvectors.
The method has been widely exploited for data analysis in
the psychology literature. A comprehensive review can be
found in the recent book by Cox and Cox [30]. Then we
compare the clusters obtained using the L1 norm defined on
the union with those obtained using pairwise edit-distances.
The clusters are extracted using the algorithm presented in
Ref. [14].

5.1. Example pattern spaces

Fig. 4 displays the first two principal components of
the sample-tree distribution for the embedding spaces
extracted from six shape classes and the corresponding
multi-dimensional scaling of the edit-distances of the same
shock-trees. In most cases the union approach appears to
create a tightly packed central cluster with a few shapes

1400 A. Torsello, E.R. Hancock / Pattern Recognition 40 (2007) 1393–1405

Union Edit-distance Union Edit-distance

Fig. 4. Comparison of shape embedding through edit-union and edit-distance. Single class case.

scattered further away than the rest. This separation is
linked to substantial variations in the structure of the shock-
trees. For example, in the shape-space formed by the class
of pliers the outlier is the only pair-of-pliers with the nose
closed. In the case of shape-space for the horse-class, the
outliers appear to be the cart-horses while the inliers are
the ponies. On the other hand, multi-dimensional scaling
of the edit-distances appears more compact, since it does
not separate outliers as strongly. The spatial distribution
obtained is not linked to any evident property of the shape.

By using the embedding to visualise multiple classes,
the difference in quality of the embedding is more evident.
Fig. 5 shows a clear example where the embedding obtained
through edit-union is better than that obtained through multi-
dimensional scaling of the pair-wise distances. In this case
the pairwise distance algorithm consistently underestimates
the distance between shapes belonging to different clusters.
This is a general problem of pairwise matching. The method
works very well when the shapes are close and the extracted
correspondence is reliable, but as the shapes move further
apart the advantage the correct correspondence has over al-
ternative ones diminishes, until, eventually, another match is
selected, which reports a lower distance. The result of this

is a consistent underestimation of the distance as the shapes
move farther apart in shape-space. Figs. 6 and 7 show ex-
amples where the distance in shape-space is not large enough
to allow us to observe the described behavior, yet the em-
bedding obtained through union fares well against the em-
bedding obtained through multi-dimensional scaling of the
pairwise edit-distances. In particular, Fig. 7 shows a better
ordering of the shapes, with brushes being so tightly packed
that they overlap. It is interesting to note how the union em-
bedding places the monkey wrench (at the top) somewhere
in between the pliers and the wrenches. The algorithm is able
to consistently match the head to the heads of the wrenches,
and the handles to the handles of the pliers. This fact shows
that, by forcing the matches to be consistent across trees,
we enable the embedding to better capture the structural in-
formation present in the trees, yielding better spatial distri-
bution than that obtained with multi-dimensional scaling.

We now perform a more quantitative evaluation of the
method. Fig. 8 plots the distances obtained through edit-
union of weighted shock-trees (x-axis) versus the corre-
sponding pairwise edit-distances (y-axis). The solid line in
the plot corresponds to the case when the two distances
take on the same value. Most of the points fall below the

A. Torsello, E.R. Hancock / Pattern Recognition 40 (2007) 1393–1405 1401

Fig. 5. Top: embedding through union. Bottom: multi-dimensional scaling
of pairwise distances.

Fig. 6. Top: embedding through union. Bottom: multi-dimensional scaling
of pairwise distances.

Fig. 7. Top: embedding through union. Bottom: multi-dimensional scaling
of pairwise distances.

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

L1 norm intheunion-space

ed
it-

di
st

an
ce

Fig. 8. Edit-union versus pairwise distances.

line. Hence, the plot demonstrates that the pairwise edit-
distance approach tends to underestimate the distances be-
tween shapes.

1402 A. Torsello, E.R. Hancock / Pattern Recognition 40 (2007) 1393–1405

(a) RKH on edit-distance. (b) PF on edit-distance. (c) Union of attributed trees.

Fig. 9. Clusters extracted from edit-distances versus those obtained from the L1 norm defined on the union: (a) RKH on edit-distance; (b) PF on
edit-distance; and (c) Union of attributed trees.

We now turn our attention to the problem of clustering
the shapes into classes using the computed distances. Here
we compare the L1 norm defined on the tree-union to two
distance measures. The first of these is the approximate edit-
distance described in Ref. [26], while the second is a tree
distance metric that can be computed in polynomial time
[31]. The distance metric between trees t1 and t2 is computed
using the function �(u, v) that gauges the similarity between
node u in t and node v in t ′. The similarity measure for the
two trees is W(t, t ′) = max�

∑
(u,v)∈��(u, v), where � is a

subtree isomorphism between t and t ′. Hence, the distance
metric is defined as:

Dmetric(t, t ′) = 1 − W(t, t ′)
max(|t |, |t ′|) .

