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Abstract

This paper addresses the problem of learning archetypal
structural models from examples. This is done by provid-
ing a generative model for graphs where the distribution of
observed nodes and edges is governed by a set of indepen-
dent Bernoulli trials with parameters to be estimated, how-
ever, the correspondences between sample node and model
nodes is not known and must be estimated from local struc-
ture. The parameters are estimated maximizing the likeli-
hood of the observed graphs, marginalizing it over all possi-
ble node correspondences. This is done adopting an impor-
tance sampling approach to limit the exponential explosion
of the set of correspondences. The approach is used to sum-
marize the variation in two different structural abstraction
of shape: Delaunay graph over a set of image features and
shock graphs. The experiments show that the approach can
be used to recognize structures belonging to a same class.

1. Introduction
Graph-based representations [1] have been used with

considerable success in computer vision in the abstraction
and recognition of object shape and scene structure. Con-
crete examples include the use of shock graphs to represent
shape-skeletons [14], the use of trees to represent articu-
lated objects [15, 12, 20] and the use of aspect graphs for
3D object representation [5]. The attractive feature of struc-
tural representations is that they concisely capture the rela-
tional arrangement of object primitives, in a manner which
can be invariant to changes in object viewpoint. However,
despite their many advantages, the methodology available
for learning structural representations from sets of training
examples is relatively limited. As a result, the process of
constructing archetypal representations which capture the
modes of structural variation for sets of graphs has proved
to be elusive. For this reason geometric representations of
shape such have proved to be more amenable when variable

sets of shapes must be analyzed.
There has been considerable interest in learning struc-

tural representations from samples of training data in the
context of Bayesian networks [11, 7], or general relational
models [8]. The idea is to associate random variables with
the nodes of the structure and to use a structural learning
process infer the stochastic dependency between these vari-
ables. Although these approaches provide a powerful way
to infer the relations between the observable quantities of
the model under examination, they rely on the availability
of correspondence information for the nodes of the different
structures used in learning. The problem that we wish to ad-
dress here is complementary to that of learning a graphical
model. In the case of a graphical model, the training data
is accompanied with complete correspondence information,
but the structural information is absent and must be inferred
from the data. When learning structural archetypes, on the
other hand, the data has structural organization, but corre-
spondence information is lacking and must be estimated us-
ing graph matching techniques. Additionally, in the latter
problem, the structural information may also be incomplete
and noisy.
Recently, however, there has been some effort aimed at

learning structural archetypes and clustering data abstracted
in terms of graphs. Jain andWysotzki adopt a geometric ap-
proach which aims to embed graphs in a high-dimensional
space by means of the Schur-Hadamard inner product [13],
while Hagenbuchner et al. [9] use Recursive Neural Net-
works to perform unsupervised learning of graph structures.
While these approaches preserve the structural information
present, they do not provide a means of characterizing the
modes of structural variation encountered and this renders
them of limited use for the analysis of shape. Bonev et
al. [3], and Bunke et al. [4] summarize the data by creat-
ing super-graph representation from the available samples,
while White and Wilson [19] use a probabilistic model over
the spectral decomposition of the graphs to produce a gener-
ative model of their structure. While these techniques pro-
vide a structural model of the samples, the way in which the
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Figure 1. A structural model and the generated graphs. When the
correspondence information is lost, the second and third graph be-
come indistinguishable.

supergraph is learned or estimated is largely heuristic in na-
ture and are not rooted in a statistical learning framework.
In [18] we proposed an approach to learn trees by defining
a superstructure called tree-union that captures the relations
and observation probabilities of all nodes of all the trees
in the training set. The structure is obtained by merging
the corresponding nodes of the structures and is critically
dependent on both the extracted correspondence and the or-
der in which trees are merged. Todorovic and Ahuja [17]
applied the approach to object recognition based on a hi-
erarchical segmentation of image patches and lifted the or-
der dependence by repeating the merger procedure several
times and picking the best model according to an entropic
measure. The problemwith these approaches is that they are
all reliant of the extraction of node correspondences which,
as we will show later, may induce a bias in the estimation.
The aim in this paper is to develop a framework for

the unsupervised learning of generative models of graph-
structures from sets of examples. The model can then be
used to perform supervised or unsupervised classification
of structural abstractions of shape. Here we present an ap-
proach for unattributed graphs, but attributes and weights
can be added to the model with an approach similar to [18].

