
Matching and Embedding through Edit-Union of
Trees

Andrea Torsello and Edwin R. Hancock

Dept. of Computer Science, University of York
Heslington, York, YO10 5DD, UK

atorsell@cs.york.ac.uk

Abstract. This paper investigates a technique to extend the tree edit
distance framework to allow the simultaneous matching of multiple tree
structures. This approach extends a previous result that showed the edit
distance between two trees is completely determined by the maximum
tree obtained from both tree with node removal operations only. In our
approach we seek the minimum structure from which we can obtain
the original trees with removal operations. This structure has the added
advantage that it can be extended to more than two trees and it imposes
consistency on node matches throughout the matched trees. Furthermore
through this structure we can get a “natural” embedding space of tree
structures that can be used to analyze how tree representations vary in
our problem domain.

1 Introduction

Recently, there has been considerable interest in the structural abstraction of
2D shapes using shock-graphs [11,17,19]. The shock-graph is a characterization
of the differential structure of the boundaries of 2D shapes. It is constructed by
labeling points on the Blum skeleton of an object. This is done by measuring the
rate of change with skeleton length of the radius of the maximal circle inscribed
within the object boundary. The shock labels indicate whether the radius is
increasing, decreasing, locally maximum or minimum. These cases correspond
to situations where the object boundary is tapering, constricting or a local bulge.
Recently, several authors have shown how to recognize shapes by matching shock-
graphs. For instance Pelillo, Siddiqi and Zucker [14] have used a novel relaxation
labeling method inspired by evolutionary game-theory. Sebastian, Kimia, and
Klein [12], have performed matching using graph-edit distance.

Although graph-matching allows the pairwise comparison of shock-graphs, it
does not allow the shape-space of shock-graphs to be explored in detail. Graph-
matching may provide a fine measure of distance between structures, and this
in turn may be used to cluster similar graphs. However, it does not result in
an ordering of the graphs that has metrical significance under structural vari-
ations due to graded shape-changes. This latter approach has been at heart
of recent developments in the construction of deformable models and contin-
uous shape-spaces [10]. Here shape variations have been successfully captured

A. Heyden et al. (Eds.): ECCV 2002, LNCS 2352, pp. 822–836, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Matching and Embedding through Edit-Union of Trees 823

by embedding them in a vector-space. The dimensions of this space span the
modes of shape-variation. For instance, Cootes and Taylor [7] have shown how
such shape-spaces can be constructed using the eigenvectors of a landmark co-
variance matrix. Sclaroff and Pentland [15], on the other hand, use the elastic
modes of boundaries to define the shape-space.

In this paper we take the view that although the comparison of shock-graphs,
and other structural descriptions of shape, via graph matching or graph edit dis-
tance has proved effective, it is in some ways a brute-force approach which is
at odds with the non-structural approaches to recognition which have concen-
trated on constructing shape-spaces which capture the main modes of variation
in object shape. Hence, we aim to address the problem of how to organize shock-
graphs into a shape-space in which similar shapes are close to one-another, and
dissimilar shapes are far apart. In particularly, we aim to do this in a way such
that the space is traversed in a relatively uniform manner as the structures under
study are gradually modified. In other words, the aim is to embed the graphs
in a vector-space where the dimensions correspond to principal modes in struc-
tural variation. There are a number of ways in which this can be achieved. The
first is to compute the distance between shock-graphs and to use multidimen-
sional scaling to embed the individual graphs in a low-dimensional space [22].
However, as pointed out above, this approach does not necessarily result in a
shape-space where the dimensions reflect the modes of structural variation of
the shock-graphs. The second approach is to extract feature vectors from the
graphs and to use these as a shape-space representation. A shape-space can be
constructed from such vectors by performing modal analysis on their covariance
matrix. However, when graphs are of different size, then the problem of how
to map the structure of a shock-graph to a vector of fixed length arises. This
problem can be circumvented using graph spectral features. This approach is
explored in a companion paper.

