
Quick introduction

to Matlab

Edited by Michele Schiavinato

Outline

• Matlab introduction

• Matlab elements

• Types

• Variables

• Matrices

• Scripts and functions

• Matlab Programming language

• Ploting

Matlab introduction

• Matlab is a program for doing numerical

computation. It was originally designed for

solving linear algebra type problems using

matrices. It’s name is derived from MATrix

LABoratory.

• Matlab is also a programming language that

currently is widely used as a platform for

developing tools for Machine Learning

Matlab main features

• Large toolbox of numeric/image library functions

• Very useful for displaying/visualizing data

• High-level coding: focus on algorithm structure, not

on low- level details

• Allows quick prototype development of algorithms

• Powerful debugging features

Matlab introduction

• Some other aspects of Matlab:

• Matlab is an interpreter -> not as fast as compiled

code

• Typically quite fast for an interpreted language

• Often used early in development -> can then convert

to C (e.g.) for speed improvements

• Can be linked to C/C++, JAVA, SQL, etc

• Commercial product, but widely used in industry

and academia

• Many algorithms and toolboxes freely available

Opening Matlab

Command

Window

Working

Memory

Command

History

Working

Path

Script

Editor

Current
Directory

• Within Matlab

• Type help at the Matlab prompt or help followed
by a function name for help on a specific
function

• Type doc to get the graphical version of help

• Online

• Online documentation for Matlab at the
MathWorks website

• http://www.mathworks.com/access/helpdesk
/help/techdoc/matlab.html

• There are also numerous tutorials online that
are easily found with a web search.

Help

http://www.mathworks.com/access/helpdesk

Data Types

Variables

• Have not to be previously declared

• Variable names can contain up to 63 characters

• Variable names must start with a letter followed by

letters, digits, and underscores.

• Variable names are case sensitive

>> x = 10 --> x = 10

>> y = 3e-3 --> y = 0.0030

>> a = 'hello' --> a = hello

>> A --> ??? Undefined function or

variable ‘A'.

Workspace

All the assigned variables are added to the workspace.

You can remove a specific variable form the

workspace using:

>> clear ‘var_name’

or remove all the variables using:

>> clear

Console output

We can see the value of a variable by typing is name on

the command window:

>> z --> z = 3

Terminating a line with a ; suppress the output of the

assigned variable value:

>> x=10 --> x = 10

>> x=10; -->

In the expression is not an assignment its value is

automatically assigned to the special variable ans:

>> 10 --> ans = 10

Console output

The default printing format shows only the first 4 decimal

of a number:

>> x=1/3

x =

0.3333

With the 'format' command, you can set different output
formats for numbers:
>> format long

>> x=1/3

x =

0.333333333333333

You can clean all the current console typing the 'clc'
command.

Matlab Assignment &

Operators

Assignment =

Addition +

Subtraction -

Multiplication *

Function call:

func_name(p1, p2, …)

[o1, o2, …] = func_name(p1, p2, …)

a = b (assign b to a)

a + b

a – b

or .* a*b or a.*b

Division / or ./ a/b or a./b

Power ^ or .^ a^b or a.^b

Operators exercise

Given two points in ℝ2 with coordinates x1,y1

and x2,y2, compute their euclidean distance:

• Assign a value to x1, y1, x2, y2

• Use the operators provided by

Matlab to compute the distance

between the two points and

assign it to a variable d

Solution

>> x1 = 1;

>> y1 = 1;

>> x2 = 2;

>> y2 = 2;

>> d = ((x1-x2)^2 + (y1-y2)^2)^0.5

d =

1.4142e+000

Matlab Usefull Constants

pi

eps

inf

NaN

realmin

realmax

The inbuilt Matlab constants can be overwritten

Value of 

Floating-point relative accuracy
Infinity

Not a number, e.g. 0/0

The smallest usable positive real number

The largest usable positive real number

Matlab Matrices

• Matlab treats all variables as matrices. For

our purposes a matrix can be thought as a

bidimensional array, in fact, that is how it is

stored.