2. Generative Graph model
Consider the set of undirected graphs S = (g1, . . . , gl),

our goal is to learn a generative graph model G that can be
used to describe the distribution of structural data and char-
acterize the structural variations present the set. To develop
this probabilistic model, we make an important simplifying
assumption: We assume that the observation of each node
and each edge is independent of the others. Hence, the pro-
posed structural model is a complete graph G = (V, E, Θ),
where V = {1, . . . , n} is the set of nodes, E ⊆ V × V is
the set of edges andΘ = (θij) is a set of observation proba-
bilities. In an observation, or sample, from this model, node
i ∈ V is present with probability θii, i.e., the existence of
each node in a sample graph is modelled as a Bernoulli trial
of parameter θi. Futher, edge (i, j) is present with proba-
bility θij , conditioned to the fact that both nodes i and j are
present. Here we will focus on this unattributed model, but,
in order to deal with weighted graphs, the Bernoulli trials
can be substituted with more complex node and edge obser-
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Figure 2. Model estimation bias. If a single node correspondence
is taken into account the estimated model will exhibit a bias tor-
wards one of multiple possible correspondences.

vation probabilities.
After the graph has been sampled from the generative

model, we lose track of the correspondences between the
sample’s nodes and the nodes of the model that generated
them. We can model this by saying that an unknown ran-
dom permutation is applied to the nodes of the sample. For
this reason, the observation probability of a sample graph
depends on the unknown correspondences between sample
and model nodes. Figure 1 shows a graph model and the
graphs that can be generated from it with the correspond-
ing probabilities. Here the numbers next to the nodes and
edges of the model represent the values of θij . Note that,
when the correspondence information (letters in the Figure)
is dropped, we cannot distinguish between the second and
third graph anymore, yielding the final distribution.
Let assume that we have a model G with n nodes and

that we want to compute the probability that graph g with
m nodes was sampled from it, then clearly m ≤ n since
G can only generate graphs of up to n nodes. Let Ag be
the adjacency matrix of g, Im the identity matrix of dimen-
sionm and extn(A) an operator that extends matrix A to a
n × n matrix by adding columns and rows of zeroes at the
end of A. We will represent graph g with the n × n matrix
G = extn(Ag + Im). This way, a graph node i is present if
Gii = 1 and an edge (i, j) is present if Gij = 1. Further,
correspondences from the nodes of extended graph repre-
sentation to the nodes of the model are in correspondence
with the group Σn of permutations over n elements.
With this notation, the probability that a graph g was

sampled from a model G given the correspondencesσ ∈ Σn

is P (g|G, σ) =
∏n

i=1

∏n
j=i Θ

σ(i)σ(j)
ij , where Θhk

ij is the
probability that model edge (i, j) generated graph edge
(h, k), where pairs with the same index represent a node
instead of and edge. This probability is defined as follows:

Θhk
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = j ∧ h �= k or i �= j ∧ h = k ,

θii if i = j ∧ h = k ∧Ghh = 1 ,

1− θii if i = j ∧ h = k ∧Ghh = 0 ,

θij if i �= j ∧ h �= k ∧Ghk = 1 ,

1− θij if i �= j ∧ h �= k ∧ Ghh = 1 ∧
Gkk = 1 ∧Ghk = 0 ,

1 otherwise.

