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Abstract

The Hamilton-Jacobi approach has proved to be a powerful
and elegant method for extracting the skeleton of a shape.
The approach is based on the fact that the inward evolving
boundary flux is conservative everywhere except at skele-
tal points. Nonetheless this method appears to overlook
the fact that the linear density of the evolving boundary
front is not constant where the front is curved. In this pa-
per we present an analysis which takes into account vari-
ations of density due to boundary curvature. This yields
a skeletonization algorithm that is both better localized and
less susceptible to boundary noise than the Hamilton-Jacobi
method.

1 Introduction

The skeletal abstraction of 2D and 3D objects has proved
to be an alluring yet highly elusive goal for over 30 years
in shape analysis. The topic is not only important in im-
age analysis, where it has stimulated a number of important
developments including the medial axis transform and iter-
ative morphological thinning operators, but is also an im-
portant field of investigation in differential geometry and
biometrics where it has lead to the study of the so-called
morphological skeleton [4].

Given the importance of skeletal representations, the
quest for reliable and efficient ways of computing skele-
tal shape descriptors has been a topic of sustained activ-
ity. The problem is a complex and elusive one because it
is based on the detection of singularities on the evolution
of the boundary. The available methods for extracting the
skeleton can be divided into three broad categories. The first
class of methods are those that involve the use of march-
ing front techniques which simulate the grassfire transform.
These methods are concerned with iteratively propagating
the boundary front over time. Singularities in the simulated
evolution of the front indicate the locations of the skele-
ton. This class of algorithms can be further divided into a)
thinning methods [1, 2], b) methods where layers of pixels
are sequentially pealed from the shape like the skin of an
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onion, and c) curve evolution methods [9, 23], where curve
descriptors such as splines or snakes are transformed ac-
cording to the eikonal equation. Thinning algorithms have
a clear advantage in terms of simplicity. However, their per-
formance is not invariant under Euclidean transformation.
Curve evolution methods, on the other hand, are invariant
under Euclidean transformation, but are mathematically less
tractable. All three classes of marching front method en-
counter problems of numerical instability.

A second class of skeleton extraction algorithm is those
that rely on the relationship between the Voronoi triangu-
lation and the skeleton [16, 12, 13]. This work is based
on the property that as the number of control points on the
object boundary increases, then so the locus of the centers
of the triangles of the corresponding Voronoi triangulation
of the shape converge to the skeleton. The consequence
is that as the triangulation increasingly approximates the
shape boundary, then, correspondingly, the centers of the
triangles increasingly approximate the skeleton. The impor-
tant advantages of this approach are that it offers invariance
under Euclidean transformation, that it is numerically sta-
ble, and it is of simple implementation. However, its major
drawback is the relatively slow convergence speed of the
skeleton approximation with respect to the number of con-
trol points on the boundary.

The third, and final, class of algorithms rely on the anal-
ysis of the differential structure of the boundary. An im-
portant method that falls into this class is that which results
from the analysis of the boundary evolution dynamics us-
ing the Hamilton-Jacobi equations from classical mechan-
ics [14]. This analysis leads to an eikonal equation which
governs the boundary flow. Wherever this flow is non-
singular, the system is Hamiltonian, and, thus, conservative.
However, when the system ceases to be conservative there
are singularities in the flow of boundary evolution. When
the boundary reaches the singularities a so-called shock
forms. In the Hamilton-Jacobi setting skeletal points are de-
tected by searching for points where the system ceases to be
Hamiltonian. Analysis reveals that these are points where
the divergence of the flow is non-zero [6, 19]. The resulting
skeleton search method is both algorithmically simple and



numerically stable.

In the original formulation of the Hamilton-Jacobi
method [19] there is a problem. The approach appears
to overlook the fact that the linear density of the evolving
boundary front is not constant where the front is curved.
The result of changes in density is that the flux is not conser-
vative and hence the premise underpinning the skeletoniza-
tion method does not hold. Recently, Siddiqi et al. pub-
lished a revised theory, rectifying the theoretical, if not the
practical, shortcomings of the approach [20].

