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Abstract. In many applications of computer vision and pattern recog-
nition which use graph-based knowledge representation, it is of great
interest to be able to extract the K largest cliques in a graph, but most
methods are geared either towards extracting the single clique of max-
imum size, or enumerating all cliques, without following any particular
order. In this paper we present a novel approach for partial clique enu-
meration, that is, the extraction of the K largest cliques of a graph. Our
approach is based on a continuous formulation of the clique problem de-
veloped by Motzkin and Straus, and is able to avoid extracting the same
clique multiple times. This is done by casting the problem into a game-
theoretic framework and iteratively rendering unstable the solutions that
have already been extracted.

1 Introduction

Many applications of computer vision and pattern recognition which use graph-
based knowledge representation have to deal with the problem of finding com-
plete subgraphs (cliques) of their structural descriptions. Examples of problems
that have successfully been reduced to a clique-finding problem range from
matching [2], to category learning and knowledge discovery [17, 9], to cluster-
ing [1, 18], to stereo matching [13], to name just a few. Furthermore, clique finding
is also linked with the learning of graphical structure by the Hammersley-Clifford
theorem [11].

The maximum clique problem (MCP) deals with the challenge of finding the
largest complete subgraph of an undirected and unweighted graph. It falls in
the crucial class of NP-Complete problems, whose intractability forces us to fall
back on approximation methods. Unfortunately, even approximating the MCP
is intractable [12]. Due to this pessimistic state of affairs much attention has
gone into developing efficient heuristics for the MCP, for which no formal guar-
antee of performance may be provided, but are nevertheless useful in practical
applications. We refer to Bomze et al. [5] for a survey concerning algorithms,
applications, and complexity issues of this important problem.

In a recent series of papers [19, 10, 7] we find approaches that are centered
around a classical result from graph theory due to Motzkin and Straus [16], that
allows us to formulate the MCP as a continuous quadratic optimization prob-
lem with simplex constraints. This program is typically solved by the replicator



dynamics, well-known continuous- and discrete-time dynamical systems, devel-
oped and studied in the field of evolutionary game theory and for which it can
be shown that there exists a one-to-one correspondence between stable points
and maximal cliques of the corresponding graph.

In several contexts, it is of great interest to have an approach that can ex-
tract several large cliques, in particular, we would like to be able to efficiently
extract the K largest cliques in a graph. For example in knowledge discovery,
where categories are abstracted in terms of cliques, each element can belong to
multiple categories, and hence we are interested in discovering more than one
category [17, 9]. In a completely different domain, Horaud and Skordas [13] use
the largest cliques to find stereo correspondences in image pairs. While exact
search-based enumerative algorithms are guaranteed to generate every maximal
clique, in general they cannot guarantee a specific order in which these are found,
in particular they give no guarantee about the relative size of the clique obtained
at each step.

In this paper we present an approach which uses a continuous formulation
to enumerate a user-defined number of large cliques. Ideally, we would like to
obtain the K largest maximal cliques after a small number of enumerations.
Clearly, the actual size of the extracted cliques depends on the effectiveness of
the continuous formulation, but, experimental evidence tells us that the approach
performs fairly well [19].

The basis of this approach rests on the fact that under a certain family of
quadratic problems, there is a bijection between asymptotically stable points of
the replicator dynamics and maximal cliques. Once we have extracted a maximal
clique, we would like to avoid that the dynamics converge to the same clique. In-
tuitively, what our method does is to render unstable the associated rest point.
To do this, we deal with directed graphs, and apply a particular asymmetric
graph-extension for every maximal clique we want to render unstable. By iter-
ating this extension process, we progressively reduce the set of asymptotically
stable points of the replicator dynamics, and, hence, we obtain a continuous-
based enumerative algorithm.

2 A Family of Quadratic Programs for Maximum Clique

Let G = (V, E) be an undirected graph without self-loops, where V = {1, 2, . . . , n}
is the set of vertices and E ⊆ V × V the set of edges. Two vertices u, v ∈ V
are adjacent if (u, v) ∈ E. A subset C of vertices in G is called a clique if all
its vertices are mutually adjacent. It is a maximal clique if it is not subset of
other cliques in G. It is a maximum clique if no other cliques of G have a strictly
greater cardinality. The cardinality of a maximum clique of G is also called clique
number and denoted by ω(G).

