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Phase shift methods have proven to be very robust and accurate for photometric 3D reconstruction. One
problem of these approaches is the existence of ambiguities arising from the periodicity of the fringe pat-
terns. While several techniques for disambiguation exist, all of them require the projection of a significant
number of additional patterns. For instance, a global Gray coding sequence or supplemental sinusoidal pat-
terns of different periods are commonly used to complement the basic phase shift technique. In this paper
we propose four new coding strategies that encode the index of the projected column using several phases
and that mix the resulting phases into a controllable number of projected patterns from which the position
can be recovered with subpixel precision. One notable characteristic of the proposed approaches is that we
can allocate the additional number of patterns specifically to improve precision or provide higher robustness
to noise. The proposed approaches are analyzed and compared with the state of the art, showing their ability
to be tuned towards high precision in low noise conditions or robustness with respect to noise.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The main challenge for any triangulation-based surface recon-
struction technique is the assignment of reliable correspondences be-
tween features observed by two or more different points of view.
Given the central role of this problem, many and diverse strategies
have been proposed in literature over the past few decades [1].
When a sparse reconstruction is adequate, correspondences can be
searched and tracked among repeatable features readily present in
the scene, such as corners or edges. Unfortunately, in general it is
not possible to guarantee that the same features are extracted from
each image, or that the feature density is sufficient. Hence, comple-
mentary techniques, usually based on photometric correlation, are
used to obtain an approximate reconstruction of the scene depth
map. Other systems overcome these limitations as they do not rely
on natural features, but instead use projected patterns of light in
order to find correspondences that are usually as dense as the pixels
of each image [2]. Such techniques can be much more accurate than
feature-based approaches and have received particular attention
from scientific and engineering communities in the fields of optics,
metrology and computer science. Further, structured light ap-
proaches can be used almost unchanged in single camera systems,
by calibrating the camera and the projector.

The main idea behind 3D reconstruction based on projected light
is that of assigning unique codes to surface points by modulating
the intensity of a light projected onto the object. These codes are
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used to extract correspondences between points in different views,
which can then be triangulated to obtain depth estimates. To this
end, several patterns are projected onto the scene in such a way
that each point has a unique sequence of intensity values. These se-
quences are then decoded to obtain the point's identity. The main
issue in structured light approaches is the design of projection
schemes that allow for robust and precise decoding, possibly with
subpixel accuracy, using the smallest number of patterns possible
while still guaranteeing reliable measurements. Such an endeavor
has direct application in scenarios were fast or even real-time acqui-
sition is needed.

In this work we propose novel coding strategies that encode point
location with subpixel accuracy. To this end we split the encoding and
decoding phases into two steps: the first, called phase coding/
decoding, maps the projector coordinate into a vector of values each
with limited range, and the second, called pattern generation, encodes
the vectorial phase values onto physical quantities of the projected
patterns.

Phase coding strategies map the projector coordinate u into sever-
al wrapped phase values ϕi(u) ∈ [02π) quantized into λi angular
values. The coding strategy has to be invertible so that the projector
coordinate can be recovered uniquely from the phase vector
ϕ
→

uð Þ ¼ ϕ1 uð Þ;…;ϕn uð Þð Þ; further, in order to extract correspondences
with subpixel precision, the map must be continuous, i.e., it should be
able to encode and uniquely decode non-integral projector coordi-
nates. On the other hand, the pattern generation step encodes the
phase vector ϕ

→
uð Þ as observable physical quantities of the time series

fu(t) of the projected light intensity.
The contribution of this paper is twofold. First, we propose and ana-

lyze two novel pattern generationmethods (compound and subpattern)
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that allow to significantly reduce the number of projected patterns. Both
schemes encode the phase vector as phases in a time-varying sinusoidal
pattern: One simply encodes each coordinate in a separate subsampled
sine wave, while the other encodes the whole vector as phases of the
Fourier transform of the time-varying pattern. The second contribution
is the introduction of a novel encoding technique which adopts a
fine-to-coarse strategy allowing for smaller quantization at the fine
level to increase precision, and larger quantization at the coarse level to
reduce the total number of phases to be encoded. With the addition of
a coding strategy derived from [3], we analyze a total of four different
encoding schemes. Fig. 1 shows examples of the patterns generated
with the four schemes. The two rows show the pattern generation
methods, while the columns show the coding strategies, with number-
theoretic referring to the scheme derived from [3], and algebraic the
newly proposed scheme.

The number-theoretic scheme presented in [3] uses period
co-primality to map the phase vector onto a larger linear range. In
particular, it projects sinusoidal patterns whose wavelengths are mu-
tually co-prime, thereby allowing to deduce the overall position from
the detected remainders. For example, we can encode 990 projector
columns with three sinusoidal patterns of periods 9, 10, and 11 re-
spectively. This way, column 382 will be encoded as phase 382mod
9 = 4 on the first sinusoid, phase 382mod 10 = 2 on the second,
and phase 382mod 11=8 on the last sinusoidal wave.

The algebraic approach we are proposing, on the other hand, adopts
a hierarchical fine-to-coarse encoding which can selectively assign a
larger number of samples to the low order representation to improve
encoding precision. In this scheme we project different patterns each
encoding one digit of the overall position. Thus, following the previous
example, we can encode 1000 projector columns with three sinusoidal
patterns each of period 10, and column 382 will be encoded as phase
382mod 10 = 2 on the first sinusoid, phase 382/10mod 10 = 8.2 on
the second, and phase 382/100mod 10 = 3.82 on the last sinusoidal
wave. The decimal part of each digit in the phase vector is maintained
to ensure higher precision in the reconstruction.

By changing the range of the phase vectors and the parameters of
the pattern generation scheme, we can devise schemes with controlla-
ble number of patterns, either reducing them for fast reconstruction, or
increasing them to either increase precision in low noise conditions or
improve robustness to noise when the signal to noise ratio is low.

In conjunction the two contributions result in a coding strategy
that can be tuned to be either more precise or more robust than the
state-of-the-art for any fixed (small) number of projected patterns.

The rest of the paper is organized as follows: the next section pre-
sents a review of the literature of range measurement by projected
light; Section 3 introduces and analyzes the pattern generation strat-
egies requiring a controllable number of projected patterns; follow-
ing, Section 4 introduces a novel encoding scheme and Section 5
presents some experimental evaluation of the proposed coding
schemes. Finally, Section 6 draws some conclusions.