In this paper we take a different approach to the problem. We aim to embed
shock trees in a pattern space by mapping them to vectors of fixed length.
We do this as follows. We commence from a set of shock-trees representing
different shapes. From this set, we construct a super-tree from which each tree
may be obtained by the edit operations of node and edge removal. Hence each
shock-tree is a subtree of the super-tree. The super-tree is constructed so that
it minimizes the total edit distance to the set of shock-trees. To embed the
individual shock-trees in a vector-space we allow each node of the super-tree to
represent a dimension of the space. Each shock-tree is represented in this space
by a vector which has non-zero components only in the directions corresponding
to its constituent nodes. The non-zero components of the vectors are the weights
of the nodes. In this space, the edit distance between trees is the L1 norm between
their embedded vectors.

Hence the shape-space is arrived at by construction from the individual
shock-trees. An important ingredient of this construction is the way in which
we impose consistency on the separate trees. By constructing the tree-union,
we impose edge-consistency constraints on the individual node correspondences

824 A. Torsello and E.R. Hancock

among the individual constituent trees. The consequence of this is that the L1
norm between embedded vectors provides a more accurate representation of the
distribution of trees in shape-space. We exploit this property to locate clusters
of trees.

We experiment with our new method on sets of shock-trees. Here we perform
multidimensional scaling on the distances between trees. We demonstrate that
the clusters delivered by the L1 norms between trees in the vector-space are
better than those which result if we use the raw edit distances between pairs of
trees.

The proposed method provides a route to graph clustering. This problem
has been addressed previously through pairwise clustering [13], but is based on
a coarse measure of similarity. The proposed method extracts a more detailed
model of the structure present in the graphs. It is worth mentioning similar work
by Shokoufandeh et al. where graphs are embedded using spectral encoding [16].

2 Shock Tree

The practical problem tackled in this paper is the clustering of 2D binary shapes
based on the similarity of their shock-trees. The idea of characterizing boundary
shape using the differential singularities of the reaction equation was first intro-
duced into the computer vision literature by Kimia, Tannenbaum and Zucker
[11]. The idea is to evolve the boundary of an object to a canonical skeletal
form using the reaction-diffusion equation. The skeleton represents the singu-
larities in the curve evolution, where inward moving boundaries collide. The
reaction component of the boundary motion corresponds to morphological ero-
sion of the boundary, while the diffusion component introduces curvature de-
pendent boundary smoothing. Once the skeleton is to hand, the next step is
to devise ways of using it to characterize the shape of the original boundary.
Here we follow Zucker, Siddiqi, and others, by labeling points on the skeleton
using so-called shock-classes [19]. According to this taxonomy of local differential
structure, there are different classes associated with behavior of the radius of the
maximal circle from the skeleton to the nearest pair of boundary points. The
so-called shocks distinguish between the cases where the local maximal circle has
maximum radius, minimum radius, constant radius or a radius which is strictly
increasing or decreasing. We abstract the skeletons as trees in which the level in
the tree is determined by their time of formation [16,19]. The later the time of
formation, and hence their proximity to the center of the shape, the higher the
shock in the hierarchy.

3 Error-Tolerant Matching of Trees and Edit-Distance

The problem of how to measure the similarity of pictorial information which has
been abstracted using graph-structures has been the focus of sustained research
activity for over twenty years in the computer vision literature. Moreover, the
problem has recently acquired significant topicality with the need to develop

Matching and Embedding through Edit-Union of Trees 825

ways of retrieving images from large data-bases. Stated succinctly, the problem is
one of inexact or error-tolerant graph-matching. Early work on the topic included
Barrow and Burstall’s idea [1] of locating matches by searching for maximum
common subgraphs using the association graph, and the extension of the concept
of string edit distance to graph-matching by Fu and his co-workers [8]. The
idea behind edit distance [23] is that it is possible to identify a set of basic
edit operations on nodes and edges of a structure, and to associate with these
operations a cost. The edit-distance is found by searching for the sequence of
edit operations that will make the two graphs isomorphic with one-another and
which has minimum cost. The set of edit operations can be problem specific, but
a common choice is:

– node removal: remove a node and link the children to its parent.
– node insertion: the dual of node removal
– node relabel: change the label associated to a node.

By making the evaluation of structural modification explicit, edit distance pro-
vides a very effective way of measuring the similarity of relational structures.
Moreover, the method has considerable potential for error tolerant object recog-
nition and indexing problems.