Hence, our aim in this paper is to perform a Hamilton-
Jacobi analysis of boundary evolution under conditions
where the density varies due to curvature. Instead of using
the gradient of the distance map, i.e. the velocity field of
the eikonal equation, we use the momentum field. In other
words, we multiply the velocity by the linear density of the
boundary-front. The resulting field is conservative. This
leads to a new skeleton extraction method. We compare the
curvature corrected skeletonisation method with the origi-
nal Hamilton-Jacobi method. The advantages of the new
method are improved localization and stability, espectially
of the endpoints of the skeletal branches.

2 Hamilton-Jacobi Skeleton

We commence by defining a distance-map that assigns to
each point on the interior of an object the closest distance
D from the point to the boundary (i.e. the distance to the
closest point on the object boundary). The gradient of this
distance-map is a field F whose domain is the interior of
the shape. The field is defined to be F = VD, where
V= (3%, (%)T is the gradient operator. The trajectory fol-
lowed by each boundary point under the eikonal equation is
governed by the ordinary differential equation & = ﬁ(y‘c’),
where Z is the coordinate vector of the point. Siddiqi,
Bouix, Tannenbaum, and Zucker assume that this dynamic
system is Hamiltonian everywhere except on the skeleton.
This assumption implies that at skeletal points the field Fis
conservative, i.e. V - F = 0. However, the total inward flux
through the boundary of the shape is non zero. In fact, the
flux is proportional to the length of the boundary.

The divergence theorem states that the integral of the di-
vergence of a vector-field over an area is equal to the flux
of the field over the enclosing boundary of that area. In our
case, this implies that
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where A is an arbitrary area, Fis a vector field defined in A,
do is the area differential in A, di is the length differential
on the border L of A, and ® 4 (F') is the outward flux of F
through the border L of the area A.

By virtue of the divergence theorem within the interior
of the shape, there are points where the system is not con-
servative. The non-conservative points are those where the
boundary trajectory is not well defined, i.e. where there are
singularities in the evolution of the boundary. These points
are the so-called shocks or skeleton of the shape- boundary.
Shocks are thus characterized by locations where V-F <0.

3 Curvature in the Boundary Front

Unfortunately, the hypothesis that the field F' is conserva-
tive does not hold in general. To illustrate this point, let us
consider an instant ¢ in the inward boundary evolution. The
initial shape boundary has evolved under the eikonal equa-
tion to the front St which is at every location orthogonal to
F. We would like to select a point p € S* and compute the
value of V-ﬁ(p) at this point. Since the divergence operator
is invariant under rotations, we can write:
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where v = F(p) and v, is a normal vector orthogonal to
v Moreover, since ||F|| = 1 everywhere, then %”F =0.

However, it is also the case that %F(p) = —k(p) where
k(p) is the curvature in p of the border front St oriented so
that «(p) is positive if the osculating circle is in the interior
of the front. Hence, we have V - F(p) = —&(p), In other
words, the divergence V - F is not always zero as predicted
by the Hamilton-Jacobi approach. Rather, it is equal to the
curvature of the front of the inward evolving boundary.

As a concrete example, consider a circle of unit radius
centered in (0,0)7. the gradient of the distance map at point
(z,y)T is VD = —ﬁ(w,y)T, and the divergence is

2 — 1
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The fact that the divergence is non-zero can be easily un-
derstood by appealing to an analogy from physics. Let us
assume that a fluid of uniform density flows from the border
of the shape, which acts as a source, to the skeleton, which
acts as a sink. If the fluid is incompressible, then the fluid
density never changes and the velocity field F is conserva-
tive everywhere except at points on the boundary skeleton.
If, on the other hand, the fluid is compressible, then as soon
as a curved front compresses the fluid, the density changes
and the velocity field is no longer conservative.