2. Related work

Among the most significant light-based approaches to 3D sensing,
interferometry has certainly played a major role. Interferometric
Number-theoretic

Compound

Subpattern

Fig. 1. Example patterns produced
techniques for surface profiling are based on the superposition of
multiple coherent electromagnetic wave-fronts resulting in an inter-
ferogram (or fringe pattern). The intensity distribution of the pattern
varies as a function of the diffuse surface on which it is projected, and
therefore can be utilized to undertake surface measurements. The
relative height of the surface with respect to a reference plane can
be retrieved from the analysis of an image of the modulated fringe
by means of processing algorithms, among which Fourier transform
profilometry (FTP) [4] has been by far the most widely studied.

Other widely adopted reconstruction techniques include structured
light and phase-shifting methods. The simplest of these techniques is
binary coding [5]; the method assigns to every pixel a codeword re-
trieved from the digitized sequence over time of projected black and
white stripes, requiring log2(n) pattern images to generate n code
strings. Robustness of binary codes is improved by using Gray codes,
where adjacent codes differ only in one bit. Both the techniques gener-
ate unique codes along each scanline, but at the same time are limited
by their low resolution due to the inherently discrete nature of the cod-
ing. Also, the large number of projected patterns does not lead to an in-
creased accuracy.

Other structured light approaches make use of color-coded and
grid-like patterns [5,6].

Phase-shifting methods are based on the projection of periodic
patterns with a given spatial period. Each projected pattern is
obtained by spatially shifting the preceding one of a fraction of the
period, and then captured by one or more cameras. The images are
elaborated and the phase information at each pixel is determined by
means of M-step relationships [7]. Since the phase is distributed con-
tinuously within its period, phase-shifting techniques provide
subpixel accuracy and achieve high measurement spatial resolution.
Furthermore, the intensity change at each pixel for subsequent pat-
terns is relative to the underlying color and reflectance, which
makes phase shift locally insensitive to texture variance to a certain
degree. Again, in its basic formulation, phase-shifted structured light
renders only relative phase values and thus it is ambiguous. When
both an extendedmeasuring range and a high resolution are required,
a combined approach proves to be very powerful: the integration of
Gray code and phase shift [8,9] is an effective technique bringing to-
gether the advantages of both, providing disambiguation and high
resolution, but the number of patterns to be projected increases con-
siderably, and each strategy introduces a source of error [3].

A prevailing drawback within the phase shift class is related to an
arbitrary shifting error [10] caused by the analog nature of the
projecting device, which can influence the final evaluation of the
phase values if proper compensation is not carried out. Nevertheless,
the introduction of highly flexible digital video projection (DVP) tech-
nologies (namely LCD and DLP), and also by virtue of their availability
and relatively low cost, lead to the complete avoidance of this kind of
errors. However, this also resulted in geometrically less precise sig-
nals, and in addition for better visual effect usually both the light
source and the imaging device generalize as nonlinear devices in
such a way that the captured patterns deviate from the ideal sinusoid.
This makes it problematic for the phase extraction step to yield accu-
rate values, which ultimately leads to erroneous depth measurements
[11,12]. In [13] Pan et al. perform a theoretical analysis of the phase
Algebraic

by the four proposed schemes.
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error induced by the non-sinusoidal waveforms and devise an itera-
tive compensation algorithm taking into account the non-linearity
due to the whole system, rather than the DVP effect alone. In general
though, accuracy depends on the projector characteristics as a whole,
as discussed in [14]. It has been demonstrated [7] that these errors
can be somewhat alleviated by using a larger number of fringe pat-
terns, however for dynamic applications requiring fast reconstruction
(such as FTP and 3-step or 4-step profilometry [15,16]) the
non-sinusoidal phase error is considered as the dominant error
source. As a matter of fact, non-linearity of the video projector is
mainly due to gamma correction for image enhancement which inev-
itably decreases the accuracy and resolution of the measurement. This
problem has also been extensively studied [17,18]. A common and
simple schema is to gamma encode the patterns before projection;
other approaches include iterative gamma-correction techniques
based on statistical analysis of the captured fringes [19].

Recently, attention has shifted back to number-theoretical
methods, whereas simpler strategies have been proposed. Lilienblum
and Michaelis presented a simple and robust multi-period phase shift
algorithm, which allows for very accurate and stable reconstructions
[3]. In [20] a modification is given to the original Gushov–Solodkin al-
gorithm; in their work, the relative phase values are checked and
corrected before the unwrapping procedure takes place. The method
is claimed to be faster and not influenced by inaccuracies in relative
phase computation, however more importantly it is suited toward a
simple implementation with off-the-shelf components and its param-
eters need fine-tuning in some measure.

The big advantages of the multi-period method presented in [3]
are its relative simplicity and high efficiency. The phase-coded images
can be directly employed in general stereo reconstruction systems,
ensuring high quality and density of the code. Specifically, the lack
of surface points in the final model is mainly due to occlusions and
camera disparity, and measurement errors are very low thanks to
the averaging and validation procedures implicit to the approach,
that exclude a large percentage of errors and outliers before the actual
surface reconstruction takes place. The main drawback lies in the fact
that, typically, three or more phase-shift sequences are needed to en-
tirely cover the projector range (typical values are 800 or 1024 pro-
jector pixels). This requires the projection of as many as three times
more patterns than required with classical phase-shifting. Further,
at least in the original formulation of Lilienblum and Michaelis, the
phase increment in time and in space are correlated, requiring a larg-
er number of patterns as the resolution of the projector increases.

In order to address the latter issue, and reduce the number of pat-
tern required, in [21] a new compound phase-coding approach was
presented. The main idea behind the compound phase coding strate-
gy was to project several fringe patterns in a single spatio-temporal
pattern, by encoding the phases of the fringe vector as phases of a
Fourier term at different frequencies. This effectively decouples the
spatial phase increments with the temporal increments used to create
the patterns. However, the reduction in the dynamic range available
to each frequency slot increases the noise of the estimated phase,
and the Fourier composition forces the number of patterns projected
to be an integral multiple of 2 ∗ (k + 1) where k is the number of
phase fringes used for coding.