Unfortunately, the task of calculating edit distance is a computationally hard
problem and most early efforts can be regarded as being goal-directed. Zhang and
Shasha [27] have investigated a specialization of the tree edit distance problem,
which involves adding the constraint that the solution must maintain the order
of the children of a node. With this order among siblings, they showed that the
tree-matching problem is in P and gave an algorithm to solve it. In subsequent
work they showed that the more general unordered case was indeed an NP hard
problem [28]. Among other approaches we mention the ones developed by Pelillo
et al. [14], and by Bartoli et al. [2], in which the graph theoretic notion of a
path string is used to transform the tree isomorphism problem into a single max
clique problem.

There is, however, a strong connection between the computation of maxi-
mum common subtree and the tree edit distance. In [5] Bunke showed that,
under certain constraints applied to the edit-cost function, the maximum com-
mon subgraph problem and the graph edit distance problem are computationally
equivalent. This is not directly true for trees, because of the added constraint
that a tree must be connected. But, extending the concept to the common edited
subtree, we can use common substructures to find the minimum cost edited tree
isomorphism.

Hierarchical graphs have an order relation induced by paths: given two nodes
a and b, (a, b) is in this relation if and only if there is a path from a to b. When
the directed graph is acyclical, this relation can be shown to be an order relation.
The requirement that matches respect this relation and that the edited trees be
connected, prevent us from applying Bunke’s result directly to tree matching
and search for a common subgraph.

The constraint to the edit-cost function proposed by Bunke in [5] is that
the cost of deleting and reinserting the same element with a different label is

826 A. Torsello and E.R. Hancock

not greater than the cost of relabeling it. In this way we can find an optimal
edit sequence without the need for a relabel operation. With this constraint on
relabel cost, we are left with only node removal and node insertion operations
to be performed on the data tree. Since a node insertion on the data tree is
dual to a node removal on the model tree, we can further reduce the number
of operations to be performed to only node removal, as long as we perform the
operations on both trees.

3.1 Inexact Tree Matching as a Common Substructure Problem

Transforming node insertions in one tree into node removals in the other allows
us to use only structure reducing operations. This, in turn, means that the op-
timal matching is completely determined by the subset of nodes left after the
minimum removal sequence. Hence, we can pose the edit distance problem as
a particular substructure isomorphism problem. Since node removal operations
respect the order relation implicit in the hierarchy, we can reduce the substruc-
ture isomorphism problem into subproblems in a divide and conquer approach
[22]. This approach derives from a number of observations. First, given two trees
t1 and t2, there are two subtrees t′1 and t′2 rooted at nodes v and v′ such that
the matching induced by edit distance between those two nodes is equivalent
to that obtained with the original trees. Hence the best match between t1 and
t2 is equivalent to the best match given the association of root nodes (v, v′).
Furthermore, this match can be found examining only descendents of v and v′.
If we can express the best match given the association of root nodes (v, v′) as
a function of lower level matches of descendants of v and v′, we can build the
solution to our matching problem bottom up. In the following sections we will
how we can find the best match using the lower level matches.

3.2 Editing the Transitive Closure of a Tree

In this section we show the relations between the graph theoretic concept of
transitive closure of a directed acyclic graph and the edit distance. An immediate
remark is that for each node removal operation Ev removing node v from the
tree t, we can define the corresponding edit operation Ev on the closure Ct of
the tree t. In both cases the edit operation removes the node v, all the incoming
edges, and all the outgoing edges. It is important to note that the transitive
closure operation and the node removal operation commute, that is we have:

Lemma 1. Ev(C(t)) = C(Ev(t))

We call a subtree s of Ct obtainable if for each node v of s if there cannot be
two children a and b so that (a, b) is in Ct. In other words, given two nodes a
and b, siblings in s, s is obtainable if and only if there is no path from a to b in
t. We can, now, prove the following:

Theorem 1. A tree t̂ can be generated from a tree t with a sequence of node
removal operations if and only if t̂ is an obtainable subtree of the directed acyclic
graph Ct.

Matching and Embedding through Edit-Union of Trees 827

Using this result, we can show that the minimum cost edited tree isomor-
phism between two trees t and t′ is, structurally, a common consistent subtree
of the two directed acyclic graphs Ct and Ct′. The minimum cost edited tree
isomorphism is a tree that can be obtained from both model tree t and data tree
t′ with node removal operations. By virtue of the theorem above, this tree is an
obtainable subtree of both Ct and Ct′, furthermore, the tree must be generated
with minimum combined edit cost.