The adjacency matrix of G is the n× n symmetric matrix AG = (aij) where
aij = χE((i, j)). Here, χA(i) represents the indicator function that returns 1 if
i ∈ A, 0 otherwise.



Consider the following constrained quadratic program.

maximize fα(x) = x′(AG + αI)x s.t. x ∈ ∆ ⊂ Rn, (1)

where n is the order of G, I the identity matrix, and α is a real parameter. In
1965 Motzkin-Straus [16] established a connection between the maximum clique
problem and the program in (1) with α = 0; they related the clique number of G
to global solutions x∗ of the program through the formula ω(G) = (1−f0(x∗))−1,
and showed that a subset of vertices C with cardinality |C| is a maximum clique
of G if and only if 1 its characteristic vector xC ∈ ∆, where xC

i = χC(i)|C|−1,
is a global maximizer of f0 on ∆. Gibbons, Hearn, Pardalos and Ramana [10],
and Pelillo and Jagota [20], extended the Motzkin-Straus theorem by providing
a characterization of maximal cliques in terms of local maximizers of f0 in ∆.

A drawback of the original Motzkin-Straus formulation is the existence of
“spurious” solutions, i.e., maximizers of f0 that are not in the form of charac-
teristic vectors. Bomze et al.[6] proved that for 0 < α < 1 all local maximizer
of (1) are strict and are in one-to-one relation with the characteristic vectors of
the maximal cliques of G, hence, overcoming the problem.

In order to find the maxima of (1) we cast the problem in a game-theoretic
setting and use the replicator dynamics, a well-known formalization of the selec-
tion process. In the next section we will review some concepts from evolutionary
game theory that will be useful throughout the paper and provide the link be-
tween game theory and maximal cliques.

3 A game-theoretic perspective

Let O = {1, 2, . . . , n} be the set of pure strategies available to the players and
A = (aij) the n × n payoff or utility matrix [23] where aij is the payoff that
a player gains when playing the strategy i against an opponent playing j. In
biological contexts, payoff are typically measured in terms of Darwinian fitness
or reproductive success whereas in economics applications, they usually represent
firms’ profits or consumers’ utilities.

A mixed strategy is a probability distribution x = (x1, x2, . . . , xn)′ over the
available strategies in O. Mixed strategies clearly lie in the standard simplex of
the n-dimensional Euclidean space ∆ = {x ∈ Rn : e′x = 1, x ≥ 0} where e is
the vector with all components equal to 1.

The support of a mixed strategy x ∈ ∆, denoted by σ(x), defines the set of
elements with non-zero probability: σ(x) = {i ∈ O : xi > 0}

The expected payoff that a player obtains by playing the element i against
an opponent playing a mixed strategy x is u(ei,x) = (Ax)i =

∑
j aijxj , where

ei is the vector with all components equal zero except for the ith-component

1 In the original paper Motzkin-Straus proved the “only-if” part of this theorem. The
converse however is a straightforward consequence of their result (Pelillo & Jagota,
1995) [20].



which is equal to 1. Hence, the expected payoff received by adopting a mixed
strategy y is u(y, x) = y′Ax.

Evolutionary game theory considers an idealized scenario wherein pairs of
individuals are repeatedly drawn from a large population to play a two-player
symmetric game. Each player is not supposed to behave rationally or have a
complete knowledge of the details of the game, but he acts according to a pre-
programmed pure strategy. This dynamic activates some selection process that
results in the evolution of the fittest strategies.

A well-known formalization of the selection process is given by the replicator
equations [23]: ẋi = xi(u(ei, x)− u(x,x)).

If the payoff matrix is symmetric then x′Ax is strictly increasing along any
non-constant trajectory of any payoff-monotonic dynamics [23]. This result al-
lows us to establish a bijective relation between the local solutions of program (1),
namely characteristic vectors of maximal cliques of G, and asymptotically stable
points of the replicator dynamics with payoff matrix AG + αI and 0 < α < 1.

In order to obtain enumeration of maximal cliques through a continuous
formulation we move from undirected graphs to directed graphs, or, in other
words, from symmetric payoff matrices to asymmetric payoff matrices. If we
loosen the symmetry constraint, then all the results that bind local solutions to
asymptotically stable points and maximal cliques do not hold any longer, and
x′Ax is not a Lyapunov function for the dynamics.

The best replies against a mixed strategy x is the set of mixed strategies
β(x) = {y ∈ ∆ : u(y, x) = maxz u(z, x)}.