3. Phase coding and pattern generation

When adopting multiple phase coding strategies, the process of
going from projector coordinates to the projected patterns can be di-
vided into two main steps. The first step is that of phase coding and
the dual step of phase decoding. Phase coding strategies map the pro-
jector coordinate u into several wrapped phase values ϕi(u) ∈ [02π)
quantized into λi angular values. The coding strategy has to be invert-
ible so that the projector coordinate can be recovered uniquely from
the phase vector ϕ

→
uð Þ ¼ ϕ1 uð Þ;…;ϕn uð Þð Þ; further, in order to extract
correspondences with subpixel precision, the map must be continu-
ous, i.e., it should be able to encode and uniquely decode non-
integral projector coordinates. The second step is that of pattern
generation and its dual phase estimation. The pattern generation step
encodes the phase vector ϕ

→
uð Þ as observable physical quantities of

the time series fu(t).
For example, the phase coding of the approach in [3] maps the

projector coordinates onto a vector of remainder modulo mutually
co-prime numbers, while the pattern generation simply maps each
element on the vector onto the phase of a fixed-frequency and
fixed-amplitude sinusoidal signal. The separation of the encoding
process into phase coding and pattern generation is rather general
and can be applied to approaches that are not limited to multiple
phase shift. Gray codes in [8] fit perfectly the schema as they can be
interpreted as dyadic angular quantizations (i.e., λi = 2), where
phases are encoded using standard Gray codes and patterns are gen-
erated using the amplitude of Haar basis functions as the observable
quantity rather than the phase of Fourier basis.

In this paper we propose two novel pattern generation/phase esti-
mation methods that allow to significantly reduce the number of
projected patterns. The first approach is a direct generalization of
multi-period [3], which decouples spatial phase quantization with
the temporal periods of the projected patterns, while the second ap-
proach encodes the m coordinates of the phase vector as the phases
of the first m harmonics of the Fourier-transformed signal. In both
cases, the decoupling of spatial and temporal periods allows us to
choose where to invest in a larger number of projected patterns or
signaling band to reduce the phase estimation error. Second, we in-
troduce a novel algebraic encoding/decoding technique which adopts
a fine-to-coarse strategy allowing for smaller quantization at the fine
level to increase precision, and larger quantization at the coarse level
to reduce the total number of phases to be encoded (and thus pat-
terns to be projected). Compounded with the ability of the proposed
pattern generation strategies of allocating extra patterns to specific
phases, this results in a coding strategy that is both more precise
and more robust than the state-of-the-art for any fixed (small) num-
ber of projected patterns. The combination of the two presented pat-
tern generation strategies with the proposed algebraic encoding and
the number-theoretical encoding of Lilienblum and Michaelis gives
us four structured light coding strategies which will be analyzed for
performance and robustness.

3.1. Phase coding

In [3] the authors suggest to map projector coordinate u to the
phase vector

ϕ
→

uð Þ ¼ ϕ1 uð Þ;…;ϕn uð Þð Þ with ϕi uð Þ ¼ 2π
λi

umodλið Þ; ð1Þ

where umodλi is the remainder of the division of u by λi. In addition,
the fringes of a pattern are assigned with sequential natural numbers
ηi uð Þ∈N, which represent a simple counting of the fringes from left to
right. A projector coordinate can then be directly obtained, for all i =
1,2,…,n, from a fringe number and a phase value:

u ¼ ηi uð Þ þ ϕi uð Þ� �
λi: ð2Þ

Since the only available values during decoding are λ and ϕ, the
system of equations becomes ambiguous as the same value of u can
be obtained for different values of ηi. This happens when two differ-
ent projector coordinates ũ≠ ˜̃u yield the same phase values for all i.
Under such conditions, the following derivation holds [3]:

ũ− ˜̃u ¼ ηi ũð Þ−ηi ˜̃u
� �� �

λi; ð3Þ



1 Note that Eqs. (14), (15), and (16) as well as Figs. 2 and 3 are taken from [21].
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and then, for some positive integers x1,x2,…,xn:

Δuj j ¼ x1λ1 ¼ x2λ2 ¼ … ¼ xnλn: ð4Þ

Therefore, a general condition is identified for generating unam-
biguous pattern sequences, by defining a maximum projector coordi-
nate umax up to which ambiguity can be excluded. Such a coordinate is
the least common multiple of relatively prime periods λi, which for
practical advantage shall entirely cover the projector range.

An efficient method is then given to calculate the fringe numbers
from the ambiguous phase values at each pixel, taking advantage of
a simple relationship between them. Given any pair of pattern se-
quences, for each image pixel it holds:

λiϕi uð Þ−λjϕj uð Þ ¼ λjηj uð Þ−λiηi uð Þ: ð5Þ

This makes it possible to construct a theoretical phase difference
vector beforehand, and then use it to retrieve the fringe numbers
when real phase measurements become available. In addition to pro-
viding an efficientway to obtain the fringe numbers, thismethod allows
to assign each point a reliability value related to the deviation between
measured and expected values. The use of theoretical phase difference
vectors makes for a powerful test, which allows the identification of
erroneous orweakmeasurements (such asmixedphase values) caused,
for instance, by sharp edges, involuntary object movements and light
reflections. Once the unknown fringe numbers are calculated, projector
coordinates can be easily retrieved for each pattern sequence with
Eq. (2). Further, the independent measurements can be averaged to
obtain the unwrapped phase at every pixel in an efficient way, leading
to an increase in measurement accuracy.

3.2. Pattern generation

Phase-shift based strategies use the phase of sinusoidal waves as
quantities that can be recovered through the imaging process, but
other approaches are possible; for example Gray codes use the ampli-
tude of the signal as information carrier.

According to multi-period phase shift, the m coordinates of the

phase vector ϕ
→

uð Þ are projected as m separate subseries fu
i (t), each

of length λi, where each time series is a sinusoid of period λi:

f iu jð Þ ¼ cos 2πj=λi þ ϕi uð Þð Þ: ð6Þ

The final pattern fu is then the juxtaposition of the patterns fui , scaled
and shifted to the projector intensity range (usually [0;255]). Note that
the shift only affects the level of theDC component and the amplitude of
the higher frequency carriers, leaving the phase values unchanged.

3.3. Time-decoupled subpatterns

In the original formulation presented in [3] the periods λi repre-
sent both the phase increments as wemove spatially through the pro-
jector coordinates and the time increments as we move along the
pattern. This enforces a very strong requirement on the number of
projected fringes which have to be ∑ i λi, where the λi must be
co-prime and large enough that their product covers the whole pro-
jector range. Note, however, that the space and time increments are
not really related and one can sample a full period of the sinusoidal
pattern using any number of time-steps greater than 2. In general,
we can encode the phase value ϕi(u) with ki patterns as

f iu jð Þ ¼ cos 2π
j
ki
þ ϕi uð Þ

� �
with i ¼ 0;…; ki−1: ð7Þ
The sine and cosine of phase can then be simply estimated from
the observed temporal series f

i
u through Fourier analysis:

ρ cos ϕ̂ i uð Þ
� �

¼ f iu
��� cosD E

¼ 1
ki

Xki−1

j¼0

f iu jð Þ cos −2π
j
ki

� �
ð8Þ

ρ sin ϕ̂ i uð Þ
� �

¼ f iu
��� sinD E

¼ 1
ki

Xki−1

j¼0

f iu jð Þ sin −2π
j
ki

� �
; ð9Þ

from which we get the estimate

ϕ̂ i uð Þ ¼ arg ρ cos ϕ̂ i uð Þ
� �

;ρ sin ϕ̂ i uð Þ
� �� �

; ð10Þ

where arg(x,y) is the argument of complex number x + iy and is in
the range [02π).