3.3 Cliques and Common Obtainable Subtrees

In this section we show how to use these results to induce a divide and conquer
approach to edited tree matching. Given two trees t and t′ to be matched, we
calculate the transitive closures Ct and Ct′ and look for a common obtainable
tree that induces the optimal matches. The maximum such tree corresponds to
the maximum common obtainable subtree of Ct and Ct′.

For each pair of nodes v and w of the two trees to be matched, we divide
the problem into a maximum common obtainable subtree rooted at v and w.
That is, we fix the matching of v to w and we search for the maximum edited
subtree common to the two subtrees rooted at v and w. We show that, given
the cardinality of the subtree rooted at each child of v and w, we can transform
the search for the maximum common substructure into the search for a max
weighted clique. Solving this problem for each pair of nodes, and looking for
the maximum among each node pair, we can find the isomorphism linked to the
minimum edit distance.

We commence by transforming the problem from the search of the minimum
edit cost linked to the removal off some nodes, to the maximum of a utility
function linked to the nodes that are retained. To do this we assume that we
have a weight wi assigned to each node i, that the cost of matching a node i to a
node j is |wi−wj |, and that the cost of removing a node is equivalent to matching
it to a node with weight 0. We define the set M ⊂ N t × N t′

the set of pair of
nodes in t and t′ that match, the set Lt = {i ∈ N t|∀x, < i, x >/∈ M} composed
of nodes in the first tree that are not matched to any node in the second, and
the set Rt′

= {j ∈ N t′ |∀x, < x, j >/∈ M}, which contains the unmatched nodes
of the second set. With these definitions, we can write:

d(t, t′) =
∑

i∈Lt

wi +
∑

j∈Rt′
wj +

∑

<i,j>∈M

|wi − wj | =

=
∑

i∈N t

wi +
∑

j∈N t′
wj − 2

∑

<i,j>∈M

min(wi, wj). (1)

We call the quantity

U(M) =
∑

<i,j>∈M

min(wi, wj).

the utility of the match M . Clearly the match that maximizes the utility mini-
mizes the edit distance.

828 A. Torsello and E.R. Hancock

Let us assume that we know the utility of the best match rooted at every de-
scendent of v and w. We aim to find the set of siblings with greatest total utility.
To do this we make use of a derived structure similar to the association graph
introduced by Barrow in [1]. The nodes of this structure are pairs drawn from
the Cartesian product of the descendents of v and w and each pair correspond
to a particular association between a node in one tree to a node in the other. We
connect two such associations if and only if there is no inconsistency between
the two associations, that is the corresponding subtree is obtainable. This means
that we connect nodes (p, q) and (r, s) if and only if there is no path connecting
p and r in t and there is no path connecting q and s in t′. Furthermore, we
assign to each association node (a, b) a weight equal to the utility of the best
match rooted at a and b. The maximum weight clique of this graph is the set
of consistent siblings with maximum total utility, hence the set of children of
v and w that guarantee the optimal isomorphism. The utility of the maximum
common consistent subtree rooted at v and w will be the weight of the isomor-
phisms rooted at the children of v and w plus the contribution of v and w, that
is the weight of the clique plus the minimum of the weights of v and w. Given
a method to obtain a solution for the maximum weight clique problem, we can
use it to obtain the solution to our isomorphism problem. We refer to [3,22] for
heuristics for the weighted clique problem.

4 Edit-Intersection and Edit-Union

In the previous sections we have seen how the edit distance between two trees
is completely determined by the set of nodes that do not get removed by edit

g

f d

h

a

dc

f

b

e

e g

b

a

a

b

e f g d

Fig. 1. Edit-Intersection of
two trees.

operations and, therefore, get matched. That is, in
a sense, we are taking the intersection of the sets
of nodes of the two structures. With this approach
we match the trees by extracting a structure that
can be obtained from our original trees by removing
some nodes. We have seen how the edit distance be-
tween two trees is related to this intersection struc-
ture (see Figure 1). We would like to extend the
concept to more than two trees so that we can com-
pare a shape tree to a whole set T of trees. Moreover,
this allows to determine how a new sample relates to
a previous distribution of tree structures. Formally,
we would like to find the match that minimizes the
sum of the edit distances between the new tree t∗

and each tree t ∈ T , with the added constraint that
if node a in the new tree t∗ is matched to node b in
a tree t1 ∈ T and to node c in another tree t2 ∈ T ,
then b must be matched to c, i.e.