To develop this idea one step further, consider a segment
di(t) of the boundary front St at time ¢t. We assume that
this segment has average linear density 5(t) (see Figure 1).
Under the eikonal equation, at time ¢ + At the boundary
front segment dl (¢) has evolved to di(t + At). Since each of
the points in dl(t) are now contained in dI(t + At), the total




di(t di(t + At)

Figure 1: Evolution of a boundary segment.

mass of the two segments is the same. However, if dI(¢) is
curved then the lengths of the segments are different:||/(t +
At)|| # |lI(¢)|]. Thus the average density in I(t + At) is
p(t + At) # p(t). As a result, when the front is curved,
then the density is not constant and we have to take into
account mass effects. That is, we have to resort to the more
general principle of conservation of momentum.

4 Momentum field

Based on this physical intuition we state that there is in-
deed a conservative field associated with the dynamics of
the boundary, namely the momentum M = pF, where p is
the scalar field that assigns to each point the linear density
of the boundary front. As a result we have that

Applying the rules of product differentiation, we obtain the
partial differential equation (PDE):

Vp-F=—pV-F.

By setting o = log(p), we can write the above PDE as a
function of the log-density o

Vo-F=-V-F. )

This is a transport equation that can be reduced to a set
of ordinary differential equations (ODE) along the paths of
the boundary points.

o (s(t)) = —V - F(s()
{ 2 R @)

We can derive this equation by analyzing the change
of density of the segment dl in Figure 1. We know that

p)||dL(t)]| = m. where dI(t) is the evolution of the bor-
der segment d at time ¢, m is its mass, and p(t) and x(¢) are
the segment’s average linear density and curvature at time
t. After a small interval of time At, the segment length will
be
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From these equations and the conservation of mass, we
have:

m _ 1
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Hence
ple-+ A0 = p(0) = ) s + O(AL),

Taking the limit for At — 0 and ||dl|| — 0, we have:

8=

p(s(t))

where s(t) is the trajectory to which the limit point of the
segment dl tends as ||dl|| — O under the eikonal equation.
Integrating (4) we obtain:

mmwm=AKMWM=—Avﬁmmm

5 Computing the density

To obtain the momentum field we need to integrate the den-
sity field over the interior of the shape. Since images have a
finite resolution, we need to discretize the solution onto the
image lattice.

One approach is to express the PDE (2) as a system of
difference equations. The difference equations form a linear
system that can then be solved to obtain the log-density o =
log(p). The problem with this approach is that the skeleton
is a set of singularities of the momentum field. Hence the
density can have very different values at opposite sides of a
skeletal branch. The result is that the linear system will have
no solution. Infact, even seaking an approximate a solution
using a residual descent method would result in oscillations
near the skeleton.



5.1 Integrationin Time

In order to overcome this problem we need to ensure that
the difference operator used in the equations never crosses
a skeletal branch. One way to guarantee this is to integrate
the equation in the time domain. This must be done so that
the formulae giving the value of p at points on the boundary
front at time ¢ reference values of p only at points in the
fronts at previous times. We can realize this by integrating
the ODE (3) along the paths of the boundary points.

To do this we opt to use the second order Cranck-
Nicolson method [7]. For each point (x,y) in the interior
of the shape, we have the equation:

a(s(t) = o(s(t—1)) - %[v -F(s(t)) + V- F(s(t - 1))].

(®)
Using this equation we can calculate the log-density at a
point on the evolving boundary at time ¢, referencing only
values of the log-density at points that belong the front at
previous times. Since the evolution never crosses the skele-
ton, we are guaranteed not to cross skeletal branches during
our calculations.

5.2 Integrationin Space

Equation (5) allows us to integrate the log-density o in
the time domain along the path s. However, we have not
shown how to calculate the integration path. Fortunately,
we do not need to calculate every possible path. Let us
assume that at time ¢ the boundary front passes through
the point s(t) = (z,y)T. The first order approximation
of the position of this point at time ¢ — 1 is s(t — 1) =
(z,y)T — F(z,y) = (x— Fy,y — F,)T. Using this approx-
imation, we can write Equation (5) in the spatial domain
instead of the time domain:

O—(m,y) = U(Z’ - Fz(may)ay - Fy(xay))

]_ — —
=5V Fl,y) + V- Fz - Fo(2,y),y - Fy(z,y))].