• Vectors are special forms of matrices and

contain only one row OR one column.

• Scalars are matrices with only one row AND

one column.

Matlab Matrices

• A matrix with only one row is called a row

vector. A row vector can be created in

Matlab as follows (note the commas):

>> rowvec = [12, 14, 63]

rowvec =

12 14 63

Matlab Matrices

• A matrix with only one column is called a
column vector. A column vector can be
created in MATLAB as follows (note the
semicolons):

>> colvec = [12; 14; 63]

colvec =

12

14

63

Regularly spaced vectors

• A regularly spaced vector can be created using the colon (:)

operator.

>> 1:4  ans = 1 2 3 4

>> 1:2:10  ans = 1 3 5 7 9

j:k is the same as [j,j+1,...,k], or empty when j > k.

j:i:k is the same as [j,j+i,j+2i, ...,j+m*i], where m = fix((k-j)/i),
i.e. the rounded value toward zero of (k-j)/i ratio.
This syntax returns an empty matrix when
 i == 0,
 i > 0 and j > k,
 i < 0 and j < k.

Matlab Matrices

• A matrix can be created in Matlab as follows

(note the commas AND semicolons):

>> matrix = [1 , 2 , 3 ; 4 , 5 ,6 ; 7 , 8 , 9]

matrix =

1 2 3

4 5 6

7 8 9

Selecting an element of a

vector/matrix
We can access the n-th element of a vector by using

the (n) operator.

The indexes in Matlab start from 1

To access the first element of a row vector:

>> rowvec(1) --> ans = 12

To access the an element of a matrix we have to

indicate its row and column indexes:

>> matrix(1,1) --> ans = 1

Extracting a Sub-Matrix

• A portion of a matrix can be extracted and stored in

a smaller matrix by specifying the names of both

matrices and the rows and columns to extract. The

syntax is:

sub_matrix = matrix (r1 : r2 , c1 : c2) ;

where r1 and r2 specify the beginning and ending

rows and c1 and c2 specify the beginning and

ending columns to be extracted to make the new

matrix.

Extracting a Column

• A column vector can be

extracted from a matrix. As

an example we create a

matrix below:

>> matrix=[1,2,3;4,5,6;7,8,9]

matrix =

1 2 3

4 5 6

7 8 9

• Here we extract column 2 of

the matrix and make a

column vector:

>> col_two=matrix(1:3,2)

col_two =

2

5

8

Extracting a Row

• A row vector can be extracted from a matrix.

• Here we extract row 2 of the matrix and make a

row vector. Note that the 2 specifies the second

row and the 1:3 specifies which columns of the

row.

>> rowvec = matrix(2,1:3)

rowvec =

4 5 6

Colon Operator

j:k is the same as [j,j+1,...,k] is empty if j > k

j:i:k is the same as [j,j+i,j+2i, ..,k] is empty if i > 0 and j > k or if i < 0 and j < k

A(:,j) is the j-th column of A

A(i,:) is the i-th row of A

A(:,:) is the equivalent two-dimensional array. For matrices this is the same as A.

A(j:k) is A(j), A(j+1),...,A(k)

A(:,j:k) is A(:,j), A(:,j+1),...,A(:,k)

A(:,:,k) is the k-th page of three-dimensional array A.

A(i,j,k,:) is a vector in four-dimensional array A. The vector includes A(i,j,k,1),

A(i,j,k,2), A(i,j,k,3), and so on.

A(:) is all the elements of A, regarded as a single column.

On the left side of an assignment statement, A(:) fills A, preserving its

shape from before. In this case, the right side must contain the same

number of elements as A.