< a, b >∈ M∧ < a, c >∈ M ⇒< b, c >∈ M,

Matching and Embedding through Edit-Union of Trees 829

were M is the “matches to” relation on nodes. To find this match we could find
the maximum substructure that can be obtained from any tree in a set removing
appropriate nodes, unfortunately not keeping unmatched nodes we are dropping
too much information: the set of common nodes becomes marginal and we lose
information about how the nodes distribute in the various structures. To use
Bunke’s analogy [5], the maximum common substructure give us information
about mean of the trees, but it completely drops any information about how
sample trees distribute around this mean. To overcome this limitation we can
calculate a union of the nodes: a structure from which we can obtain any tree
in our set removing appropriate nodes, as opposed to the intersection of nodes,
which is a structure that can obtained removing nodes from the original trees.

Any such structure has the added advantage of implicitly creating an embed-
ding space for our trees: we are guaranteed that any node in any tree matches to
a node in this structure. Assigning to each node a coordinate in a vector space
V , we can associate to tree t the vector v ∈ V so that vi = wi, where wi in the
weight of the node of t associate with coordinate i.

4.1 Union of Two Trees

Once more, the edit-union of two trees is completely determined by the set of
matched nodes. Start with the two trees and iteratively merge nodes that are
matched. At the end you end up with a directed acyclical graph with multiple
paths connecting various nodes (see Figure 2). This structure, thus, has more

g

f d

h

h

f

a

dc

e f

b

e g

b

a

e g

c d

a

b

Fig. 2. Edit-Union of two
trees.

α β

α β

α

βα

β

UnionIntersection

b

b

a

c

a

b’

c

a

b’

c

a

c

Fig. 3. Edit-Union is not always a tree.

links than necessary and you cannot obtain the first tree by node removal op-
erations alone: you need to remove the superfluous edges. If in the figure we
eliminate the edges connecting node b to nodes e,f and g, we obtain a tree.
Starting from this tree we can obtain either one of the original trees by node

830 A. Torsello and E.R. Hancock

removal operations alone. Furthermore, the transitive closure of this tree and
the closure of the unaltered structure are identical.

One would hope that such a structure always be a tree, so that we can use
the matching technique already described to compare a tree to a group of trees.
Unfortunately, it is not always possible to find a tree such that we can edit it
to obtain the original trees: see, for example, Figure 3. In this figure α and β
are subtrees. Because of the constraints posed by matching trees α and trees β,
nodes b and b′ cannot be matched and neither b can be a child of b′ nor b′ a
child of b. The only alternative is to keep the two alternative paths separate: this
way we can obtain the first tree removing the node b′ and the second removing
b. Actually, removing the nodes is not enough, shortcutting edges need to be
removed, but, once again, the transitive closure of the union minus node b′ is
identical to the closure of the first tree.

4.2 Matching a Tree to a Union

As seen, in general the union of two trees is a directed acyclical graph, and
our approach can only match trees, and would fail on structures with multiple
paths from one node a to node b, since it would count any match in the subtree
rooted at b twice. Hence, given a joined representation we cannot directly use
our approach to compare a tree to a tree set or a distribution of trees.

Fortunately, we don’t need to perform a generic match between two generic
directed acyclic graphs: in an edit-union we have multiple paths between node a
and node b, but each tree can have only one, hence multiple paths are mutually
exclusive. If we constrain our search to match nodes in only one path and we
match the union to a tree, we are guaranteed not to count the same subtree
multiple times. Interestingly, this constraint can be merged with the obtainability
constraint: we say that a match is obtainable if for each node v there cannot be
two children a and b and a node c so that there is a path, possibly of length
0, from a to c and one from b to c. This constrain reduces to obtainability for
trees when c = b, but it also prevents a and b from belonging two to separate
paths joining at c. Hence from a node where multiple paths fork, we can extract
children matches from one path only.

We want to find the match consistent with the obtainability constraint that
minimizes the sum of the edit distance between the new tree and each tree in
the set. To this effect we can maximize the sum of the utilities.

U(M) =
∑

t′∈T

∑

<i,j>∈M

min(wt
i , w

t′
j).