As shown in Figure 2, the point (z,y)? — ﬁ(x, y) does
not belong to the image lattice. Hence we need to inter-
polate it using the values at the four corners of the square

containing the point. We opt to compute the quantity
f(z + a,y + b) with a,b € [0, 1) using the formula

(a=1)(b—1)f(z,y) +alb—1)f(z +1,y)
+(a=1Dbf(x,y+1)+abf(x+1,y+1).
With this interpolation Equation (5) becomes:
[1-(A=|FDA-|FDle(z,y) = |F|(1-|Fy[)o(z",y)
+ (1= |F)|Fylo(z,y) + |Fo||[Falo(2', y')

~ 3V Fay) + V- Fa-Fy-F), ©)

Figure 2: Integration along the boundary path.

where &' = z+sgn(F,(z,y)) andy' = y +sgn(Fy(z,y)).

Using Equation (6) we can compute the value of the
log-density o (z,y) using values of o at the points spanned
by the evolving boundary front before the point (z,y)?.
Hence, to calculate o all we need do is to iterate Equa-
tion (6) through the interior points according to front arrival
time. We start from the points reached first by the boundary
front and proceed to those reached last. Since the evolv-
ing boundary front is moving with constant unit velocity,
the time taken by the front to reach the point with position
(z,y)T is equal to its distance from the initial shape bound-
ary.

6 Skeletonization

Once the divergence of the momentum field is to hand, we
can extract the skeleton. The extraction process is per-
formed by thinning the shape by removing border points
that have energy absorption below a certain threshold, and
whose removal would not cause the shape to be split into
two disjoint parts. The remaining shape is further thinned
to a 1-pixel wide skeleton, paying attention to maintaining
the connectivity of the shape and to avoiding shortening of
the skeleton by eliminating endpoints. Expressed in terms
of pseudo-code the thinning process of the shape S is as
follows:

For each point p in distance order
if issinple(S\p) and —V-pF(p) <e
then S=S\p
For each renmining point p in distance order
if isssinmple(S\p) and not is_endpoint(S,p)
then S=S\p

The predicate i s_si npl e determines whether the shape



is still connected after the removal of the point p. It does so
by checking only the points in the neighborhood of p. The
shape S \ p is connected if the points in the neighborhood
of p, excluding p, are connected. Similarilly, i s_endpoi nt
determines whether p is an endpoint. It does so only by
inspecting the neighborhood of p. The point is an endpoint
if it has at most two neighboring points, and these points are
horizontally or vertically adjacent.

7 Experimental Comparison

In this section we attempt to characterize the differences be-
tween the Hamilton-Jacobi skeletonization method and our
density-corrected approach. We start by providing a qual-
itative analysis of the difference in the divergence of the
velocity and momentum fields. Secondly, we provide an
analysis of the noise and thresholding sensitivity of the two
methods. Finally we provide a more quantitative analysis of
the localization properties of the two skeletonization meth-
ods.

Figure 3 shows, for a few selected shapes from our
database, the values of the divergence of the velocity fieldV -
F', log(p), and V - 5F. In these pictures white (grey-scale
255) corresponds to a large positive value, black (grey scale
value 0) to a large negative value and zero is represented by
the grey scale value 128.

It is clear from the pictures that the divergence of the
velocity field is not zero in correspondence with a curved
boundary. Furthermore, quantization in the localization of
the shape causes the initial boundary to be very jagged. This
high-frequency, low-amplitude noise is transported and am-
plified throughout the velocity field. This in turn yields a
noisy and poorly localized skeleton. By contrast, the den-
sity correction in the momentum field dampens the noise.

7.1 Noise Sensitivity

To counter quantization noise from the object boundary, we
need to smooth the distance map and select an appropriate
skeletonization threshold. If either the smoothing radius or
the threshold is too large, then some of the branches of the
skeleton will be thinned away. If, on the other hand, the
selected values are too small, then the detected skeleton will
have large numbers of spurious branches (See Figure 4).
In this section we characterize the effects of the smoothing
radius and the skeletonization threshold on the quality of
the detected skeleton.