Some matrix

functions in Matlab

• X = ones(r,c)

• X = zeros(r,c)

• A = rand(r,c)

• B = diag(x)

Creates matrix full with ones

Creates matrix full with zeros

Creates a matrix with random numbers

uniformally distributed in [0,1]

Creates squared matrix with vector x in

diagonal

Returns dimensions of matrix A

Standard operations

Wise addition, substraction, …

Vector with sum of columns

• [r,c] = size(A)

• + - *

• .+ .- .* ./

• v = sum(A)

Transpose of a matrix

You can transpose a matrix using ' symbol:

For example, given a matrix A as follows:

>> A

A =

1 2 3

4 5 6

>> A'

ans =

1 4

2 5

3 6

Some matrix operations

• Selecting the diagonal elements
d = diag(A)

d is a vector containing the diagonal elements of A

• Accessing Multiple Elements of a Matrix
A(1,4) + A(2,4) + A(3,4) + A(4,4)

sum(A(1:4,4)) or sum(A(:,end))

The keyword end refers to the last row or column.

• Deleting Rows and Columns
to delete the second column of X, use X(:,2) = []

• Concatenating Matrices A and B
C=[A;B] or C=[A,B]

Exercise

Play with matrix indices and operators:

• Create a random 4x4 matrix

• Print the second column

• Subtract the first column from the diagonal

• Create a matrix of N vectors in ℝ2 (Nx2)

• Compute and print the Euclidean norm of the vectors

• Consider the previous matrix as a matrix of points, select

the points which distance from the origin is lower than the

average distance (of all points from the origin).

HINT: -use the Matlab help to learn about the find command;

-the function sqrt(A) compute the square root of each

element of the matrix

• M-Files are text files containing Matlab programs.

• Can be called from the command line or from other

M-files.

• Present “.m” extension.

• Two kind of M-files:

• Scripts

• Functions

M-files

Matlab Editor

• Matlab comes with its own text editor.

• To edit the file myscript.m enter the command

edit myscrip.

• If the file myscript.m does not exist a new empty file

will be created in the current directory.

M-files: Scripts

• Without input arguments, they do not return any

value.

• They are simply a list of commands that are

executed in sequence.

• The commands of a script use the current

workspace.

M-files: Script Example

x = [4 3 2 10 -1];

n = length(x);

sum1 = 0; sum2 = 0;

for i=1:n

sum1 = sum1 + x(i);

sum2 = sum2 + x(i)*x(i);

end

mean_x = sum1/n;

stddev_x = sqrt(sum2/n – mean_x*mean_x);

1) >> edit statistics.m

2) Write into the editor:

3)Save the file

4) >> run statistics

5) >> mean_x, stddev_x

mean_x = 3.6000

stddev_x = 3.6111

M-files: Functions

• With parameters and returning values.

• Only visible variables defined inside the function or

parameters (they have their own workspace).

• Usually one file for each function defined.

• Structure:

function [out1, ..., outN] =

name-function (par1, ..., parM)

sentence;

…

sentence;

end

M-files: Functions Example

1)>> edit fstatistics.m

2) Write into the editor:

3) Save the file
4)>> edit sums.m

5) Write into the editor:

6) Save the file
7) >> [p,d] = fstatistics([4 3 2 10 -1])

p = 3.6000

d = 3.6111

function [mean_x, stddev_x] = fstatistics(x)

n = length(x);

[sum1,sum2] = sums(x,n);

mean_x = sum1/n;

stddev_x = sqrt(sum2/n – mean_x.^2);

end

function [outsum1,outsum2] = sums(y,m)

outsum1 = 0;

outsum2 = 0;

for i=1:m

outsum1 = outsum1 + y(i);

outsum2 = outsum2 + y(i)*y(i);

end

end

M-file execution

• We can execute a m-file writing its name on the

console:

>> sayHello

hw = Hello World

• We can run the current file in the editor pressing F5

• We can run the selected commands in the editor

pressing F9 or CTRL+Enter (the latter does not

show those commands are launched in console).

• In the m-file we can delimit some portion of the

commands using two comment characters %%

sayHello.m

Hw = 'Hello World'

M-File location

We can run only m-files located in the Matlab Search

Path or in current directory.