Where M ⊂ N t × N T ∪
is the set of matches between the nodes N t of the tree

t and the nodes N T ∪
, T∪ is the union structure of the set of trees T , and wt

i

is the weight assigned in tree t to node i. When the edit distance is uniform
(all weights are 1), the total utility of a single match is equal to the number
of trees that have an instance of that node (see Figure 4). Solving the modified
weighted clique problems we obtain the correspondence between the nodes in the

Matching and Embedding through Edit-Union of Trees 831

UnionIntersection

1

1

1

1 1

1

1

2

2

1

Fig. 4. The weight of a node in
the union account for every node
mapped to that node.

new tree and the nodes in each tree in the set,
while the edit distance obtained is the sum of
the distances from the new tree to each tree
in T .

To be able to calculate this quantity we
keep, for each node in the union structure,
the weights of the matched nodes. A way to
do this is to assign to each node in the union
a vector of dimension equal to the number
of trees in the set. The ith coordinate of this
vector will be the weight of the corresponding
node in the ith tree, 0 if the ith tree doesn’t
have a node matching to the current node.
This representation also allows us to easily
obtain the coordinate of each tree in the set
in the embedding space induced by the union:
the ith weight of the jth node is the jth co-
ordinate of the ith tree. Such embedding is
defined modulo reordering of trees and nodes.

It is worth noting that this approach can
be extended to match two union structures,
as long as at most one has multiple paths to
a node. To do this we iterate through each pair of weights drawn the two sets,
that is we define the utility as:

U(M) =
∑

t∈T1,t′∈T2

∑

<i,j>∈M

min(wt
i , w

t′
j),

where M ⊂ N (T ∪
1) × N (T ∪

2) is the set of matches between the nodes of the
union structures T∪

1 and T∪
2 . The requirement that no more than one union has

multiple paths to a node is required to avoid double counting.

4.3 Joining Multiple Trees

In the previous paragraph we have seen that we can construct the edit union of
a set of trees and how to compare a tree to this superstructure. We now want
to show how to construct such structure. Finding the super-structure that min-
imizes the total distance between trees in the set is computationally infeasible,
but we propose a suboptimal iterative approach that at each iteration extends
the union adding a new tree to it. This is done by matching the tree to the union
and then using the matched nodes to construct the union of the two structures.
That is, we pick a new tree t∗ and we match it against the union T∪(t), to obtain
the union T∪(t+1). We proceed until we have joined every tree.

In order to increase the accuracy of the approximation, we want to merge
trees with smaller distance first. This is because we can be reasonably confident
that, if the distance is small, the extracted correspondences are correct. We

832 A. Torsello and E.R. Hancock

could start with the set of trees, merge them and replace them with the union
and reiterate until we end up with only one structure, i.e. at each iteration
pick two trees t1 and t2 so that the distance d(t1, t2) is minimal, merge the
two tree and reinsert the union structure t∪1,2 in our set of trees to be merged.
Unfortunately, since we have no guarantees that the edit-union is a tree, we
might end up trying to merge two graph with multiple paths to a node, and our
matching algorithm cannot cope with that. For this reason, if merging two trees
give a union that is not a tree, we discard the union and try with the next-best
match. When no trees can be merged without duplicating paths, we merge the
remaining structures using the first merging approach described. This way we
are guaranteed to merge at each step at most one multi-path structure.

5 Experimental Results

We evaluate the new approach on the problem of shock tree matching. In order to
asses the quality of the approach we compare the embedding obtained with those
obtained using the graph clustering method described in [22]. In particular, we
compare the the first two principal components of the embedding generated join-
ing purely structural skeletal representations, with 2D multi-dimensional scal-
ing of the pairwise distances of the shock-trees weighted with some geometri-
cal information. The addition of matching consistency across shapes allows the
embedding to better capture the structural information present in the shapes,
yielding embeddings comparable, if not better, than those provided by localized
geometrical information.

We run three experiments with 4, 5, and 9 shapes each. In each experiment
the shapes belong to two or more distinct visual clusters. In order to avoid scaling
effect due to difference in the number of nodes, we normalize the embedding
vectors so that they have L1 norm equal to 1, and then we extract the first 2
principal components.