Figure 4 displays the effects of very low (top) and very
high (bottom) values of the smoothing radius and the skele-
tonization threshold on a test shape. The picture shows,
left to right, the divergence of the velocity field, the uncor-
rected Hamilton-Jacobi skeleton, the divergence of the mo-
mentum field, and the skeleton extracted using the density-
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Figure 3: Differences in the velocity and momentum fields.
Left to right: shape, V - F, log(p),and V - gF



Figure 4: The effect of smoothing on skeleton extraction.

corrected method. These pictures demonstrate that the den-
sity corrected method is much less sensitive to the amount
of smoothing and to the value of the threshold.
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Figure 5: Effect of smoothing and threshold on skeleton
extraction.

Figure 5 plots the number of detected points on the skele-
ton of the test shape as a joint function of the smooth-
ing radius and the skeletonization threshold. Ideally, as
the smoothing radius increases, then the number of de-
tected points should reach a plateau very quickly, and then
abruptly drop to a lower plateau as a new feature of the
shape is smoothed away. The amount of smoothing required
to reach a new plateau should be independent of the value
of the threshold. Figure 5a shows the number of points ex-
tracted by the two methods. The results are superimposed
as separate surfaces. It is clear from the plot that of the two
methods, the density-corrected method reaches the plateau

faster as we increase the threshold or the smoothing radius.
Moreover, it maintains the plateau for longer. Figures 5b
and 5c¢ show the results separately for the Hamilton-Jacobi
and the density-corrected methods. Here location closest
to the viewer direction is the plateau side of the plots. The
ridges in the forefront show the drop in the number of skele-
tal points due to the smoothing away of an image feature. In
both cases, the drop is sudden but the ridge in the Hamilton-
Jacobi plot shows a higher dependence on the threshold.

7.2 Skeleton Localization

In this section we characterize the localization properties
of the skeleton extracted using the Hamilton-Jacobi method
and the new density corrected method on a wide variety of
shapes. To this end, we investigate how the values of the di-
vergence of the velocity and of the momentum field are dis-
tributed over the distance to the extracted skeleton. Figure
6 plots a histogram of the distribution of non-skeletal points
as a function of distance and divergence value for the test
shapes. The figure shows that the Hamilton-Jacobi skeleton
has a non-negligible tail for high divergence values, even at
large distance from the extracted skeleton.

LERL%
0.6 LG
o G4 o
oo oL

(b) Density corrected

(a) Hamilton-Jacobi

Figure 6: Histogram over value of (negative) divergence of
the field and distance to skeleton

We have also performed an experiment aimed at quan-
tifying the localization of the skeleton on a database of
shapes. We have used a database of 50 shapes and have his-
togrammed the distribution of field divergence as a function
of the distance to the skeleton. We have repeated this proce-
dure for both the velocity field and the momentum field. For
each shape, we take the mean of the relevant divergence-
distribution as a measure of divergence-localization.

Figure 7 shows histograms of this divergence-
localization measure over all the shapes in our database. In
Figure 7a we show the localization histogram for the ve-
locity field. The mean of this distribution is 2.52, while the
variance is 0.34. Figure 7b is the corresponding histogram
for the momentum field. The mean of this distribution is
1.46, while the variance is 0.28. The density correction
clearly leads to a better localization of the skeleton.
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Figure 7: Histogram of divergence-localization on a
database of 50 shapes.

8 Conclusions

In this paper we have provided a proof that a key hypothesis
underpinning the Hamilton-Jacobi framework, namely that
the velocity field is conservative, does not hold in the pres-
ence of curved boundaries. This is due to the increase of
point density for curved front boundary evolution. To over-
come this problem, we have presented an analysis which
takes into account variations of density due to boundary cur-
vature. This yields a skeletonization algorithm that is both
better localized and less susceptible to boundary noise than
the Hamilton-Jacobi method.
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