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ABSTRACT

This paper investigates whether meaningful shape categories
can be identified in an unsupervised way by clustering shock-
trees. We commence by computing weighted and unweighted
edit distances between shock-trees extracted from the Hamilton-
Jacobi skeleton of 2D binary shapes. Next we use an EM-
like algorithm to locate pairwise clusters in the pattern of
edit-distances. We show that when the tree edit distance is
weighted using the geometry of the skeleton, then the clus-
tering method returns meaningful shape categories.

1. INTRODUCTION

There has recently been considerable interest in the use of
the reaction-diffusion equation as a means of representing
and analysing both 2D and 3D shapes [1, 2, 3]. In a nut-
shell, the idea is to extract a skeletal representation by evolv-
ing the shape-boundary inwards until singularities appear.
Through the analysis of the differential properities of the
singularities, a structural abstraction of the skeleton known
as the shock-graph may be extracted. Although this abstrac-
tion has been widely used for shape-matching and recogni-
tion [4, 2], its use as a means of learning shape categories
has attracted less attention. The aim in this paper is to in-
vestigate whether graph-clustering can be used as a means
of partitioning shock-trees into shape classes via unsuper-
vised learning. Graph clustering is an important yet rela-
tively under-researched topic in machine learning [5]. The
process can be used to structure large data-bases of rela-
tional models [6] or to learn equivalence classes. One of the
reasons for limited progress in the area has been the lack
of algorithms suitable for clustering relational structures. In
particular, the problem has proved elusive to conventional
central clustering techniques. The reason for this is that it
has proved difficult to define what is meant by the mean or
representative graph for each cluster. A more fruitful av-
enue of investigation may be to pose the problem as pair-
wise clustering. This requires only that a set of pairwise
distances between graphs be supplied. The clusters are lo-
cated by identifying sets of graphs that have strong mutual
pairwise affinities. There is therefore no need to explicitly
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identify an representative (mean, mode or median) graph for
each cluster.

Our approach is as follows. Commencing from a data-
base of silhouettes, we extract the Hamilton-Jacobi skele-
ton and locate the shocks which correspond to singularities
in the evolution of the object boundary under the eikonal
equation. We compute the similarity of the shapes using
weighted and un-weighted tree edit distance. With the set of
pairwise edit-distances between the shock-graphs to hand,
we use a maximum-likelihood method for pairwise cluster-
ing. Our experiments show that when used in conjunction
with the weighted tree edit distance, the pairwise clustering
process locates meaningful shape categories.

2. SHOCK TREE EDIT DISTANCE

The practical problem tackled in this paper is the cluster-
ing of 2D binary shapes based on the similarity of their
shock-trees. The idea of characterizing boundary shape us-
ing the differential singularities of the reaction equation was
first introduced into the computer vision literature by Kimia,
Tannenbaum and Zucker [3]. The idea is to evolve the bound-
ary of an object to a canonical skeletal form using the reaction-
diffusion equation. The skeleton represents the singulari-
ties in the curve evolution, where inward moving bound-
aries collide. The reaction component of the boundary mo-
tion corresponds to morphological erosion of the boundary,
while the diffusion component introduces curvature depen-
dent boundary smoothing. In practice, the skeleton can be
computed in a number of ways, here we use a variant of
the method Siddiqi, Tannenbaum and Zucker, which solves
the eikonal equation which underpins the reaction-diffusion
analysis using the Hamilton-Jacobi formalism of classical
mechanics [1]. Once the skeleton is to hand, the next step
is to devise ways of using it to characterize the shape of
the original boundary. Here we follow Zucker, Siddiqi, and
others, by labeling points on the skeleton using so-called
shock-classes [2]. According to this taxonomy of local dif-
ferential structure, there are different classes associated with
behavior of the radius of the osculating circle from the skele-
ton to the nearest pair of boundary points. The so-called
shocks distinguish between the cases where the local oscu-
lating circle has maximum radius, minimum radius, con-
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Fig. 1. Pairwise edit distances computed using un-weighted
trees.

stant radius or a radius which is strictly increasing or de-
creasing. We abstract the skeletons as trees in which the
level in the tree is determined by their time of formation
[4, 2]. The later the time of formation, and hence their prox-
imity to the center of the shape, the higher the shock in the
hierarchy. While this temporal notion of relevance can work
well with isolated shocks (maxima and minima of the radius
function), it fails on monotonically increasing or decreasing
shock groups. To give an example, a protrusion that ends
on a vertex will always have the earliest time of creation,
regardless of its relative relevance to the shape.