A mixed strategy x is a Nash equilibrium if it is a best reply to itself, i.e.
∀y ∈ ∆, u(y,x) ≤ u(x,x). This implies that for all i ∈ σ(x), u(ei,x) = u(x,x),
hence the payoff of every strategy in the support of x is constant, while all
strategies outside the support of x earn a payoff that is less than or equal u(x,x).

A strategy x is said to be an evolutionary stable strategy (ESS) if it is a
Nash equilibrium and for all y ∈ ∆ such that u(y, x) = u(x, x) we have that
u(x,y) > u(y, y). Intuitively, ESS are strategies such that any small deviation
from them will lead to an inferior payoff.

Consider the following quadratic program

maximize π(x) = x′Ax s.t. x ∈ ∆ ⊂ Rn, (2)

where A is a symmetric matrix. We have that x is a Nash equilibrium of a two-
player game with payoff matrix A, if and only if it satisfies the Karush-Kuhn-
Tucker (KKT) conditions for (2). In fact the KKT conditions can be written
as

u(ei,x) = (Ax)i

{
= λ if i ∈ σ(x)
≤ λ if i /∈ σ(x)

for some real λ. However it is clear that λ = x′Ax = u(x,x) and what we obtain
is exactly the definition of a Nash equilibrium. Hence local solution of (2) are
indeed Nash equilibria, but the converse does not necessarily hold.

A two-player symmetric game where the payoff matrix is also symmetric is
called doubly-symmetric game. Loser and Akin [15] showed that for all doubly



symmetric games the average payoff u(x, x) increases along every non-stationary
solution path to the replicator dynamics.

If we consider program (1) with 0 < α < 1, we have that the set of ESS is
equivalent to the set of maximal cliques of the related graph. We refer to [8] and
[6] for a deeper insight of the relation between ESS and maximal cliques.

Through this change in perspective, we can move from a constrained maxi-
mization problem, to a game-theoretic setting. Instead of finding local solutions
of a quadratic program, we look for ESS of a doubly symmetric game. The
advantage of this new approach is that we can generalize the Motzkin-Straus
result to non symmetric payoff matrices and, hence, directed graphs.

Let G = (V,E) be a directed graph. A doubly-linked clique of G is a set
S ⊆ V such that for all u, v ∈ S, (u, v) ∈ E implies (v, u) ∈ E. The clique is
saturated if there is no t ∈ V \ S such that for all s ∈ S, (s, t) ∈ E.

In [22] we find the following result.

Theorem 1. Let G = (V, E) be a directed graph with adjacency matrix A, S ⊆
V is a saturated doubly-linked clique of G if and only if xS is an ESS for a
two-player game with payoff matrix B = A′ + αI, where 0.5 < α < 1.

We have already seen that if we consider an undirected graph G and the
payoff matrix AG +αI with 0 < α < 1, then the ESSs of the related two-player
game are in one-to-one correspondence with maximal cliques of G. However if we
strengthen the constraint on α to lay between 0.5 and 1, then we can see that
the concept of saturated doubly-linked clique is a direct generalization to the
asymmetric case of the concept of maximal clique, i.e. ESSs are in one-to-one
correspondence with saturated doubly-linked cliques.

4 Continuous-based enumeration

In this section we will present our continuous-based enumeration approach and
prove its correctness. In order to render unstable a given ESS x it is enough to
drop the Nash condition for x. A simple way to do it without affecting other
equilibria, is to add a new strategy z that is a best reply to x, but to no other
ESS. This way, x will no longer be asymptotically stable.

Let G = (V,E) be an undirected graph and G′ = (V, E′) be its directed
version where for all (u, v) ∈ E, (u, v), (v, u) ∈ E′. Given a set Σ of maximal
cliques of G, we extend G′ obtaining the Σ-extension GΣ of G. The extension is
as follows. For each clique S ∈ Σ, we create a new vertex v, called Σ-vertex, and
put edges from v to each vertex in S and from each vertex not in S to v. After
this operation, each Σ-vertex v dominates a particular clique S of Σ. Further,
each vertex not in S dominates the Σ-vertex v so that it cannot be part of a
new asymptotically stable strategy.

Theorem 2. Let G = (V,E) be an undirected graph, Σ be a set of maximal
cliques of G and A be the adjacency matrix of the Σ-extension GΣ of G. Let Φ
be a two person symmetric game with payoff matrix A + αI with 0.5 ≤ α < 1.