Fig. 5. Top: embedding through union. Bottom: multi-dimensional scaling of pairwise
distance

Matching and Embedding through Edit-Union of Trees 833

Fig. 6. Top: embedding through union. Bottom: multi-dimensional scaling of pairwise
distance

Fig. 7. Top: embedding through union. Bottom: multi-dimensional scaling of pairwise
distance

Figure 5 shows a clear example where the embedding obtained through edit-
union is better than that obtained through multi-dimensional scaling of the
pairwise distances. In this case the pairwise distance algorithm consistently un-
derestimates the distance between shapes belonging to different clusters. This
is a general problem of pairwise matching: it works very well when the shapes
are close, when the extracted correspondence is reliable, but as the shapes move
further apart the advantage the correct correspondence has over alternative ones
diminishes, until, eventually, another match is selected, which reports a higher
distance. The result of this is a consistent underestimation of the distance the
shapes move further apart in shape space. Figures 6 and 7 show examples where
the distance in shape space is not big enough to observe the described behav-
ior, yet the embedding obtained through union fares well against the pairwise
edit-distance, especially taking into account the fact that it uses only structural
information while the edit-distance matches shown weight the structure with ge-
ometrical information. In particular, Figure 7 shows a better ordering of shapes,
with brushes being so tightly packed that they overlap in the image. It is inter-
esting to note how the union embedding puts the monkey wrench (at the top)
somewhere in-between pliers and wrenches: the algorithm is able to consistently
match the head to the heads of the wrenches, and the handles to the handles of
the pliers.

834 A. Torsello and E.R. Hancock

5.1 Synthetic Data

To augment these real world experiments, we have performed the embedding
on synthetic data. The aim of the experiments is to characterize the ability of
the approach to generate a shape space. To meet this goal we have randomly
generated some prototype trees and, from each tree, we generated five or ten
structurally perturbed copies. The procedure for generating the random trees
was as follows: we commence with an empty tree (i.e. one with no nodes) and we
iteratively add the required number of nodes. At each iteration nodes are added
as children of one of the existing nodes. The parents are randomly selected with
uniform probability from among the existing nodes. The weight of the newly
added nodes are selected at random from an exponential distribution with mean
1. This procedure will tend to generate trees in which the branch ratio is highest
closest to the root. This is quite realistic of real-world situations, since shock
trees tend to have the same characteristic. To perturb the trees we simply add
nodes with using the same approach.

In our experiments the size of the prototype trees varied from 5 to 20 nodes.
As we can see from Figure 8, the algorithm was able to clearly separate the
clusters of trees generated by the same prototype. Figure 8 shows three exper-
iments with synthetic data. The images at the top are produced embedding 5
structurally perturbed trees per prototype: trees 1 to 5 are perturbed copies of

12

3
4

5

6
7

8910

1
2

3
45

6
7

8

9
10

12

345

6

7

8

9
10

11

12
1314
151617
1819

20

Fig. 8. Synthetic clusters

Matching and Embedding through Edit-Union of Trees 835

the first prototype, 6 to 10 of the second. The bottom image shows the result
of the experiment with 10 structurally perturbed trees per prototype: 1 to 10
belong to one cluster, 11 to 20 to the other. In each image the clusters are well
separated.

6 Conclusions

In this paper we investigated a technique to extend the tree edit distance frame-
work to allow the simultaneous matching of multiple tree structures. With this
approach we can impose a consistency of node correspondences between matches,
avoiding the underestimation of the distance typical of pairwise edit-distances
approaches. Furthermore through this methods we can get a “natural”embedding
space of tree structures that can be used to analyze how tree representations vary
in our problem domain.

In a set of experiments we apply this algorithm to match shock graphs, a
graph representation of the morphological skeleton. The results of these experi-
ments are very encouraging, showing that the algorithm is able to group similar
shapes together in the generated embedding space.

References

1. H. G. Barrow and R. M. Burstall, Subgraph isomorphism, matching relational
structures and maximal cliques, Inf. Proc. Letter, Vol. 4, pp.83, 84, 1976.

2. M. Bartoli et al., Attributed tree homomorphism using association graphs, In
ICPR, 2000.

3. I. M. Bomze, M. Pelillo, and V. Stix, Approximating the maximum weight clique
using replicator dynamics, IEEE Trans. on Neural Networks, Vol. 11, 2000.

4. H. Bunke and G. Allermann, Inexact graph matching for structural pattern recog-
nition, Pattern Recognition Letters, Vol 1, pp. 245-253, 1983.