To overcome this drawback, we augment the structural
information given by the skeleton topology and the relative
time of shock formation, with a measure of feature impor-
tance. We opt to use a shape-measure based on the rate of
change of boundary length with distance along the skeleton.
To compute the measure we construct the osculating circle
to the two nearest boundary points at each location on the
skeleton.

This measurement has previously been used in the lit-
erature to express relevance of a branch when extracting or
pruning the skeleton, but is has recently been shown that its
geometric and differential properties make it a good mea-
sure of shape similarity [7].

Given this representation we can cast the problem of
computing distances between different shapes as that of find-
ing the tree edit distance between the weighted graphs for
their skeletons.

Tree edit distance is a generalization to trees of String
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Fig. 2. Pairwise edit distances computed using weighted
trees.

edit distance. The edit distance is based on the existence of
a set B of basic edit operation on a tree and a set C of costs,
where cb 2 C is the cost of performing the edit operation
b 2 B. The choice of the basic edit operations, as well
as their cost, can be tailored to the problem, but common
operations include leaf pruning, path merging, and, in case
of an attributed tree, change of attribute. Given two trees
T1 and T2, the set B of basic edit operations, and the cost
of such operation C = cb; b 2 N , we call an edit path from
T1 to T2 a sequence b1; : : : ; bn of basic edit operations that
transform T1 into T2. The length of such path is l = cb1 +

� � �+ cbn ; the minimum length edit path from T1 to T2 is the
path form T1 to T2 with minimum length. The length of the
minimum length path is the tree edit distance.

With our measure assigned to each edge of the tree, we
define the cost of matching two edges as the difference of
the total length ratio measure along the branches. The cost
of eliminating an edge is equivalent to the cost of matching
it to an edge with zero weight, i.e. one along which the total
length ratio is zero.

Using the edit distance of the shock trees we generate
two similarity measures for a pair of shapes.

� The first measure is obtained weighting the nodes with
the border length ratio normalized by the total length
of the border of the shape. That is the length of the
fraction of the border spanned by the shock group di-
vided by the total length of the border. In this way
the sum of the weights in a tree is 1 and the mea-
sure is scale invariant. The similarity of the shapes
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is computed by adding the minimum weight for each
matched node, that is dw;w0 =

P
imin(wi; w

0
i), where

wi andw0
i are the weight of the nodes that are matched

together by our tree edit distance algorithm.

� The second measure of shape similarity is computed
from the unweighted structure: We assign a uniform
edit cost of 1 to each node and we compute the aver-

age ratio of matched nodes: dw;w0 = 1
2

�
#T̂
#T1

+ #T̂
#T2

�
,

where T1 and T2 are the two trees to be matched, T̂
is the median of the two trees obtained through cut
operations only, and # indicates the number of nodes
in the tree.

Figures 1 and 2 show the un-weighted and weighted shock-
tree edit distances for a set of 2D shapes.

3. GRAPH-CLUSTERING

We pose the problem of learning the set of shape-classes as
that of finding pairwise clusters in the distribution of tree-
edit distance. The process of pairwise clustering is some-
what different to the more familiar one of central cluster-
ing. Whereas central clustering aims to characterise cluster-
membership using the cluster mean and variance, in pair-
wise clustering it is the relational similarity of pairs of ob-
jects which are used to establish cluster membership. Al-
though less well studied than central clustering, there has
recently been renewed interest in pairwise clustering aimed
at placing the method on a more principled footing using
techniques such as mean-field annealing [8].

To commence, we require some formalism. We are in-
terested in grouping a set of graphs G = fG1; :::::; GjM jg
whose index set is M . The set of graphs is characterised
using a matrix of pairwise similarity weights. The elements
of this weight matrix are computed using tree-edit distance
di;j between the graphs indexed i and j. Here we use the
exponential similarity function