To study the angular accuracy in the phase estimation, assume
that the observed temporal series was subjected to a constant shift
and rescaling and independent observation errors �0,…,�k − 1 of zero

mean and constant standard deviation σ, i.e., f
i
u jð Þ ¼ cþ af iu jð Þ þ �j.

From this we have

E ρ½ � ¼ a
2

ð11Þ

Var ρϕ̂ i uð Þ
� �

≈ Var ρcos ϕ̂ i uð Þ
� �� �

¼ Var ρ sin ϕ̂ i uð Þ
� �� �

¼

¼ σ2

k2i

Xki−1

j¼0

cos2 −2π
j
ki

� �
¼ σ2

2ki

ð12Þ

Var ϕ̂ i uð Þ
� �

≈
Var ρϕ̂ i uð Þ
� �
Var ρð Þ ¼ 2σ2

kia
2 : ð13Þ

Thus, the angular error σϕi
¼ σ

a

ffiffiffi
2
ki

r
is inversely proportional to

the signal-to-noise ratio a/σ and to the square root of the number
of samples ki. In this respect, using a number of samples propor-
tional to the period cannot even be justified by the requirement
that the phase error be the same for all subpatterns, as that
would happen for a number of samples proportional to the square
of the periods.

3.4. Compound pattern generation

The compound phase coding approach was introduced in [21].1 It
encodes the m coordinates of the phase vector as the phases of the
first m frequencies of the Fourier transform of the signal. Given a

phase code ϕ
→
∈ 0;1½ Þk, we create a (k + 1)-dimensional complex

vector x
→∈Ckþ1, where

xj ¼
0;
eqje

−2πiϕj ;
if j ¼ 0;
if 1≤ j≤ k

:



ð14Þ

Here, i ¼
ffiffiffiffiffiffiffiffi
−1

p
and eq

→ ¼ eq1;…; eqkð Þ with ∑ j = 1
k eqj = 1 is an

equalization vector that indicates the relative strength of each
multiplexed phase signal. Note that given xj we can compute the
phase as ϕj ¼ arg R xj

� �
;I xj
� �� �

, where R zð Þ, I zð Þ are the real and
imaginary parts of the complex number z∈C, respectively.

Each complex number xj represents the amplitude and phase of a

sinusoidal component with frequency j
kþ 1

cycles per sample. Hence



Fig. 2. The composition of k fringe patterns, plus one unknown shift signal will produce a total of 2(k + 1) image patterns that will be projected onto the surface to be reconstructed.
The shift pattern (projector scaling) accounts for the unknown value of the albedo of the surface.
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we can reconstruct the intensity sequence of that coordinate by com-

puting the Inverse Discrete Fourier Transform of x
→
, obtaining the tem-

poral pattern

f nð Þ ¼ 1
kþ 1

Xk
j¼0

xje
2πi j

kþ1n; n ¼ 0;…; k: ð15Þ

We can then project separately the real and imaginary part of this
vector as two time sequences obtaining a single set of 2(k + 1) pat-

terns to be projected to uniquely encode the phase vector ϕ
→

(see
Fig. 2).

The acquisition process introduces an additional linear deforma-
tion on the time series fu, which depends on the physical properties
of the object being scanned and which does not affect the phases.

Let f̂ u tð Þ be the acquired gray-scale values and let y
→∈Ckþ1 be its rep-

resentation into a complex vector. The phase code ϕ
→

is finally recov-

ered from y
→

by computing the Discrete Fourier Transform, namely

xj ¼
Xkþ1

n¼0

yne
−2πi n

kþ1j; ð16Þ

and by extracting the argument from the resulting vector x
→

∈Ckþ1

(see Fig. 3).
This process allows to recover the phase code for each projector

coordinate by taking only 2(k + 1) measurements, where k is the
number of signal periods. Nevertheless, one can also force a larger
number of samples in order to increase accuracy, by appending null

components to x
→
. More precisely, with M null components we need

2(M + k + 1) measurements in order to recall the phase code ϕ
→
.

Fig. 3. A total of 2 k + 2 images of illuminated objects are captured and single phase values
get an unambiguous coding. Note that the intensity profile of each projected pattern is not
It should be noted that a drawback of this approach is that
encoding multiple signals in a single pattern reduces the effective
projector intensity range available to encode each phase, increasing
the effects of the discretization error and observation noise. Applying
the same error analysis as the one performed for the time-decoupled
subpatterns generation strategy, we see that the angular error in the
estimation of phase ϕi is

σϕi
¼ σ

a eqi

ffiffiffi
2
k

r
; ð17Þ

where a is the total signal, eqi is the equalization level assigned to phase
ϕi and k is the total number of patterns projected. Hence, an m-wise
increase in patterns assigned to each phase cannot balance the
m-wise reduction in dynamic range available to each pattern. On the
other hand, this coding strategy can encode m phases with as few as
2 m + 1 patterns, versus the minimum of 3 m of the subpattern
strategy.

4. Algebraic coding

In the phase encoding strategy we adopt a fine-to-coarse approach
where the first phases have short spatial periods, while subsequent
phases have larger periods; the last one has a spatial period larger
than the maximum projector coordinate. Let λ1,…,λm be phase quanti-
zations with the only requirement that ∏ i = 1

m λi ≥ M, with M ≤ umax

the maximum projector coordinate. We encode the projector coordi-

nate u into the phase vector ϕ
→

uð Þ ¼ ϕ1 uð Þ;…;ϕm uð Þð Þ where

ϕi uð Þ ¼ 2π frac
u

∏i
j¼1λi

 !
ð18Þ
are calculated for each composed fringe signal. Those values are subsequently used to
sinusoidal.
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Table 1
Actual sequences of patterns projected accordingly to the tested compound and
subpattern coding strategies.