Then x is an ESS equilibrium of G if and only if it is the characteristic vector
of a maximal clique of G not in Σ.

Proof. (⇒) By (1) if x is an ESS of Φ then it is the characteristic vector of
a saturated doubly-linked clique S of GΣ . By construction of GΣ , the only
possible doubly-linked cliques are subsets of V , therefore S is a clique of G. It
is also maximal and not in Σ because otherwise it would not be saturated.

(⇐) Consider S /∈ Σ a maximal clique of G. Then by construction of GΣ ,
it is a saturated doubly-linked clique of GΣ and hence by [22] xS is an ESS
equilibrium of G.

The continuous-based enumerative algorithm uses this result in the following
way. We iteratively find an asymptotically stable point through the replicator
dynamics. If we have an ESS, then we have found a new maximal clique2. After
that, we extend the graph by adding the newly extracted clique to Σ, hence
rendering its associated strategy unstable, and reiterate the procedure until we
have enumerated the selected number of maximal cliques.

The space complexity of this algorithm is O{(n+K)2}, where n is the graph
order and K is the number of enumerated cliques, while the time complexity is
O{γK(n+K)2}, where γ is the average number of iterations that the replicator
dynamics require to converge (in the experiments we present in the next section
we have that γ < 15).

5 Experimental results

In this section we asses the ability of our continuous-based enumerative heuristic
(CEH) to extract large cliques. To this end we apply the enumeration to the
extraction of the maximum clique from the DIMACS benchmark graphs. For
each graph, we run the method 20 times and took for each run, the maximum
between the first 300 enumerated maximal cliques.

In order to extract the maximal clique from a characteristic vector, we avoid
the standard thresholding technique on the value of each component of the char-
acteristic vector, but rather we use the values of each component as indicators
for a New-Best-In heuristic [14]. This is a sequential greedy heuristic that, start-
ing from an empty set of vertices, iteratively constructs a maximal clique by
inserting the clique-preserving vertex v that maximizes wv +

∑
j∈S χE((v, j))wj

where E is the set of edges of the graph, S is the set of clique-preserving vertices
and w = (w1, . . . , wn) is a weight vector, in our case the mixed strategy obtained
through the replicator dynamics. An added advantage of this approach is that
we can stop the dynamics before the dominated strategies where driven to a
hard zero, and still be able to extract the associated maximal clique. This can
significantly improve the speed of the approach as a lower number of iterations
are needed to extract each clique. the method.

2 we have never experienced an AS point that was not an ESS, so we strongly believe
that theorem (2) can be generalized to asymptotically stable points.



Clique size
Name # ρ BR Min Avg.(S.Dev.) Max K Avg. time IHN AIH CBH QMS RLS

brock200 1 200 0.75 21 20 20.050 (0.224) 21 156 7.85s - 20 20 21 21
brock200 2 200 0.50 12 10 10.400 (0.503) 11 24 7.25s - 10 12 12 12
brock200 3 200 0.61 15 13 13.750 (0.444) 14 19 7.40s - 13 14 15 15
brock200 4 200 0.66 17 15 15.850 (0.587) 17 2 7.50s - 16 16 17 17
brock400 1 400 0.75 27 23 23.800 (0.410) 24 49 19.90s - 24 23 27 25
brock400 2 400 0.75 29 23 23.450 (0.510) 24 24 20.00s - 24 24 29 29
brock400 3 400 0.75 31 23 23.700 (0.657) 25 10 19.90s - 24 23 31 25
brock400 4 400 0.75 33 23 23.900 (0.641) 25 77 19.90s - 23 24 33 33
brock800 1 800 0.65 23 19 19.600 (0.503) 20 4 51.35s - 20 20 23 21
brock800 2 800 0.65 24 19 19.900 (0.447) 21 3 51.60s - 18 19 24 21
brock800 3 800 0.65 25 19 19.750 (0.550) 21 245 51.30s - 19 20 25 22
brock800 4 800 0.65 26 19 19.550 (0.510) 20 17 51.25s - 19 19 26 21
c-fat200-1 200 0.08 12 12 12 (0) 12 1 7.40s 12 12 12 12 12
c-fat200-2 200 0.16 24 24 24 (0) 24 1 7.95s 24 24 24 24 24
c-fat200-5 200 0.43 58 58 58 (0) 58 1 18.80s 58 58 58 58 58
c-fat500-1 500 0.04 14 14 14 (0) 14 1 24.70s 14 14 14 14 14
c-fat500-2 500 0.07 26 26 26 (0) 26 1 28.90s 26 26 26 26 26
c-fat500-5 500 0.19 64 64 64 (0) 64 1 41.50s 64 64 64 64 64