• We can add a folder temporarly to the Search Path

using:

>> addPath('directory_path')

• Or permanently:
1. Go to "File->Set Path" from within MATLAB or type

"pathtool" at the MATLAB prompt.
2. Use the "Add" button to add your desired folder(s) to the

MATLAB path.
3. Click "Save" so that this path is used in future MATLAB

sessions.

Debugging a .m file

Matlab have a powerfull debugger.

We can set/unset a breakpoints clicking on the right side of

the line number.

The execution flow stops when a breakpoint is reached and

we can:

• watch the workspace

state of the function scope.

• change the value of the

variables

• run commands that uses

the current workspace.

Exercise

• Write a function that normalizes a given vector.

>> n_vec = normalized(vec);

• In a Matlab script generate 2 random vectors and

measure the angle between them.

Hint: the dot product between two normalized

vectors is equal to the cosine of the angle

between them.

Solution

>> edit normalized

>> edit measureangle

>> measureangle

angle =

17.9611

function [nvec] = normalized(vec)

%NORMALIZED Returns the normalized vector

% NV = normalized(V) returns the vector V./norm(vec)

nvec = vec./norm(vec);

end

% generate two random vectors

x1 = rand(2,1);

x2 = rand(2,1);

% The smallest angle between two normalized vectors is

% equal to the arcocosine of the dot product between them

angle = acos(normalized(x1)'*normalized(x2))*180/pi

Matlab

programming language

• Elements of Matlab as a programming

language:

• Expressions

• Flow Control blocks

• Conditional

• Iterations

• Scripts

• Functions

Expressions: Matlab Relational

Operators

• MATLAB supports six relational operators.

• Less Than

• Less Than or Equal

• Greater Than

• Greater Than or Equal

• Equal To

• Not Equal To

<

<=

>

>=

==

~=

Expressions: Matlab Logical

Operators

• MATLAB supports three logical operators.

• not ~ highest precedence

• and & equal precedence with or

• or | equal precedence with and

Expressions: Matlab Logical

Functions

• MATLAB also supports some logical functions.

finite (x) returns 1 at each finite value in x

any (x) returns 1 if any element of x is nonzero

all (x) returns 1 if all elements of x are nonzero

isnan (x) returns 1 at each NaN in x

isinf (x) returns 1 at each infinity in x

Matlab Conditional Structures

a = input(‘valor1? ‘);

b = input(‘valor2? ‘);

if a == b,

fprintf(‘a is equal to b\n’);

elseif a > 0 && b > 0

fprintf(‘both positive\n’);

else

fprintf(‘other case\n’);

end

if expression cond.

sentences

elseif expr. cond.

sentences

else

sentences

end

Matlab Iteration Structures (I)

M = rand(10,10); suma = 0;

for i = [2, 5:8]

for j = [1:5, 8:9]

% rows 2, 5, 6, 7, 8

% cols 1, 2, 3, 4, 5, 8, 9

suma = suma + M(i,j);

end

end

fprintf(‘sum = %d\n’,suma);

M = rand(4,4); suma = 0;

for i = 1:4

for j = 1:4

suma = suma + M(i,j);

end

end

fprintf(‘sum = %d\n’,suma);

for variable = expr

sentence;
...

sentence;

end

Matlab Iteration Structures (II)

while expr

sentence;

...

sentence;

end

M = rand(4,4);

i = 1; j = 1;

suma = 0;

while i <= 4

while j <= 4

suma = suma + M(i,j);

j = j+1;
end

i = i+1;

end

fprintf(‘suma = %f\n’,suma);

• Loops should be avoided when possible:

for ind = 1:10000

b(ind)=sin(ind/10)

end

Alternatives:

x=0.1:0.1:1000;

b=sin(x);

Most of the loops can be avoided!!!

(Optimizing code:

vectorization)

x=1:10000;

b=sin(x/10);

Exercise

Given two matrices of N points in ℝ2 compute the

average distance between each pair.

Compairs the execution time of two different

implementations:

- using loops

- avoiding loops

Use the instructions tic and toc to measure the

elapsed time.

>> tic;pause(0.1);toc;

Elapsed time is 0.105363 seconds.