Compound

NT 7,10,13

NT 9,11,13

Alg 5,13,13

Alg 8,10,10

Subpattern

NT 9 samples

NT 27
samples

Alg 3,3,3
samples

Alg 15,6,6
samples

Alg 21,3,3
samples
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where frac(x) = x − ⌊x⌋ is the fractional part of x ≥ 0. The name alge-
braic coding derives from the fact that the encoding is constructed in a
similar manner to the way integers are represented using the standard
positional notation. Assume that phaseϕi is divided into λi angular bins,
and assume that the projector coordinate u is represented in positional
notation as the sequence of digits d1,…,dm, where position i uses base λi,
i.e., di is in the range 0,…,λi − 1. Then the digit di indicates the angular
bin in which ϕi falls, and the integral coordinate u can be recovered by
u = ∑ i = 1

m di ∏ j = 1
i λi. Thus, using this algebraic representation, we

can reconstruct the integral coordinate by looking at the angular bucket
in which the phase estimation falls. In practice, the projector coordinate
is estimated with subpixel precision, but the fractional part of the loca-
tion is extracted only from the first phase, which is localized with the
highest precision.

In particular, the decoding phase is as follows: first we get the

low-order digit with subpixel precision d1 ¼ ϕ̂1
λi

2π
and set the current

estimate at h1 = d1. Then the estimate is refined by adding the other
phases according to the following recurrence:

diþ1 ¼ round ϕ̂ iþ1
λiþ1

2π
− hi

∏i
j¼1λi

 !
ð19Þ

hiþ1 ¼ diþ1∏
i

j¼1
λi þ hi: ð20Þ

The final estimate hm is the estimated projector coordinate.
This coding strategy allows us to completely decouple the quanti-

zation levels λi, which can be any value as long as their product is
larger than the maximum coordinate. Further, since the information
about subpixel localization is extracted only from the low-order bit,
we can invest in it both by reducing the number of quantization
bins, and by increasing the number of samples or the equalization
level assigned to the first phase. This separates it from other hierar-
chical methods such as Gray coding since this equalization can reduce
the effect of noise on the final subpixel precision. In addition, the con-
tinuity of high-order bins eliminates the noise due to the spatial
quantization effect. Fig. 1 shows an example set of patterns obtained
using the proposed pattern generation strategies in conjunction with
the number-theoretic and algebraic coding schemes.
4.1. Phase correction

Phase shift methods achieve subpixel accuracy assuming that by
integrating the contribution of adjacent projector pixels one obtains

Unlabelled image
Unlabelled image
Unlabelled image
Unlabelled image
Unlabelled image
Unlabelled image
Unlabelled image
Unlabelled image
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a phase that is a linear combination of the phases projected at the two
projector locations. Specifically, the assumption is that if a camera
pixel integrates projector pixel u for a proportion α and projector
pixel u + 1 for a proportion 1 − α, then the observed phase is

ϕ̂≈αϕ uð Þ þ 1−αð Þϕ uþ 1ð Þ. However, the reconstruction obtained
from the superposition of the signals interpolates linearly the
phase/amplitude vectors, which does not result in a linear interpola-
tion of phase angles (see Fig. 4.a). This results in an estimation error
of the subpixel part of the code that is more severe as the phase quan-
tization is coarser. This source of error is usually not a problem with
the number-theoretical multi-phase shift method as, in practice, for
common projectors the phases are quantized in 9 or more levels,
and thus errors incurred with the linear approximation are limited.
In our case, however, we aim at reducing the low-order quantization
as much as possible in order to increase subpixel precision of the
algebraic coding, resulting in severe linearization errors. We avoid this
by correcting the estimated phase taking into account the non-
linearity of the angular interpolation. Let

ϕint ¼ ⌊
ϕ
2π

λ⌋
2π
λ

ð21Þ

ϕf ¼ frac
ϕ
2π

λ
� �

2π
λ

ð22Þ

be the integral and fractional part of the quantization of phase ϕ into λ
angular bins, and let a be the signal amplitude at this location. It isworth
reminding that one of themain assumptions is that the projected signal
amplitude is constant, while the received signal amplitude depends on
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Fig. 5. Precision and robustness to noise of the number-theoretical encoding strategy in co
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represents same coding scheme.
the surface orientation and albedo, but it is constant at any given loca-
tion. The reconstructed phase amplitude vector is

1−αð Þaeiϕint þ αaei ϕintþ2π
λð Þ ¼ aeiϕint 1−αð Þ þ αei

2π
λ

� �
¼ aeiϕintbeiϕf ; ð23Þ

where b is an amplitude correction termdue to the amplitude reduction
caused by the linear interpolation. Note that this reduction in the ampli-
tude of the coding frequencies means that at low quantization level we
are trading signal strength for angular discrimination, and this could be
counterproductive on low signal conditions.

From Eq. (23) we obtain beiϕf ¼ 1−αð Þ þ αei2πλ , normalizing the
phase/amplitude vector and looking at its real part, we get the follow-
ing relation for the observed fractional part of the phase:

cos ϕf

� �
¼

1−αð Þ þ α cos 2π
λ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−αð Þ þ α cos 2π

λ

� �� �2 þ α2 sin2 2π
λ

� �r : ð24Þ

Solving for α and applying the recovered interpolation proportion
to the quantization angles, we obtain the corrected phase:

ϕcorrected ¼ ϕint þ α
2π
λ

¼ ϕint þ
sin ϕf

� �
sin ϕf

� �
− sin ϕf−

2π
λ

� �2π
λ

: ð25Þ

Fig. 4b plots the effect, for small angular quantizations, of applying
the phase correction to the fractional part of the phase.
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Fig. 6. Precision and robustness to noise of the algebraic encoding strategy in conjunction with the subpattern generation strategy. Left: code RMS as a function of the standard
deviation of the noise. Right: percentage of outliers (codes with error greater than 1 projector pixel) as a function of the standard deviation of the noise. Same color represents
same coding scheme.
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Fig. 7. Precision and robustness to noise of the encoding strategies under study in conjunction with the compound pattern generation strategy. Left: code RMS as a function of
the standard deviation of the noise. Right: percentage of outliers (codes with error greater than 1 projector pixel) as a function of the standard deviation of the noise. Same
color represents same coding scheme.
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5. Experimental results

In order to validate the proposed techniques we performed both
synthetic and real world experiments. In the first set we assessed
the effect of noise, using different coding strategies and parameters,
against a ground-truth value for the reconstructed projector coordi-
nates. In the second set we compared the codes obtained with the
proposed approach on a test rig for structured light techniques
that has been internally developed in our lab. Here we did not
have ground-truth, so we compared our measurements with those
given by the Multi-Period Phase Shift proposed in [3], where the
time dimension was significantly up-sampled to reduce the effects
of noise. In particular, a total of 90 patterns were projected, as com-
pared to the minimum possible with this strategy of 9 patterns. The
choice of projecting 90 patterns was driven by the assumption that
by increasing the number of patterns by an order of magnitude,
the errors in the reconstruction of the (subpixel) phase values and
thus of the final column code will be similarly reduced to a level
much smaller than the decoding error incurred with the schemes
under analysis.