5. H. Bunke and A. Kandel, Mean and maximum common subgraph of two graphs,
Pattern Recognition Letters, Vol. 21, pp. 163-168, 2000.

6. W. J. Christmas and J. Kittler, Structural matching in computer vision using
probabilistic relaxation, PAMI, Vol. 17, pp. 749-764, 1995.

7. T. F. Cootes, C. J. Taylor, and D. H. Cooper, Active shape models - their training
and application, CVIU, Vol. 61, pp. 38-59, 1995.

8. M. A. Eshera and K-S Fu, An image understanding system using attributed sym-
bolic representation and inexact graph-matching, PAMI, Vol 8, pp. 604-618, 1986.

9. L. E. Gibbons et al., Continuous characterizations of the maximum clique problem,
Math. Oper. Res., Vol. 22, pp. 754-768, 1997

10. T. Heap and D. Hogg, Wormholes in shape space: tracking through discontinuous
changes in shape, ICCV, pp. 344-349, 1998.

11. B. B. Kimia, A. R. Tannenbaum, and S. W. Zucker, Shapes, shocks, and deforma-
tions I, International Journal of Computer Vision, Vol. 15, pp. 189-224, 1995.

12. T. Sebastian, P. Klein, and B. Kimia, Recognition of shapes by editing shock
graphs, in ICCV, Vol. I, pp. 755-762, 2001.

13. B. Luo, et al., A probabilistic framework for graph clustering, in CVPR, Vol. I,
pp. 912-919, 2001.

836 A. Torsello and E.R. Hancock

14. M. Pelillo, K. Siddiqi, and S. W. Zucker, Matching hierarchical structures using
association graphs, PAMI, Vol. 21, pp. 1105-1120, 1999.

15. S. Sclaroff and A. P. Pentland, Modal matching for correspondence and recognition,
PAMI, Vol. 17, pp. 545-661, 1995.

16. A. Shokoufandeh, S. J. Dickinson, K. Siddiqi, and S. W. Zucker, Indexing using a
spectral encoding of topological structure, in CVPR, 1999.

17. K. Siddiqi and B. B. Kimia, A shock grammar for recognition, in CVPR, 507-513,
1996.

18. K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker, The hamilton-jacobi
skeleton, in ICCV, pp. 828-834, 1999.

19. K. Siddiqi et al., Shock graphs and shape matching, Int. J. of Comp. Vision, Vol.
35, pp. 13-32, 1999.

20. K-C Tai, The tree-to-tree correction problem, J. of the ACM, Vol. 26, pp. 422-433,
1979.

21. A. Torsello and E. R. Hancock, A skeletal measure of 2D shape similarity, Int.
Workshop on Visual Form, LNCS 2059, 2001.

22. A. Torsello and E. R. Hancock, Efficiently computing weighted tree edit distance
using relaxation labeling, in EMMCVPR, LNCS 2134, pp. 438-453, 2001

23. W. H. Tsai and K. S. Fu, Error-correcting isomorphism of attributed relational
graphs for pattern analysis, Sys., Man, and Cyber., Vol. 9, pp. 757-768, 1979.

24. J. T. L. Wang, K. Zhang, and G. Chirn, The approximate graph matching problem,
in ICPR, pp. 284-288, 1994.

25. R. C. Wilson and E. R. Hancock, Structural matching by discrete relaxation,
PAMI, 1997.

26. K. Zhang, A constrained edit distance between unordered labeled trees, Algorith-
mica, Vol. 15, pp. 205-222, 1996.

27. K. Zhang and D. Shasha, Simple fast algorithms for the editing distance between
trees and related problems, SIAM J. of Comp., Vol. 18, pp. 1245-1262, 1989.

28. K. Zhang, R. Statman, and D. Shasha, On the editing distance between unorderes
labeled trees, Inf. Proc. Letters, Vol. 42, pp. 133-139, 1992.

	Introduction
	Shock Tree
	Error-Tolerant Matching of Trees and Edit-Distance
	Inexact Tree Matching as a Common Substructure Problem
	Editing the Transitive Closure of a Tree
	Cliques and Common Obtainable Subtrees
	Edit-Intersection and Edit-Union
	Union of Two Trees
	Matching a Tree to a Union

	Joining Multiple Trees
	Experimental Results
	Synthetic Data

	Conclusions

