

Andrea Torsello DAIS Università Ca' Foscari via Torino 155, 30172 Mestre (VE)

Filters

- A filter is a transformation that is applied to a pixel and its neighborhood
- Generate a new image moving the filter over all the image

Linear Filters

Correlation and Convolution

Correlation

$$(W \star I)(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} W[s, t]I[x+s, y+t]$$

Convolution

FOSCAR

$$(W * I)(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} W[s, t]I[x - s, y - t]$$

Convolution is equal to correlation with a mask rotated 180°

Properties of Convolution

- Commutative
 - $F^*G = G^*F$
- Associative
 - $(F^*G)^*H = F^*(G^*H)$
- Linearity

CA' FOSCAR

ENEZIA

- (a F + b G)*H = a F*H + b G*H
- Translation invariance

Average Filter

Gaussian Filter

Gaussian Filter

Unsharp Mask

Smoothing can be used for sharpening

 $\overline{I}(x,y) = I(x,y) - f * I(x,y)$ $I_s(x,y) = I(x,y) + \overline{I}(x,y)$

Noise

• Additive noise

$$\tilde{I}(x, y) = I(x, y) + \omega$$

$$\tilde{I}(x,y) = \begin{cases} 0\\ I(x,y)\\ 1 \end{cases}$$

• Other...

Additive noise

Smoothing and additive noise

Impulse noise

Impulse - average

3 pixel

5 pixel

Impulso - Gaussian filter

5 pixel

Median Filter

- S_{xy} neighborhood of (x,y)
- Sort the intensity values of pixels S_{xy} into vector $v_{xy}.$

$$I'(x,y) = V_{xy}[1/2 | S_{xy}]$$

IVERSI

CA' FOSCAR

ENEZI

Median Filter

3x3 pixel

7x7 pixel

Median filter

7x7 pixel

3x3 pixel applied 3 times

Alfa-trimmed mean filter

To eliminate bot additive and impulse noise use a robust estimate of the mean

- Eliminate the top and bottom $\alpha/2$ values -
- Take the average of the remaining pixels -

(a) Image corrupted by saltand-pepper noise with probabilities $P_a = P_b = 0.1.$ pass with a size 3×3 . (c) Result of

(b) Result of one median filter of processing (b) with this filter. (d) Result of processing (c) with the same filter.

Geometric mean filter

 $\hat{f}(x,y) = \left[\prod_{(s,t)\in S_{xy}} g(s,t)\right]^{\frac{1}{mn}}$

c d FIGURE 5.7 (a) X-ray image. (b) Image corrupted by

(b) Image corrupted by additive Gaussian noise. (c) Result of filtering with an arithmetic mean filter of size $3 \times 3.$ (d) Result of filtering with a geometric mean filter of the same size. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Harmonic and Contraharmonic

Harmonic (white impulse)

Contraharmonic (black impulse)

$$\hat{f}(x, y) = \frac{\sum_{(s,t) \in S_{xy}} g(s,t)^{Q+1}}{\sum_{(s,t) \in S_{xy}} g(s,t)^{Q}}$$

Harmonic and Contraharmonic

c d FIGURE 5.8 (a) Image corrupted by pepper noise with a probability of 0.1. (b) Image corrupted by salt noise with the same probability. (c) Result of filtering (a) with a 3×3 contraharmonic filter of order 1.5. (d) Result of filtering (b) with

Q = -1.5.

a b

Harmonic and Contraharmonic

FIGURE 5.9 Results of selecting the wrong sign in contraharmonic filtering. (a) Result of filtering Fig. 5.8(a) with a contraharmonic filter of size 3×3 and Q = -1.5. (b) Result of filtering 5.8(b) with Q = 1.5.

a b

Differential filters

 $\frac{\partial f}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}$ $\frac{\partial f}{\partial x} \approx \frac{f(x_{n_1}, y_n) - f(x_n, y_n)}{\Delta x}$ UNIVERSIT CA' FOSCAR VENEZI

Differential filters

	-1	0	0	-1	
	0	1	1	0	
-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Edge-detection

a bc de fg

UNIVERSITÀ Ca' foscari V e n e z i a

FIGURE 10.8 A 3 × 3 region of an image (the z's are gray-level values) and various masks used to compute the gradient at point labeled z_5 .

	z_1		z_2		<i>z</i> ₃		
	Z4		z_5		z_6		
	Z7		z_8		Z9		
-	-1 0				0		-1
0	0 1			1			0
Roberts							

-1	-1	-1	-1	0	1
0	0	0	-1	0	1
1	1	1	-1	0	1

Prewitt

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

0	1	2		-2	-1	0	
-1	0	1		-1	0	1	
-2	-1	0		0	1	2	
Sobel							

FIGURE 10.9 Prewitt and Sobel masks for detecting diagonal edges.

a b c d

Sobel

Effects of Noise

Derivatives and Noise

Smoothing + Differentiation

UNIVERSIT

CA' FOSCAR

Non-maximal suppression

NIVERSI

CA' FOSCARI

VENEZIA

Boundaries are located at the maximum of the gradient along the gradient direction

q is maximum if greater than p and r (interpolation)

Follow the boundary profile along Direction orthogonal to the gradient (here r or s)

Laplacian Sharpening

UNIVERSITÀ

CA' FOSCARI

VENEZIA

a b c d FIGURE 3.40 (a) Image of the North Pole of the moon. (b) Laplacianfiltered image. (c) Laplacian image scaled for display purposes. (d) Image enhanced by using Eq. (3.7-5). (Original image courtesy of NASA.)

$$I_s[x,y] = I[x,y] - c\nabla^2 I[x,y]$$

Laplacian

- $\nabla^2 I = 0$ Along boundaries
- Look for pixels where the value of $\nabla^2 I$ crosses 0

UNIVERSIT

CA' FOSCAR

VENEZI