5.1. Synthetic experiments

To assess the robustness of the coding strategies with respect to
noise, we performed a set of synthetic experiments, where an increas-
ing amount of random additive noise was added to the patterns before
decoding, and then the error between the exact and the estimated coor-
dinate was computed. The patterns for non-integral location u were
generated by linearly mixing the patterns obtained at locations ⌊u⌋
and ⌈u⌉. For each approachwe applied a selection of quantization values
corresponding to various levels of the quality/speed tradeoff. For the
number-theoretical (NT) approaches we used periods 7,10,11 and
9,10,13 which are common values satisfying the constraint of relative
primality, that offer similar quantization errors for all phases, and
provide a sufficient number of distinct codes for a normal projector
(770 codes the first, 1287 the second). For the algebraic coding we
Table 2
Coding performance of the compound pattern generation strategy on objects with different
units.

Compound

Strategy Points Error

NT 7,10,13 55,571 0.302 ±
NT 9,11,13 55,585 0.519 ±
Alg 5,13,13 55,617 0.070 ±
Alg 8,10,10 55,652 0.036 ±
NT 7,10,13 70984 4.327 ±
NT 9,11,13 71,112 7.842 ±
Alg 5,13,13 70,993 0.207 ±
Alg 8,10,10 71,465 0.079 ±
NT 7,10,13 17,495 4.753 ±
NT 9,11,13 17,504 5.546 ±
Alg 5,13,13 17,553 0.217 ±
Alg 8,10,10 17,667 0.066 ±
NT 7,10,13 11,705 0.402 ±
NT 9,11,13 11,721 0.873 ±
Alg 5,13,13 11,814 0.054 ±
Alg 8,10,10 11,792 0.046 ±
NT 7,10,13 8072 54.511 ±
NT 9,11,13 9107 71.647 ±
Alg 5,13,13 8363 13.417 ±
Alg 8,10,10 12,046 0.419 ±
NT 7,10,13 41,652 0.922 ±
NT 9,11,13 41,674 0.984 ±
Alg 5,13,13 41,799 0.079 ±
Alg 8,10,10 41,806 0.061 ±
used periods 8,10,10 and 5,13,13. The first provides 800 codes with
almost equal quantization error for low and high bits, while the second
provides 845 codes with a much coarser quantization for the lowest
bits, which should result to higher subpixel accuracy. For the approaches
using the subpattern generation strategy,we used an increasing number
of time samples evenly distributed among the phases, namely 9, 15, 21,
and 27. Further, for the algebraic coding we tested the advantage of
unevenly distributing the samples assigning more to the low-order
phase. To this end we tested the sample distributions (3,3,3), (7,4,4),
(11,5,5), and (15,6,6), ranging from the lowest possible number of
patterns, to a very high number of patterns combined with a large
up-sampling of the low-order phase. Clearly there is no guarantee for
the optimality of these values but they do provide a set of reasonable
values spanning the range of the quality/speed tradeoff.

Table 1 shows the projected patterns corresponding to this selec-
tion of parameters.

For each test we drew 500 locations in the range [0;100] and com-
puted the root mean square (RMS) error between the location and its
estimation after the encoding/decoding process.

Figs. 5 and 6 plot the results using the number-theoretical and the
algebraic encoding respectively. The plots on the left show the RMS
as a function of the standard deviation of the noise assuming a unit
signal amplitude. The RMS was computed among locations that
decoded within one projector pixel. Larger errors are caused by a
phase estimation outside of the correct bin and should be considered
as outliers. The plots on the right show the percentage of outliers and
assess the robustness of the coding scheme. From the plots we can
see that in all cases a larger number of samples imply higher precision
and robustness. Further, we see that with the number-theoretical
encoding the RMS grows at a faster rate than using the algebraic
coding, while still exhibiting similar robustness. This suggests that
the increase in angular discrimination provided by the low quantiza-
tion of the low-order phase of the algebraic coding results in higher
subpixel precision even in the presence of noise, without resulting
in a higher number of outliers. As for the effect of varying the quanti-
zation level or redistributing the samples in algebraic coding, as
albedo. The values are coding errors and thus are expressed in (dimensionless) coding

Max Displacement Max

10.409 559.9 0.042 ± 0.027 0.662
17.734 935.8 0.042 ± 0.027 0.642
0.985 65.1 0.039 ± 0.025 0.785
0.065 8.156 0.038 ± 0.025 0.723
42.956 650.5 0.061 ± 0.039 3.981
73.689 1143.7 0.063 ± 0.037 1.256
2.970 65.2 0.055 ± 0.032 0.504
0.061 0.464 0.081 ± 0.045 0.534
47.132 650.6 0.054 ± 0.038 0.436
59.863 935.6 0.056 ± 0.040 0.496
3.252 65.1 0.043 ± 0.029 0.327
0.053 0.559 0.069 ± 0.046 0.556
11.209 350.4 0.038 ± 0.027 0.561
20.246 792.2 0.037 ± 0.028 0.752
0.074 4.890 0.041 ± 0.029 0.477
0.755 80.1 0.033 ± 0.025 0.439
152.075 819.5 0.126 ± 0.192 6.424
217.477 1143.8 0.130 ± 0.190 4.166
91.544 785.1 0.094 ± 0.162 4.452
10.076 720.1 0.084 ± 0.095 3.774
20.998 559.9 0.035 ± 0.024 0.261
21.214 494.8 0.035 ± 0.024 0.416
0.212 5.206 0.051 ± 0.033 0.499
0.048 0.529 0.050 ± 0.033 0.516

Unlabelled image
Unlabelled image
Unlabelled image


Table 3
Coding performance of the subpattern generation strategy on objects with different albedo. The values are coding errors and thus are expressed in (dimensionless) coding units.