Almost invariably, the graph learning approaches in



the literature have used some graph matching technique
to estimate the correspondences and use them in learn-
ing the model parameters. This is equivalent to defin-
ing the sampling probability for node g as P (g|G) =
maxσ∈Σn

P (g|G, σ). However, assuming the maximum
likelihood estimation, or simply a single estimation, for the
correspondences yields a bias in the estimation as shown
in Figure 2. Here, the graph distribution obtained from the
model in Figure 1 is used to infer a model, however, since
each node of the second sample graphs is always mapped to
the same model node, the resulting inferred model is differ-
ent from the original one and it does not generate the same
sample distribution.
To solve this bias we propose to marginalize the sam-

pling probability over all possible correspondences, hence
obtaining the probability

P (g|G) =
∑

σ∈Σn

P (g|G, σ)P (σ) =
1

n!

∑
σ∈Σn

P (g|G, σ) .

(1)
Note that this probability takes into account the order in
which the sample nodes are stored. The probability if we
do not consider the order, or, equivalently, the probability
of the quotient group modulo graph isomorphism, is

P (ĝ|G) =
1

(n−m)!|Σg|

∑
σ∈Σn

P (g|G, σ) , (2)

where (n−m)! is the numbermapping for the nodes not in g

andΣg is the set of symmetries of g, i.e., the set of automor-
phisms of g onto itself. As it will be shown, the actual value
of |Σg| is irrelevant when learning the model and is only
important when trying to estimate P (ĝ|G). However, in the
rest of the paper we will assume that |Σg| = 1 due to an im-
portant result of graph theory by Erdös and Rényi [6] that
states that almost all graphs have no automorphism other
than the identity.
Clearly, averaging over all possible correspondences is

not possible due to the super-exponential growth of the size
of Σn; hence, we have to resort to an estimation approach.
We propose to use importance sampling to compute a fast-
converging estimate of P (ĝ|G).

3. Importance Sampling
Importance Sampling [10] is a Monte Carlo sampling

technique designed to reduce the variance of the estima-
tors for averages of the type: E[h(x)] = 1

‖A‖

∫
A

h(x) dx ,

where h(x) is any real function in the domain A. This is
done by sampling A according to a distribution f not nec-
essarily uniform in A. Let x = (x1, . . . , xk)T be k samples
extracted from the distribution f , we estimate E[h(x)] as:

E[h(x)] ≈
1

k

k∑
i=1

h(xi)

1
‖A‖

f(xi)

where
1
‖A‖

f(xi)
is called the importance factor of xi. It is easy

to show that the estimation is unbiased, in fact

EF [h(x)

1
‖A‖

f(x)
] =

∫
A

h(x)

1
‖A‖

f(x)
dF (x) =

1

‖A‖

∫
A

h(x)
1

f(x)
f(x)dx = E[h(x)] .

The advantage of the approach comes from a judicious
choice of f which should be chosen to be close to h(x)R

A
h(x) dx

.

In the limit, if f(x) = h(x)R
A

h(x) dx
, the variance of the esti-

mator is zero and, hence, a single sample is sufficient to
estimate E[h(x)].

3.1. Correspondence Sampler
In order to estimate P (g|G), and to learn the graph

model, we need to sample a permutation σ ∈ ΣN with prob-
ability close to P (g|G,σ)P

σ∈Σn
P (g|G,σ) = P (σ|g,G) , that is, close

to the posterior of the correspondences. Assume that we
know the node-correspondence matrixM = (mih), which
gives us the probability that model node i corresponds to
graph node h. Note that M is a doubly-stochastic matrix,
i.e., its rows and column add up to one. We can sam-
ple the correspondence for model node 1 picking a node
h1 with probability m1h1 . Then, we need to condition the
node-correspondencematrix to the current match by taking
into account the structural information between the sampled
node and all the others. We do this by multiplyingmjk by
Θh1k

1j , i.e., the probability that the edges/non-edges between
k and h1 map to the model edge (1, j). The multiplied ma-
trix M̄ = (m̄jk = mjkΘh1k

1j ) is then projected to a double-
stochastic matrix using the the Sinkhorn projection [16].
We can then sample a correspondence for model node 2 ac-
cording to the distribution of the second row of Mh1

1 and
compute the conditional matching probability M

h1,h2

1,2 in
much the same way we computed Mh1

1 . In general, after
selecting the correspondence hi for model node i, the con-
ditional node matching probability matrixM

h1,...,hi

1,...,i can be
computed as follows:

M
h1,...,hi

1,...,i = π
(
M

h1,...,hi−1

1,...,i−1 	 Θhi−
i−

)
,

where 	 denotes the Hadamard or element-wise product,
Θhi−

i− is the matrix obtained from Θhk
ij fixing i and hi, and

π(M) denotes the Sinkhorn projection of matrix M . It-
erating the procedure until all the node correspondences
h1, . . . , hn have been selected, we have our sampled cor-
respondence σ such that σ(i) = hi.
The sampling procedure can be better described with the

following example: Let g be a 4 node ring and G a de-
terministic model identical to g, i.e., the g and G be char-

acterized by the adjacency matrix A =

(
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

)



and the observation probabilities Θ =

(
1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

)
respectively. In this case there are only 8 permutation
with non-zero probability: 4 rotations plus the 4 rota-
tions followed an order inversion. However, each model
node i is equally likely to be matched to any graph node
h, hence, giving a matching probability matrix M =(

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

)
which gives us very little infor-

mation about the correct correspondences. To simulate the
behavior of the sampler, assume we have select the map-
ping 1 → 1, i.e., a correspondence that maps the first model
node to the first node of the observed graph; this map has
probability 0.25. By multiplying by Θ1−

1− and projecting
the result, we obtain the conditional matching probability

matrix M1
1 =

(
1 0 0 0
0 0.5 0 0.5
0 0 1 0
0 0.5 0 0.5

)
, and from that, select-

ing the mapping 2 → 4 with probability 0.5, we obtain

M
1,4
1,2 =

(
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

)
. The set of correspondences in

σ is now completely determined, sampled with probability
0.125, which is exactly the same as the posterior of σ.
In [2] the authors propposed a similar, importance sam-

pling based, approach to estimating the permanent of a ma-
trix. They did that by sampling over the set of permuta-
tion using a similar sampler. However, in their proposal the
conditional matching probability was computed by simply
projecting the (n − 1) × (n − 1) minor of M obtained by
eliminating the chosen row and column, without multiply-
ing it by Θh1k

1j . Unfortunately, this much simpler sampler
will not work in our case as it does not sample close to the
posterior in several important cases. In particular, in the
previous ring example it would sample uniformly from the
set of permutations.

3.2. Node Matching Probability
Note that the performance of the sampler is critically

dependent on the initial node matching probability ma-
trix M , which, in theory, should be computed as M =∑

σ∈Σn
P (g|G, σ)Mσ , where Mσ is the permutation ma-

trix of σ. However, marginalizing over the set of corre-
spondences in this case is not possible.Several graph match-
ing approaches could be used to estimate M , but here, we
propose a self-correcting approach which improves the es-
timate with each sample.
In order to obtain the initial estimate we assign

the matching probability mih according only to lo-
cal information from the neighborhoods of nodes i

and h. Theoretically this would mean computing∑
σ∈ΣN
σ(i)=h

∏n

j=1 Θ
h,σ(j)
i,j , and then re-project the matrix us-

ing the Sinkhorn projection. However, here we ap-
proximate this by projecting M̂ = (m̂ih), where
m̂ih = min

(∏n
k=1

∑n
j=1 Θhk

ij ,
∏n

j=1

∑n
k=1 Θhk

ij

)
. Note

that m̂ih ≥ m̄ih for all i, h = 1 . . . n. Clearly this is a
very rough estimate and better ones can be devised, but ex-
perimentally we have seen that it is good enough for our
purposes.
In order to update the matching estimate, we assume that

each row and column are the parameters of a multinomial
distribution and perform Bayesian estimation of the matrix
using a Dirichlet prior. Hence, the estimation of the match-
ing probability matrix at time t will be

M t =
n0

n0 + t
M0 +

t

n0 + t

∑t

i=1
P (g|G,σi)

f(σi) Mσi∑t

i=1
P (g|G,σi)

f(σi)

, (3)

where n0 is a prior parameter that tells us how confident we
are in our initial estimate.