Additionally, we explore the use of two graph-spectral al-
gorithms for clustering the different distance measures. The
first is the pairwise clustering method described in Ref. [14]
(RHK). This is a graph spectral method that assigns ob-
jects to clusters using the leading eigenvector of an affin-
ity matrix found by taking the negative exponential of the
distance between shapes. The second is the matrix fac-
torization algorithm developed by Perona and Freeman in
Ref. [32] (PF).

In Fig. 9 we compare the results of applying the clus-
tering methods to the weighted tree edit-distances and the
distances obtained through edit-union. Here the shapes col-
lected together after the bullet points correspond to distinct
clusters. Fig. 10 shows the results obtained by clustering the
metric described in Ref. [31].

In order to assess the quality of the groupings, we have
used two well-known cluster-validation measures [33]. The
first is the standard classification rate. To compute the mea-
sure, for each cluster we note the predominant shape class.

(a) RKH algorithm. (b) PF algorithm.

Fig. 10. Clusters extracted from Dmetric: (a) RKH algorithm; and (b) PF
algorithm.

Those graphs assigned to the cluster which do not belong
to the predominant shape class are deemed to be misclassi-
fied. The classification rate is fraction of graphs belonging
to the predominant cluster shape classes divided by the to-
tal number of graphs. This measure exhibits a well-known
bias towards large number of classes. To overcome this we
also used the Rand index. The Rand index is defined as
RI = A/(A + D). Here A is the number of “agreements”,
that is the number of pairs of graphs that belong to the
same class and that are assigned to the same cluster, and
D is the number of “disagreements”, that is, the number of
pairs of graphs that belong to different shape classes and

A. Torsello, E.R. Hancock / Pattern Recognition 40 (2007) 1393–1405 1403

Table 1
Validity measures of the extracted clusters

Classification rate (%) Rand index (%)

RKH on edit-distance 84 88
PF on edit-distance 76 85.23
Union 92 97.54
RHK on Dmetric 68 83.08
PF on Dmetric 84 86.46

that are assigned to different clusters. The index is hence
the fraction of graphs of a particular shape class that are
closer to an graph of the same class than to one of another
class.

Table 1 lists the classification rate and the Rand index
for the extracted clusters. When applied to a database of 25
shapes, edit-union clearly outperforms the pairwise distance
approach. Unfortunately the union approach does not scale,
and fails as the database becomes larger and the number of
shape classes present increases.

5.2. Synthetic data

To augment these real-world experiments, we have com-
puted the union using synthetic data. The aim of the exper-
iments is to characterize the ability of the approach to gen-
erate an embedding space for tree structures. To meet this
goal we have randomly generated some prototype trees and,
from each tree, we have generated five or 10 structurally
perturbed copies. The procedure for generating the random
trees is as follows. We commenced with an empty tree (i.e.
one with no nodes) and we iteratively added the required
number of nodes. At each iteration nodes were added as chil-
dren of one of the existing nodes. The parent was randomly
selected with uniform probability from among the existing
nodes. The weight of the newly added nodes was selected at
random from an exponential distribution with mean 1. This
procedure tends to generate trees in which the branch ratio
is highest closest to the root. This is quite realistic in real-
world situations, since shock-trees tend to have this prop-
erty. To perturb the trees we simply added nodes using the
same approach.

In our experiments the size of the prototype trees varied
from five to 20 nodes. As we can see from Fig. 11, the al-
gorithm was able to clearly separate the clusters of trees
generated by the same prototype. Fig. 11 shows three ex-
periments with synthetic data. The top and middle images
are produced by embedding five structurally perturbed trees
per prototype. Hence, trees 1 to 5 are perturbed copies of
the first prototype, 6 to 10 of the second. The bottom im-
age shows the result of the experiment with 10 structurally
perturbed trees per prototype. Hence, trees 1 to 10 belong
to one cluster and trees 11 to 20 to the other. In each image
the clusters are well separated.

Fig. 11. Synthetic clusters.

6. Conclusions

In this paper we investigated a technique to extend the
tree edit-distance framework to allow for the simultaneous
matching of multiple tree structures. With this approach we
can impose a consistency of node correspondences between
matches, avoiding the underestimation of the distance typical
of pairwise edit-distance approaches. Furthermore, through
this method we obtain a “natural” embedding space of tree
structures that can be used to analyze how tree representa-
tions vary in our problem domain.