Subpattern

Strategy Points Error Max Displacement Max

NT 9 samples 56,030 0.035 ± 0.027 0.351 0.033 ± 0.023 0.820
NT 27 samples 56,015 0.012 ± 0.010 0.189 0.016 ± 0.012 0.443
Alg 3,3,3 samples 56,317 0.040 ± 0.029 0.318 0.041 ± 0.025 0.544
Alg 15,6,6 samples 56,278 0.015 ± 0.011 0.132 0.017 ± 0.011 0.293
Alg 21,3,3 samples 56,313 0.013 ± 0.010 0.105 0.018 ± 0.011 0.316
NT 9 samples 72,515 0.128 ± 6.563 792.2 0.041 ± 0.024 0.354
NT 27 samples 72,504 0.019 ± 0.014 0.140 0.022 ± 0.013 0.193
Alg 3,3,3 samples 72,658 0.052 ± 0.040 0.396 0.044 ± 0.030 0.301
Alg 15,6,6 samples 72,646 0.026 ± 0.019 0.139 0.027 ± 0.015 0.183
Alg 21,3,3 samples 72,660 0.018 ± 0.014 0.127 0.023 ± 0.013 0.166
NT 9 samples 17,936 0.233 ± 9.810 494.8 0.050 ± 0.025 0.247
NT 27 samples 17,935 0.017 ± 0.014 0.118 0.023 ± 0.016 0.150
Alg 3,3,3 samples 17,996 0.049 ± 0.038 0.301 0.050 ± 0.032 0.277
Alg 15,6,6 samples 17,986 0.022 ± 0.016 0.148 0.023 ± 0.017 0.191
Alg 21,3,3 samples 17,992 0.015 ± 0.012 0.126 0.021 ± 0.015 0.166
NT 9 samples 11,982 0.075 ± 4.557 494.8 0.042 ± 0.021 0.451
NT 27 samples 11,981 0.011 ± 0.010 0.108 0.016 ± 0.013 0.235
Alg 3,3,3 samples 12,031 0.046 ± 0.033 0.353 0.042 ± 0.027 0.290
Alg 15,6,6 samples 12,027 0.028 ± 0.014 0.155 0.016 ± 0.014 0.221
Alg 21,3,3 samples 12,031 0.020 ± 0.014 0.133 0.016 ± 0.013 0.199
NT 9 samples 41,958 0.194 ± 7.925 494.7 0.026 ± 0.018 0.322
NT 27 samples 41,958 0.022 ± 0.010 0.116 0.012 ± 0.009 0.102
Alg 3,3,3 samples 42,073 0.040 ± 0.031 0.266 0.035 ± 0.022 0.271
Alg 15,6,6 samples 42,073 0.024 ± 0.016 0.158 0.015 ± 0.011 0.217
Alg 21,3,3 samples 42,077 0.025 ± 0.015 0.120 0.014 ± 0.011 0.168
NT 9 samples 26,300 6.339 ± 65.952 743.6 0.065 ± 0.039 0.419
NT 27 samples 26,248 0.029 ± 0.023 0.151 0.036 ± 0.021 0.155
Alg 3,3,3 samples 27,500 0.080 ± 0.062 0.403 0.082 ± 0.046 0.315
Alg 15,6,6 samples 27,516 0.036 ± 0.027 0.176 0.041 ± 0.024 0.207
Alg 21,3,3 samples 27,474 0.028 ± 0.022 0.163 0.038 ± 0.022 0.186

NT compound Alg compound NT subpattern Alg subpattern

Fig. 8. Test scene and example code images with respective close-ups for the number-theoretical and algebraic coding. Grey levels represent the detected code, from 0 (black) to 800
(white). Uncoded pixels are black.
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expected a smaller quantization or a redistribution of samples in
favor of the low-order phase reduce the RMS but also increase the
number of outliers.

Fig. 7 plots the RMS obtained using the compound pattern
generation strategy. Here various sampling levels were obtained by
up-sampling the time-series by a factor of 2 and 3, resulting in 8, 16
and 24 projected patterns. The algebraic coding confirms the better
scaling with respect to noise, but it also results in a smaller rate of
outliers, at least for small noise levels.

5.2. Real world experiments

All the following experiments have been run on a test rig for struc-
tured light techniques that has been internally developed in our lab.
The rig is made up of a motorized plate for object positioning, four
cameras and an illumination source mounted on a motorized liftable
platform. Specifically the cameras are equipped with a 1/2 in. CMOS
sensor which offers a full 1280 × 1024 resolution. The cameras are
monochrome, thus no Bayer filters are placed over the sensor. While
four cameras are available, in this experiment set we use only one to
test the codes. The illumination source is an 800 × 600 color DLP pro-
jectorwhichwe use to project themonochromatic patterns. The system
is controlled by a standard PC housed into the base of the rig. This PC is a
2.8 GHz AMD quad core system with 2 Gb of ram.

In Table 2 we show the performance of different compound coding
strategies when dealing with a set of real-world objects that exhibit
wide variations both in albedo and shape. Specifically, we used two
algebraic and two number-theoretical pattern sequences. As in the syn-
thetic experiments, we chose period sets of length 7,10,13 and 9, 11, 13
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respectively for the number-theoretical tests and two quantizations of
5,13,13 and 8,10,10 for the algebraic coding. For each experimental
condition we projected both horizontal and vertical pattern sequences,
thus obtaining a bi-dimensional code for each image pixel. This code is
used to compute twomeasures of deviation from the ground-truth. The
first measure is the difference between the codes obtained at a par-
ticular image pixel with respect to the ground-truth code obtained
projecting 90 patterns; we call this quantity code error. The secondmea-
sure used is the code displacement, i.e., the Euclidean distance between a
point in the ground-truth image and the subpixel location containing
the same code by bilinear interpolation in the experimental image.
We can regard this quantity as the displacement error that would be
committed when the coding is used in matching or stereo correspon-
dence applications.

In the columns of Table 2 we show the object used for the measure-
ments, the number of successfully coded points, and finally the average,
standard deviation, andmaximum value of both the code error and dis-
placement. As expected, compound coding works more reliably with
smooth, uniform objects and Lambertian surfaces, such as the rectangu-
lar plastic strip, the white wooden sphere and, to some level, the white
lamp. With those objects the performance obtained with the number-
theoretical strategy is worse than that obtained adopting the algebraic
coding. This is due to the completely wrong coding retrieved from diffi-
cult boundary points, as can be noticed by looking at the large maximal
errors. The coding error is even more dramatic with more complex or
darker objects, such as the pair of batteries and the small statue. This
is due to the decrease in dynamic range produced by the compound
approach, and affects both the number-theoretical strategy and the
proposed algebraic coding. However we can see that, despite using the
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same low number of patterns, algebraic coding exhibits far better per-
formance and is able to cope with the most difficult objects exhibiting
only a limited reduction in accuracy.

We repeated the same set of experiments with separately projected
patterns.

The sequences of patterns used and the results obtained are
shown respectively in Table 1 and in Table 3.

It is immediate to see that the overall error obtained is significantly
lower than the one obtained with the compound strategies. The only
gross coding errors happen with the number-theoretical approach
when using only 9 patterns (three for each period). When using 27
samples the results are about one order of magnitude more accurate
Fig. 10. Qualitative analysis of the surfaces
and we observe no mis-codings at all. It should be noted that the
algebraic coding technique does not incur in any coding error even
when using only 9 patterns. Furthermore, the ability to selectively
redistribute the additional patterns to the low-order phase allows for
a significant improvement in precision without incurring the risk of
serious mis-codings.