4. Model Estimation
With the correspondence sampler to hand, we can per-

form a maximum likelihood estimation of the model pa-
rameters. The likelihood of model G given a set of graphs
examples S, is:

L(G) =
∑
g∈S

ln

(
1

(n−m)!|Σg|

∑
σ∈Σn

P (g|G, σ)

)
≈

≈
∑
g∈S

ln

⎛
⎝ n!

kg(n−m)!|Σg|

kg∑
σ∼f

P (g|G, σ)
1
n!

f(σ)

⎞
⎠ , (4)

where with σ ∼ f we indicate that we sample the corre-
spondence σ with distribution f , and kg is the number of
correspondences sampled for graph g. The derivative of
L(G) with respect to the model parameters is, then:

∂L(S)

∂θij

=
∑
g∈S

∑
σ P (g|G, σ)

∂
∂θij

Θ
σ(i)σ(j)
ij

Θ
σ(i)σ(j)
ij∑

σ∈Σn
P (g|G, σ)

≈

≈
∑
g∈S

∑kg

σ∼f
P (g|G,σ)

f(σ)

∂
∂θij

Θ
σ(i)σ(j)
ij

Θ
σ(i)σ(j)
ij∑kg

σ∼f
P (g|G,σ)

f(σ)

. (5)

Starting from equation (5) we can use a gradient ascent
method to maximize L(G) and, hence, learn the generative
graph model.

5. Experimental Results
In order to assess the ability of the proposed approach

to characterize the intrinsic distribution of structural repre-
sentations of shape, we performed two sets of experiments
with two widely-used graph abstraction of shape. The first
abstraction is a Delaunay graph over a set of feature points



Figure 3. CMU house sequence with the feature points and the
Delaunay graphs superimposed.
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Figure 4. Observation probabilities Θ of the graph model trained
on the CMU house sequence.

extracted from an image. Here we have ten images from the
CMU house sequence, extract salient points using a corner
detector, and connect them according to a Delaunay trian-
gulation. Figure 3 shows the ten images with the feature
points and the graphs superimposed.
All the graphs where composed of 30 to 32 nodes. Start-

ing from these, and using only the structural information,
we have learned several models ranging from 32 to 40 nodes
each. Interestingly, every instance converged to a model
with no more than 34 nodes, that is it dove to 0 all but at
most 34 node sampling probabilities. Hence, the approach
appears to be able to perform its own model-order selec-
tion since once the model is large enough to describe the
whole data-set, there is no advantage in adding new nodes.
Clearly, this is only half of the model selection problem.
Note however, that our model nodes can only be removed
to generate the observations which forces the learned model
to have a representative for every node in every observed
graph, be it central to the model or just noise. This forces a
lower bound on the size of the model, limiting the available
range for model order selection. For this reason in this paper
we will not be concernedwith model selection issues. How-
ever, work is underway to define a model where nodes can
be added as well as eliminated, and in that context model
selection becomes absolutely essential.
Figure 4 shows the model parameter matrix Θ for the

model with the minimum estimated likelihood. The model
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a) 10 graphs.
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b) First 5 graphs.

Figure 5. Estimated probability for the Delaunay graphs extracted
CMU house sequence (graphs 1-10), p-random graphs with the
same size and average density (graphs 11-20), and Delaunay
graphs of randomly chosen points (graphs 21-30). a) Model
trained on the 10 Delaunay graphs from CMU house sequence.
b) Model trained only 5 graphs.

estimated log-likelihoodwent from -2594 at initialization to
-588 upon convergence, which took approximately 20 min-
utes in a PC with a 3GHz Pentium 4 CPU. This is a model
with 35 nodes, but, as it can be seen, the first, third, and
fourth node have converged to zero sampling probability,
yielding a 32 node model. Note that the expected model
density DG =