Solution

>> edit avoidloops

>> avoidloops

loop elapsed time: 1.300240s

matrices elapsed time: 0.026092s

%generates 2 matrices of 100000 points

X1 = rand(2,1000000);

X2 = rand(2,1000000);

%loops version

tic

dists = zeros(1,1000000);

for i=1:1000000

dists(i)=sqrt((X1(1,i)-X2(1,i))^2 ...

+ (X1(2,i)-X2(2,i))^2);

end

fprintf('loop elapsed time: %fs\n',toc);

%matrices version

tic

dists = sqrt(sum((X1-X2).^2));

fprintf('matrices elapsed time: %fs\n',toc);

Exercise: Fibonacci

• Write a function which compute and return a

vector containing the first n numbers of the

Fiboncci series.

>> fib(10)

ans =

1 1 2 3 5 8 13 21 34 55

• Write also a recursive implementation of the same

function.

Plotting with Matlab

• Matlab has a lot of function for plotting data.
• The basic version requires two input vectors, one for the

abscissae (x values) and one for the ordinates (y values).
• The vectors have to be the same length.

>> plot (time, dist) plotting versus time

• We can give the plot function only the ordinates (y values).
The vector indices are then considered as abscissae.

>> plot (dist) plotting versus index

• To display multiple graphs at the same time we need to open a

new window using the “figure“ command.

• The plot will be drawn in the last opened window.

Plotting with Matlab

time = 0:0.1:10;

dist = 0.5.*9.8.*time.^2;

%plot distance over time

plot(time,dist);

%open a new window

figure;

%plot distance over indices

plot(dist);

Plotting in Matlab

We can specify the line and the marker style with an

additional parameter of plot function.

>> dist=dist+(rand(size(dist))-0.5)*20;

>> plot(time,dist,':*r');

x = rand(1,100);

y = rand(1,100);

plot(x,y,'*')

Plotting in Matlab

>> doc LineSpec

Plotting with Matlab

We can plot multiple functions on the same graph.

X=0:0.01:2*pi;

cosx=cos(X);

sinx=sin(X);

plot(X,sinx,'—r' , X,cosx,':b');

Plotting with Matlab

• There are commands in Matlab to "annotate" a plot to

put on axis labels, titles, and legends. For example:
% To put a title on the plot, we would use:

title ('Title of my plot')

% To put a label on the axes we would use:

xlabel ('X-axis label')

ylabel ('Y-axis label')

% To add a legend we should use:

legend('fname1','fname2');

Save Plot

We can save the current plot to a file using:

>> print -dpng ‘filename‘

We use different output formats, ie:
-dpng: save to a png image file (Rasterized)

-dpdf: save to a pdf file (Vectorized)

-dsvg: save to svg (vectorized)

Exercise

Plot multiple sine functions over the time (t) with

different frequencies (f):

y = sin(f*t)

Exercise: pi approximation

If we consider a circle with radius r, we can approximate its

area randomly sampling the rectangle in which the circle is

inscribed.

The approximate area of the circle is equal to the product of

the rectangle area and the probability of hitting the circle.

• Write a function which takes the

number of samples as input and

returns the approximate value of 𝝅

• How many samples do I need

to obtain an accuracy to the third

digit of 𝝅?

Solution
function p = approxpi(n)

%APROXPI Returns an approximation of Pi based on the

%statistical sampling of a circle inscribed

%on a rectangle area.

% P = approxpi(N) returns the value of Pi computed using

N samples.

%Generate n points within a 2x2 square centered in

the origin (hence the inscribed circle has r=1)

X = rand(n,2)*2 - 1;

%Compute the squared distance from the origin

D = dot(X',X');

Xin = X(D<=1,:);

Xout = X(D>1,:);

p = 4*size(Xin,1)/n; %since r=1 the area of the

%circle is just the value of pi

plot(Xin(:,1),Xin(:,2),'.g',Xout(:,1),Xout(:,2),'.r')

axis equal

end