c-fat500-10 500 0.37 126 126 126 (0) 126 1 62.75s - 126 126 126 126
hamming6-2 64 0.90 32 32 32 (0) 32 1 2.79s 32 32 32 32 32
hamming6-4 64 0.35 4 4 4 (0) 4 1 2.23s 4 4 4 4 4
hamming8-2 256 0.97 128 128 128 (0) 128 1 9.90s 128 128 128 128 128
hamming8-4 256 0.64 16 16 16 (0) 16 1 10.15s 16 16 16 16 16
johnson8-2-4 28 0.56 4 4 4 (0) 4 1 1.11s 4 4 4 4 4
johnson8-4-4 70 0.77 14 14 14 (0) 14 1 2.68s 14 14 14 14 14

johnson16-2-4 120 0.76 8 8 8 (0) 8 1 4.28s 8 8 8 8 8
johnson32-2-4 496 0.88 16 16 16 (0) 16 1 25.50s 16 16 16 16 16

keller4 171 0.65 11 11 11 (0) 11 1 2.20s - 9 10 11 11
keller5 776 0.75 27 25 26.600 (0.681) 27 5 28.55s - 16 21 26 27
keller6 3361 0.82 ≥59 51 52.250 (0.910) 54 45 761.75s - 31 - 53 59

MANN a9 45 0.927 16 16 16 (0) 16 1 1.87s - 16 16 16 16
MANN a27 378 0.990 126 125 125.100 (0.308) 126 124 36.30s - 117 121 125 126
MANN a45 1035 0.996 345 341 342.100 (0.641) 343 85 528.00s - - - 342 345
p hat300-1 300 0.24 8 8 8 (0) 8 1 11.15s 8 8 8 8 8
p hat300-2 300 0.49 25 25 25 (0) 25 9 12.80s 25 25 25 25 25
p hat300-3 300 0.74 36 34 34.550 (0.605) 36 218 13.75s 36 36 36 35 36
p hat500-1 500 0.25 9 9 9 (0) 9 1 22.65s 9 9 9 9 9
p hat500-2 500 0.50 36 34 35.300 (0.571) 36 36 31.05s 36 36 35 36 36
p hat500-3 500 0.75 50 48 48.500 (0.510) 49 7 35.40s 49 49 49 48 50
p hat700-1 700 0.25 11 9 10.700 (0.571) 11 2 35.45s 11 9 11 11 11
p hat700-2 700 0.50 44 43 43.400 (0.503) 44 1 56.30s 44 44 44 44 44
p hat700-3 700 0.75 62 60 60.500 (0.607) 62 1 67.25s 61 60 60 62 62

p hat1000-1 1000 0.25 10 10 10 (0) 10 1 60.55s 10 - - 10 10
p hat1000-2 1000 0.50 46 44 45.250 (0.550) 46 26 104.00s 46 - - 45 46
p hat1000-3 1000 0.75 68 63 63.900 (0.718) 65 50 127.80s 68 - - 65 68
p hat1500-1 1500 0.25 12 11 11 (0) 11 1 114.95s - 10 11 12 12
p hat1500-2 1500 0.50 65 62 63.150 (0.745) 64 51 255.60s - 64 63 64 65
p hat1500-3 1500 0.75 94 88 89.750 (1.333) 92 178 326.75s - 92 94 91 94
san200 0.7 1 200 0.70 30 19 29.050 (2.964) 30 11 7.70s 30 15 15 30 30
san200 0.7 2 200 0.70 18 13 13 (0) 13 1 7.45s 15 12 12 18 18
san200 0.9 1 200 0.90 70 70 70 (0) 70 2 9.60s 70 46 46 70 70
san200 0.9 2 200 0.90 60 57 59.800 (0.696) 60 2 8.95s 41 39 36 60 60
san200 0.9 3 200 0.90 44 36 39.800 (2.375) 44 85 8.70s - 35 30 40 44
san400 0.5 1 400 0.50 13 7 7.900 (0.308) 8 20 16.55s - 7 8 13 13
san400 0.7 1 400 0.70 40 40 40 (0) 40 2 20.05s 40 20 20 40 40
san400 0.7 2 400 0.70 30 18 21.250 (4.315) 30 32 18.75s 30 15 15 30 30
san400 0.7 3 400 0.70 22 15 15.800 (0.410) 16 7 18.15s - 12 14 18 22
san400 0.9 1 400 0.90 100 100 100 (0) 100 1 27.40s 100 51 50 100 100

