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Segmentation
• Segmentation is the task of d ivid ing an  image into 

regions
• Regions are:

– Characterized by their visual properties
– Linked with underlying semantics of the image (objects in the 

scene)
– Offer a compact representation of the elements to be 

analyzed/recognized



Gestalt
• Gestalt psychology 

identifies several 
properties that result in 
grouping/segmentation



Groupings by Invisible Completions

Stressing the invisible groupings:



3D cues
Why do these tokens belong together? 







Segmentation as clustering

Image Clusters on intensity Clusters on color



Thresholding



Estimating the threshold



Estimating the threshold



Otsu’s Thresholding Method
• Based on a very simple idea: Find the threshold that 

minimizes the weighted within-class variance. 
• This turns out to be the same as maximizing the between-

class variance.
• Operates directly on the gray level histogram [e.g. 256 

numbers, P(i)], so it’s fast (once the histogram is 
computed).

• Assumptions:
– Histogram (and the image) are bimodal.
– No use of spatial coherence, nor any other notion of 

object structure.
– Assumes uniform illumination, so the bimodal 

brightness behavior arises from object appearance 
differences only.



Otsu’s Thresholding Method
• Let P(i) be the frequency (h istogram ) of intensity level i
• Estimate the class probabilities after a sepataration at 

intensity t as:

• The class means are:

• The individual class variances are:
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Otsu’s Thresholding Method
• Finally, the weighted w ith in-class variance is:

• The optimal threshold  minimizes this value
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Effects of illumination gradients



Adaptive Threshold 



Adaptive Threshold 



k-means
• We are given an unlabeled training set                            

• We want to group the data into a few cohesive clusters.
– Assume for the moment that 

• the number K of clusters is given
• The clusters form a partition of the data: data-points are in one and only one cluster

• How do we define cohesiveness?

• Intuitively, we might require that intra-cluster distances are compared with the inter-
cluster distances.

•  We can formalize this notion by  introducing a set of vectors 

µk , where k = 1, ..., K

• µk is a prototype associated with the k th cluster, representing the centers of the clusters. 

• Our goal is then to find 
– an assignment of data points to clusters

– vectors {µk }, 

• such that the sum of the squares of the distances of the data point to the cluster center 
µk , is a minimum.



k-means
• Let us introduce a binary indicator variable                 

describing which of the K clusters data point xn is assigned to.

• We can then define  a distortion measure as 

K-means algorithm (Lloyd, 1982)

• We optimize J s through an iterative procedure involving two successive steps 
corresponding to

– optimization with respect to the rn 

– optimization with respect to the µk . 

•

• First we choose some initial values for the µk . 

– In the first step Then minimize J with respect to the rn , keeping the µk fixed. 

– In the second step we minimize J with respect to the µk , keeping rn fixed. 

• This two-stage optimization is repeated until convergence. 



k-means
 Optimization of rnk

• Since J is linear in rnk, we can give minimum in a closed form solution by setting rnk=1 for 
whichever value of k gives the minimum of 

 Optimization of µk

• Function J is quadratic in µk, and it can be minimized by setting its derivative with respect to 
µk to zero giving

• This sets µk equal to the mean of all of the data points xn assigned to cluster k, hence the name 
K-means algorithm.

• The two phases are repeated in turn until there is no further change in the assignments (or 
until some maximum number of iterations is exceeded). 



k-means



k-means
• Choose a fixed number of clusters
• Choose cluster centers and point-cluster 

allocations to minimize error 

• Iterative algorithm to find local optimum
– Assign tokens to closest 

cluster center
– Update cluster center to 

mean associated tokens



k-means



K-means for segmentation
• Select a value of K
• Select a feature vector for every pixel (color, 

texture, position, or combination of these etc.)
• Define a similarity measure between feature 

vectors (Usually Euclidean Distance).
• Apply K-Means Algorithm.
• Apply Connected Components Algorithm.
• Merge any components of size less than some 

threshold to an adjacent component that is most 
similar to it.



k-means

K-means clustering using intensity alone and color alone

Image Clusters on intensity Clusters on color



k-means



Mean Shift
• A non-parametric technique  for analyzing 

complex multimodal feature spaces and 
estimating the stationary points (modes) of the 
underlying probability density function without 
explicitly estimating it.





Parametric Density 
Estimation?



Mean Shift Algorithm
Mean Shift Algorithm

1. Choose a search window size.
2. Choose the initial location of the search window.
3. Compute the mean location (centroid of the data) in the search window.
4. Center the search window at the mean location computed in Step 3.
5. Repeat Steps 3 and 4 until convergence.

The mean shift algorithm seeks the “mode” or point of highest density of a data distribution:



Intuitive Description
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Center of
mass

Mean Shift
vector

Objective : Find the densest region
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Parzen Windows 

Kernel Properties
1. Bounded
2. Compact support
3. Normalized
4. Symmetric
5. Exponential decay
6. Uncorrelated 



Kernels and Bandwidths
• Kernel Types

• Bandwidth Parameter

(product of univariate kernels) (radially symmetric kernel)



Various Kernels
Epanechnikov

Normal

Uniform



Density Gradient Estimation

Epanechnikov  Uniform 

Normal  Normal

Modes of the 
probability density



Mean Shift

KDE Mean Shift

Mean Shift Algorithm

• compute mean shift vector

• translate kernel (window) by mean shift 
vector



Mean Shift

• Mean Shift is proportional to the normalized  density 
gradient estimate obtained with kernel

• The normalization is by the density estimate 
computed with kernel



Properties of Mean Shift
• Guaranteed convergence

– Gradient Ascent algorithms are guaranteed to converge only 
for infinitesimal steps.

– The normalization of the mean shift vector ensures that it 
converges. 

– Large magnitude in low-density regions, refined steps near 
local maxima  Adaptive Gradient Ascent.

• Mode Detection
– Let                     denote the sequence of kernel locations.
– At convergence
– Once       gets sufficiently close to a mode of          it will 

converge to the mode.
– The set of all locations that converge to the same mode 

define the basin of attraction of that mode.



Properties of Mean Shift
• Smooth Trajectory

– The angle between two consecutive mean sh ift vectors 
computed using the normal kernel is always less that 90°

– In practice the convergence of mean shift using the normal 
kernel is very slow and typically the uniform kernel is used.



Mode detection using Mean Shift
• Run Mean Shift to find the stationary points

– To detect multiple modes, run in parallel starting with 
initializations covering the entire feature space.

• Prune the stationary points by retaining local maxima
– Merge modes at a distance of less than the bandwidth.

• Clustering from the modes
– The basin of attraction of each mode delineates a cluster of 

arbitrary shape.



Mode Finding on Real Data

initialization

detected mode

tracks



Mean Shift Clustering



Clustering on Real Data



Mean Shift Segmentation











Notes on implementation
• Tracing the tracks for each point can be too 

slow for image segmentation. 
• There are two common heuristics used to 

speedup the algorithm:
1)Basin of attraction: Upon finding a peak, 

associate each data point that is at a distance r 
from the peak with the cluster dened by that 
peak. 

2)Points that are within a distance of r/c of the 
search path are associated with the converged 
peak, where c is some constant value. c = 4 is a 
common value of image segmetnation.
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