P35
i=1

P35
j=i+1 θiiθjjθij

P35
i=1

P35
j=i+1 θiiθjj

is 1.73, very close to
the mean density of the training graphs of 1.77.
In order to assess the ability of the approach to character-

ize the samples it was trained on, we estimated P (ĝ|G) for
the ten sample graphs, for ten p-random graphs with sim-
ilar sizes and expected density equal to the mean density
of the graphs, and for ten Delaunay graphs obtained from a
similar number of randomly chosen points. Figure 5a plots
the logarithm of the estimated probabilities. Clearly the
model can distinguish the triangulated structure of Delau-
nay graphs from random graphs. Further, the probability of
the graphs it was trained on have, on average, a much higher
probability than other Delaunay triangulations. Note, how-
ever, that there are a few cases in which the model is giving
a relatively low probability to graphs it was trained on. This,
however, happens with graphs with a number of nodes and
edges different from the values observable in the majority of
the other graphs and with a slightly different edge structure.
Next, in order to assess the generalization capabilities of

the approach, we trained a new model using only 5 of the
ten graphs and re-computed the estimates of P (ĝ|G) for the
same 30 graphs. Figure 5b plots the log-probabilities ob-
tained using this model. We can clearly see that the ap-
proach generalizes fairly well, with the probabilities dis-
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Figure 6. Sampling probability to models learned using all 12
shapes for each class. Top to bottom: bottle-model, child-
model, hand-model, elephant-model, glass-model, horse-model,
tool-model, and model-assignment probability.

tributing approximately in the same way as those obtained
from the full model.
The second graph abstraction of shape we have tested

our approach on is the shock-graph, a skeletal-based rep-
resentation of the differential structure of the boundary of
a 2D shape. We have used a database consisting of 84
shapes divided into 7 classes of 12 shapes each. The shape
classes where composed of bottles, children, hands, ele-
phants, glasses, horses, and tools. The size of the shock-
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Figure 7. Sampling probability to models learned using only
6 shapes for each class. Top to bottom: bottle-model, child-
model, hand-model, elephant-model, glass-model, horse-model,
tool-model, and model-assignment probability.

graphs varied from 4 to 20 nodes. We have learned a model
for each shape class, again using only structural informa-
tion, and computed the sampling probability of each graph
from each model. Figure 6 show the resulting distribution of
sampling probabilities for each class. With few exceptions,
the models shows high probabilities only on graph from the
right class. This is especially evident looking at the bot-
tom graph of Figure 6 which shows the model-assignment
probability for each graph, i. e., a stacked histogram of the



model probabilities normalized over the sum of all model
probabilities associated with each graph. Here we can see
that in all but 6 shock-graph are predominantly assigned to
the correct class. Five of the six errors are due to the relative
similarity of the structural part of the shock representations
of hands, elephants, and horses: In each case the structure is
dominated by 5 main branches, the legs and the head/trunk
for the horses/elephants and the five fingers for the hands.
The remaining error is due to the structural similarity of the
bottle and tool models. Adding attributes to the nodes and
edges will likely further improve the recognition rate.
In order to assess the generalization capabilities of the

approach we have repeated the experiment using only 6
shapes to learn the models. Figure 7 plots the results. We
can see that the reduction in the size of the training sets did
not impact the recognition rate by much.

6. Conclusions
In this paper we have proposed an approach to the prob-

lem of learning a generative model of structural represen-
tations from examples. the approach does not depend on
a single estimate of the correspondences between sample
graphs and the model, which would induce a bias in the
estimate of the model, but rather marginalize the sampling
probability over all possible node correspondences. In or-
der to reduce the super-exponential explosion of the set of
correspondences, an importance sampling approach is used
to estimate the graph observation probability. Experimen-
tal results performed both on Delaunay graphs and shock
graphs show that the approach is capable of capturing the
modes of structural variation present in the data and that
it can be used to recognize structures belonging to a same
class.
This work can be extended in several directions. First,

we should model attributes associated with nodes and
edges. This can be done using node observation models like
the one presented in [18]. Second, the approach can be used
to perform unsupervised classification by fitting a mixture
of graph models to the data. Finally, theoretical bonds for
the variance of the estimation of the observation probability
should be studied.
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