san1000 1000 0.50 10 8 8.400 (0.503) 9 30 59.90s 10 8 8 15 15
sanr200 0.7 200 0.70 18 17 17.850 (0.366) 18 29 7.60s 17 18 18 18 18
sanr200 0.9 200 0.90 42 39 40.550 (0.686) 42 243 8.80s 41 41 41 41 42
sanr400 0.5 400 0.50 13 12 12.750 (0.444) 13 30 17.25s 12 13 12 13 13
sanr400 0.7 400 0.70 21 19 20.250 (0.550) 21 59 19.10s 21 21 20 20 21

Table 1. Comparative results on DIMACS benchmark graphs.
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Fig. 1. Average size of the extracted clique over the number of extractions.

In figure (1) we show the results obtained by enumerating about 450 maximal
cliques of a random graph of order 100 and density 0.25. For each enumeration
the graph plots the average size of the last 40 cliques in order to clarify the
descending tendency. As it can be seen, the approach enumerates the clique in
approximately decreasing order of size.

Table (1) shows the results obtained with CEH on the DIMACS bench-
mark. We compared our approach with a neural-network-based heuristic, In-
verted Neural Network (IHN) [4] and with other Motzkin-Straus -based heuris-
tics for MCP, i.e. Annealed Imitation Heuristic (AIH) [21], Continuous Based
Heuristic (CBH) [10] and Qualex Motzkin-Straus (QMS) [7]. Furthermore, we
also compare the approach with Reactive Local Search (RLS) [3], a state-of-the-
art heuristic search-based algorithm for MCP.

The table includes the name of the DIMACS graph (Name), the number of
vertices (#), the graph density (ρ), the optimum size (BR) . In the second part
we find the results obtained with CEH: the minimum (Min), the average size
and standard deviation (Avg), and the maximum size (Max) obtained among
20 runs of CEH, each enumerating 300 cliques. The column labeled with K
provides the number of enumerations required before the maximum was found.
The running times are referred to an unoptimized C implementation on 64-bit
PC with a 2 GHz AMD Opteron Processor and 1 Gb RAM. The computation
times of the other methods can be found in their respective papers, however they
are not comparable because they refer to experiments conducted with different
hardware and software settings.

The c-fat, hamming and johnson families were the easiest to solve, in fact all
algorithms find the global optima.



Though CEH, AIH and CBH use the same continuous-based technique, CEH
outperforms both algorithms on all DIMACS graphs. The comparison with IHN
is not so meaningful because it has been tested on few graph instances, but we
can notice that for all families except sanr the approaches are comparable, while
on the sanr graphs CEH is the best performer.

QMS seems to be particularly good on the brock family, where it outper-
forms all other approaches. However, CEH outperforms QMS on MANN, keller
and sanr families and performs slightly better on the p hat family, while QMS
performs slightly better on the san family.

We can see that RLS provides the best performance on almost all DIMACS
benchmarks, with the exception of the brock family, where QMS is indeed the
best. It is worth reminding that RLS is a search based-approach while all the
other are continuous-based.

The column K of the tables represent the minimum number of enumerations
before the best clique size for the algorithm has been reached. It is in some sense
a measure of the action of the enumeration in order to achieve the maximum
result. We see that the easy instances of the benchmark are solved within the
first enumeration, while more difficult ones, for example brock, san, sanr, require
a higher number of enumerations.

6 Conclusions

In this paper we developed a partial clique enumeration algorithm based on the
Motzkin-Straus formulation. In order to perform the enumeration, we deal with
a directed form of the clique problem and we deal with an asymmetric extension.
This way we lose the original connection with the quadratic problem, but, by
casting the problem into a game-theoretic framework, we are able to prove a
relationship between the evolutionary stable strategies and maximal cliques that
have not yet been enumerated. In order to asses the usefulness of the approach we
compared it with several state-of-the-art approaches on the problem of extracting
the maximum clique from the DIMACS benchmark graphs. The approach proved
to be superior to other continuous-based approaches and competitive with the
state of the art search heuristics.
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