In Fig. 8 the multi-object scene used for the experimental valida-
tion is shown alongside some examples of the coding obtained with
each strategy presented in this paper. The first two columns show
the compound techniques. The number-theoretical one (first column)
is able to recover correctly only a limited portion of the overall illumi-
nated points and the algebraic technique allows to assign a valid code
obtained from the light bulb subject.
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to a few more. However, by looking at the zoomed area, we can see
that the former suffers more from gross coding outliers. By converse,
the non-compound approaches offer a significantly higher number of
coded points. In particular, the algebraic coding (fourth column) does
not contain any outlier, while the number-theoretical strategy (third
column) allows some to slip in. In the following we will explore these
phenomena further.

In Fig. 9 we show the effects of different coding parameterizations
on the average and maximum code difference. In the first row
we analyze the compound pattern generation techniques. In these
Fig. 11. Qualitative analysis of the surfaces ob
experiments we test several levels of up-sampling ranging from no
up-sampling (U1), to twice the number of patterns (U2) to three
times the number of patterns (U3).

For each level we show the number-theoretical technique (NT),
which obtains always the worst results regardless of the up-sampling
level, and the algebraic coding scheme. The latter is testedwith different
equalizations profiles: specifically level Eq.1 assigns equal signal to all
the digits, while Eq.2 and Eq.3 give respectively more signal to the
high-order and low-order phases. Equalization does not affect the
results much, although assigning more weight to the more significant
tained from the Ganesha figurine subject.
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digits seems to result in a less accurate coding. In the second row we
test the techniques based on separate subpatterns. Here we executed
both the number-theoretical and the algebraic coding strategies
with a number of patterns ranging from 9 to 27 samples. While it is
apparent that the accuracy of the number-theoretical scheme im-
proves with an increasing number of projected patterns, it should
be noted that the algebraic coding scheme allows the obtainment
of reasonable results even with just 9 patterns. When using more
patterns we test three different assignments of the additional sam-
ples: with distribution d1 all the patterns are evenly divided for
each phase period, while distributions d2 and d3 are progressively
more biased toward the low-order phase. While the influence is
not very strong, it is clear that giving more signals to the low-order
phase leads to improved accuracy. Overall, these experiments show
that the NT technique does not works well with the compound pat-
tern generation strategy, in addition, even with the subpattern strat-
egy it perform poorly when the number of projected patterns is close
to the Nyquist limit. Conversely it performs marginally better than
the algebraic method in most situations when used with the
subpattern strategy and a large number of patterns.

5.3. Surface reconstruction

The previous set of experiments gives an extensive quantitative
analysis of the robustness and accuracy of the coding strategies pro-
posed. However, it is difficult to relate such numerical data to their ac-
tual influence on the quality of reconstructed surfaces. For this reason
we also produced a set of 3D range images that provide qualitative eval-
uation of the influence of the coding scheme to the reconstruction pro-
cess. Specifically, we used our test rig to obtain range images from two
subjects that pose the most significant hurdles to the reconstruction
process: The first is the light bulb, that exhibits reflections and partial
transparency; the second is the Ganesha figurine, which has a very
low albedo and presents several self-occlusions.

In Fig. 10 we show the reconstructions obtained from the light
bulb. In the first row the surface obtained with the “Ground Truth”
method is shown, i.e., the reference method also used for the quanti-
tative experiments: the number theoretical technique with a very
large number of projected patterns. For each method we also present
two zoomed area (indicated with red boxes) that highlight a bound-
ary zone and a flat area respectively. This is meant to evaluate the be-
havior of the techniques around the edges of the objects and their
smoothness.

With the light bulb there is no significant difference in the number
of triangulated points among the various methods.

This is probably due to the high albedo of the subject and thus to the
good level of signal received by the cameras. However, the Algebraic
compound technique seems to lose a few points on the fluorescent
tubes. In general, the subpattern methods allow the triangulation of
more points in the screw part of the bulb, which is mostly reflective. It
is interesting to note that the number theoretical method used with
the subpattern strategy produces some artifacts (elongated triangles)
on the boundary zones. This could be related to the aliasing effect be-
tween the bright surface of the bulb and the black background that
produces slightly shifted codes which in turn introduce errors in the es-
timation of the depth of the points. Such artifacts, however, have little
influence with respect to the previous quantitative experiments, since
they affect only a very limited number of points. Nevertheless, their
effect is very significant from a qualitative point of view since such
errors stand out very much on the final reconstruction. Finally, the
smoothness of the surface increases with the number of patterns, as
the effect of the randomnoise is reduced. Interestingly, with a compara-
ble number of patterns the Algebraic technique seems to give slightly
smoother results.

In Fig. 11 we show the results obtained with the Ganesha figurine.
It is immediately obvious that both compound methods allow the
triangulation of much fewer points than the equivalent techniques
paired with the subpattern strategy. While the Algebraic coding strate-
gy still gives slightly better results, we can conclude that the subpattern
strategy is to be preferredwhen the object to capture is dark andwe can
expect a low signal strength. Obviously the subpattern techniques work
better with a high number of patterns, with the Algebraic coding being
able to reconstruct a few more points. In contrast to the light bulb test,
the Algebraic coding schema seems to produce a slightly rougher sur-
face. This could suggest that this method is noisier when dealing with
lower signal strength.

6. Conclusions

We have proposed a new fine-to-coarse phase encoding strategy
that allows us to achieve high precision and noise robustness with a
small number of patterns by applying a coarser angular quantization
at the finest level and a finer one at higher levels, and provide a robust
estimation approach allowing the recovery of the projector coordinate
with subpixel precision. Further, we have introduced two novel pattern
generation strategies that encodemultiple phases with a small number
of projected patterns and allow to selectively invest more patterns of
signaling band to more critical phases. The proposed approaches have
been analyzed and compared with the state-of-the-art, showing that
they are at the same time more precise and robust with a high level of
noise, not having any significant drawback for low noise levels. In
particular, the experiments show that the number-theoretic approach
in conjunction with the subpattern generation strategy should be
preferred when using a large number of patterns, while the same
number-theoretic approach does not perform very well with the com-
pound pattern as proposed in [21] that suffers from a relatively high
sensitivity to noise. By contrast, the algebraic technique can be used
effectively even when projecting a number of patterns close to the
Nyquist limit, allowing for a strong reduction in reconstruction time.
While the subpattern strategy is still the most robust of the proposed
pattern generation strategies, the compound strategy still works rela-
tively well with the algebraic technique in conditions with high signal-
to-noise ratio, allowing for good reconstructions with the minimal
number of projected patterns.
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