In a set of experiments we apply this algorithm to match
shock graphs. The results of these experiments are very

1404 A. Torsello, E.R. Hancock / Pattern Recognition 40 (2007) 1393–1405

encouraging, as they show that the algorithm is able to group
similar shapes together in the generated embedding space.
Yet the approach fails when confronted with larger databases
containing several shape classes. This is due to the fact that
the union is capable of capturing the structural variation
present in a class, but has problems with multiple classes.
There is a clear direction in which this work can be ex-
tended. We can cast the matching problem as one of learn-
ing the structural representations that best describe a set of
trees and use the union is used to various single classes. This
extension has been recently presented in Ref. [34].

References

[1] I.T. Jolliffe, Principal Components Analysis, Springer, Berlin, 1986.
[2] S. Roweis, L. Saul, Non-linear dimensionality reduction by locally

linear embedding, Science 299 (2002) 2323–2326.
[3] J.B. Tenenbaum, V.D. Silva, J.C. Langford, A global geometric

framework for non-linear dimensionality reduction, Science 290
(2000) 586–591.

[4] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality
reduction and data representation, Neural Comput. 15 (6) (2003)
1373–1396.

[5] S. Rizzi, Genetic operators for hierarchical graph clustering, Pattern
Recognition Lett. 19 (1998) 1293–1300.

[6] J. Segen, Learning graph models of shape, in: J. Laird (Ed.),
Proceedings of the Fifth International Conference on Machine
Learning, 1988, pp. 29–25.

[7] A. Munger, H. Bunke, X. Jiang, Combinatorial search vs. genetic
algorithms: a case study based on the generalized median graph
problem, Pattern Recognition Lett. 20 (1999) 1271–1279.

[8] A.K.C. Wong, J. Constant, M.L. You, Random Graphs, Syntactic and
Structural Pattern Recognition, World Scientific, Singapore, 1990.

[9] A.D. Bagdanov, M. Worring, First order Gaussian graphs for
efficient structure classification, Pattern Recognition 36 (2003)
1311–1324.

[10] D. Heckerman, D. Geiger, D.M. Chickering, Learning Bayesian
networks: the combination of knowledge and statistical data, Mach.
Learn. 20 (1995) 197–243.

[11] M.A. Lozano, F. Escolano, ACM attributed graph clustering for
learning classes of images, in: Graph Based Representations in
Pattern Recognition, Lecture Notes in Computer Science, vol. 2726,
2003, pp. 247–258.

[12] H. Bunke, et al., Graph clustering using the weighted minimum
common supergraph, in: Graph Based Representations in Pattern
Recognition, Lecture Notes in Computer Science, vol. 2726, 2003,
pp. 235–246.

[13] B.J. Jain, F. Wysotzki, Central clustering of attributed graphs, Mach.
Learn. 56 (2004) 169–207.

[14] B. Luo, A. Torsello, A. RoblesKelly, R.C. Wilson, E.R. Hancock,
A probabilistic framework for graph clustering, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2001, pp. 912–919.

[15] X. Bai, E.R. Hancock, Heat kernels manifolds and graph embedding,
in: Structural Syntactic and Statistical Pattern Recognition, Lecture
Notes in Computer Science, vol. 3138, Springer, Berlin, 2004, pp.
198–206.

[16] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE
Trans. Pattern Anal. Mach. Intell. 22 (8) (2000) 888–905.

[17] R. Kannan, et al., On clusterings: good, bad and spectral, FOCS 41,
pp. 367–377.

[18] M. Pavan, M. Pelillo, Dominant sets and hierarchical clustering, in:
Proceedings of the Ninth IEEE International Conference on Computer
Vision, vol. I, 2003, pp. 362–369.

[19] B. Luo, R.C. Wilson, E.R. Hancock, Eigenspaces for graphs, Int. J.
Image Graph. 2 (2002) 247–268.

[20] B. Luo, R.C. Wilson, E.R. Hancock, Spectral embedding of graphs,
Pattern Recognition 36 (2003) 2213–2223.

[21] R.C. Wilson, B. Luo, E.R. Hancock, Pattern vectors from algebraic
graph theory, IEEE Trans. Pattern Anal. Mach. Intell. 27 (7) (2005)
1112–1124.

[22] A. Shokoufandeh, S. Dickinson, K. Siddiqi, S. Zucker, Indexing
using a spectral coding of topological structure, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
1999, pp. 491–497.

[23] K. Sengupta, K.L. Boyer, Organizing large structural modelbases,
IEEE Trans. Pattern Anal. Mach. Intell. 17 (4) (1995) 321–332.

[24] T.B. Sebastian, P.N. Klein, B.B. Kimia, Recognition of shapes by
editing their shock graphs, IEEE Trans. Pattern Anal. Mach. Intell.
26 (5) (2004) 550–571.