Wi;j =

(
exp[�kdi;j ] if i 6= j

0 otherwise
(1)

to generate the elements of the weight-matrix, where k is
a constant which is heuristically set. The aim in graph-
clustering is to locate the updated set of similarity weights
which partition the set of graphs into disjoint subsets. To
be more formal, suppose that 
 is the set of graph-clusters
and let S! represent the set of the graphs belonging to the
cluster indexed !. Further, let s(n)i! represent the probability
that the graph indexed i belongs to the cluster indexed ! at
iteration n of the algorithm. We are interested in posing the
clustering problem in a maximum likelihood setting. Under
the assumption that the cluster memberships of the graphs

follow a Bernoulli distribution with the link-weights as pa-
rameters, the likelihood-function for the weight matrix W

is given by

P (W ) =
Y
!2


Y
(i;j)2M�M

W
si!sj!
i;j (1�Wi;j)

1�si!sj! (2)

The corresponding log-likelihood function is

L =
X
!2


X
(i;j)2M�M

�
si!sj! lnWij+(1�si!sj!) ln(1�Wi;j)

�
(3)

We have recently, shown how this log-likeihood function
can be iteratively optmised using an EM-like process. In the
E (expectation) step, the cluster membership probabilities
are updated according to the formula

s
(n+1)
i! =

Q
j2M

�
W

(n)
i;j

1�W
(n)
ij

�s(n)
j!

P
i2M

Q
j2M

�
W

(n)
ij

1�W
(n)
ij

�s(n)
j!

(4)

Once the revised cluster membership variables are to
hand then we apply the M (maximisation) step of the algo-
rithm to update the similarity-weight matrix. The updated
similarity-weights are given by

W
(n+1)
ij =

X
!2


s
(n)
i! s

(n)
j! (5)

These two steps are interleaved and iterated to convergence.

4. EXPERIMENTS

The 16 shapes used in our study are shown in Figures 1
and 2. In Figure 1 we show the pattern of weighted edit
distances between the shock-trees for the shapes, while Fig-
ure 2 shows the corresponding weighted tree edit distances.
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Fig. 3. (a)Multidimensional scaling applied to the weighted
tree edit distances; (b)Multidimensional scaling applied to
the weighted tree edit distances.
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To visualise the data, we have applied multi-dimensional
scaling to the two sets of distances [9]. Figures 3a and
3b respectively show the leading two components of the
eigenvectors of the distance matrix for the weighted and
unweighted trees. In the case of the weighted shock trees,
the cluster structure is somewhat clearer than for the un-
weighted shock trees. However, in both cases the cluster
structure is far from clear. In other words, the clustering of
the graphs is not a problem that could be solved by simply
applying central clustering to the eigenvectors delivered by
MDS.

In Figure 4a we show the initial matrix of pairwise sim-
ilarity weights for the unweighted trees for the different
shapes. Here the redder the entries, the stronger the simi-
larity; the bluer the entries, the weaker the similarity. The
order of the entries in the matrix is the same as the order
of the shapes in Figures 1 and 2. After six iterations of the
clustering algorithm the similarity weight matrix shown in
Figure 4b is obtained. There are six clusters (brush (1) +
brush (2) + wrench (4); spanner (3) + horse (13) ; pliers (5)
+ pliers (6) + hammer (9) ;pliers (7) +hammer (8) + horse
(12); fish (10) + fish (12); hand (14) + hand (15) + hand
(16). Clearly there is merging and leakage between the dif-
ferent shape categories. In Figures 5a and 5b we show the
initial and final similarity matrices when weighted trees are
used. The entries in the initial similarity matrix are better
grouped than those obtained when the unweighted tree edit
distance is used. There are now seven clusters. brush (1)
+ brush (2) ; spanner (3) + spanner (4); pliers (5) + pliars
(6) + pliers (7); hammer (8) + hammer (9); fish (10) + fish
(11); horse (12) + horse (13); hand (14) + hand (15) + hand
(16)). These correspond exactly to the shape categories in
the data-base.

5. CONCLUSIONS

This paper has presented a study of the problem of learn-
ing shape-categories by clustering shock-trees. We gauge
the similarity of the trees using weighted and unweighted
edit distance. To idetify distinct groups of trees, we use
a maixmum likelihood algorithm for pairwise clustering.
This takes as its input a matrix of pairwise similarities be-
tween shock-trees computed from the edit distances. The
algorithm is reminiscent of the EM algorithm and has in-
terleaved iterative steps for computing cluster-memberships
and for updating the pairwise similarity matrix. Experi-
mental evaluation of the method shows that it is capable of
extracting clusters of trees which correspond closely to the
shape-categories present.
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