[25] K. Zhang, R. Statman, D. Shasha, On the editing distance between
unordered labeled trees, Inform. Process. Lett. 42 (3) (1992)
133–139.

[26] A. Torsello, E.R. Hancock, Efficiently computing weighted tree edit
distance using relaxation labeling, in: Energy Minimization Methods
in Computer Vision and Pattern Recognition, 2001, pp. 438–453.

[27] H. Bunke, A. Kandel, Mean and maximum common subgraph of
two graphs, Pattern Recognition Lett. 21 (2000) 163–168.

[28] K. Siddiqi, A. Shokoufandeh, S.J. Dickinson, S.W. Zucker, Shock
graphs and shape matching, Int. J. Comput. Vision 35 (1999)
13–32.

[29] A. Torsello, E.R. Hancock, A skeletal measure of 2D shape similarity,
Comput. Vision Image Understanding 95 (1) (2004) 1–29.

[30] T. Cox, M. Cox, Multidimensional Scaling, Chapman & Hall,
London, 1994.

[31] A. Torsello, D. Hidović-Rowe, M. Pelillo, Polynomial-time metrics
for attributed trees, IEEE Trans. Pattern Anal. Mach. Intell. 27 (7)
(2005) 1087–1099.

[32] P. Perona, W.T. Freeman, A factorization approach to grouping, in:
European Conference on Computer Vision (ECCV), Lecture Notes
in Computer Science, vol. 1406, 1998, pp. 655–670.

[33] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice-
Hall, Englewood Cliffs, NJ, 1988.

[34] A. Torsello, E.R. Hancock, Learning shape-classes using a mixture
of tree-unions, IEEE Trans. Pattern Anal. Mach. Intell. 28 (6) (2006)
954–967.

[35] K. Zhang, D. Shasha, Simple fast algorithms for the editing distance
between trees and related problems, SIAM J. Comput. 18 (1989)
1245–1262.

About the Author—ANDREA TORSELLO received the “Laurea” degree with honors in computer science from Ca’ Foscari University of Venice, Italy,
in 1997. In 2004 he received his PhD in computer science at the University of York, UK. Currently he is an Assistant Professor at “Ca’ Foscari”
University of Venice, Italy.
His research interests are in the area of computer vision and pattern recognition, in particular, the application of stochastic and structural approaches to
shape analysis. Recently, he co-edited a special issue of Pattern Recognition on “Similarity-based pattern recognition.”

About the Author—EDWIN HANCOCK studied physics as an undergraduate at the University of Durham and graduated with honours in 1977. He
remained at Durham to complete a PhD in the area of high-energy physics in 1981. Following this he worked for 10 years as a researcher in the fields
of high-energy nuclear physics and pattern recognition at the Rutherford-Appleton Laboratory (now the Central Research Laboratory of the Research

A. Torsello, E.R. Hancock / Pattern Recognition 40 (2007) 1393–1405 1405

Councils). During this period he also held adjunct teaching posts at the University of Surrey and the Open University. In 1991 he moved to the University
of York as a lecturer in the Department of Computer Science. He was promoted to Senior Lecturer in 1997 and to Reader in 1998. In 1998 he was
appointed to a Chair in Computer Vision.
Professor Hancock now leads a group of some 15 faculty, research staff and PhD students working in the areas of computer vision and pattern recognition.
His main research interests are in the use of optimization and probabilistic methods for high and intermediate level vision. He is also interested in the
methodology of structural and statistical pattern recognition. He is currently working on graph-matching, shape-from-X, image data-bases and statistical
learning theory. His work has found applications in areas such as radar terrain analysis, seismic section analysis, remote sensing and medical imaging.
Professor Hancock has published some 90 journal papers and 350 refereed conference publications. He was awarded the Pattern Recognition Society
medal in 1991 and an outstanding paper award in 1997 by the journal Pattern Recognition. In 1998 he became a fellow of the International Association
for Pattern Recognition.
Professor Hancock has been a member of the Editorial Boards of the journals IEEE Transactions on Pattern Analysis and Machine Intelligence, and,
Pattern Recognition. He has also been a guest editor for special editions of the journals Image and Vision Computing and Pattern Recognition. He has
been on the programme committees for numerous national and international meetings. In 1997 with Marcello Pelillo, he established a new series of
international meetings on energy minimization methods in computer vision and pattern recognition.

	Graph embedding using tree edit-union
	Introduction
	Background
	Contribution

	Tree edit-distance
	Obtainability
	Distance between weighted trees

	Tree-union
	Matching a tree to a union
	Joining multiple trees

	Pattern spaces from union trees
	Experimental results
	Example pattern spaces
	Synthetic data

	Conclusions
	References

