Interpolation

Andrea Torsello DAIS
Università Ca' Foscari
via Torino 155, 30172 Mestre (VE)

Spatial transforms

$\mathrm{I}(\mathrm{x}, \mathrm{y})$ image
$\mathrm{s}: \mathrm{R}^{2}->\mathrm{R}^{2}$

Spatial transformations

$$
\begin{aligned}
& \mathrm{I}->\mathrm{f}(\mathrm{I}) \mathrm{f}(\mathrm{I})(\mathrm{s}(\mathrm{x}, \mathrm{y})) \\
& \mathrm{f}(\mathrm{I})(\mathrm{x}, \mathrm{y})=\mathrm{I}(\mathrm{x}, \mathrm{~s}, \mathrm{y}) \\
&\mathrm{x}, \mathrm{x}, \mathrm{y})
\end{aligned}
$$

f transforms the geometry of the image plane

Values ouside the samples

- In the continuous domain you only need to get the intensity/color at the new location

$$
I^{\prime}=f(I)=>I^{\prime}(x, y)=I(f-1(x, y))
$$

- After sampling the information is limited and the transformed point an fall outside of the samples!
- Example: translate the image by $(0.5,0)^{\text {T }}$

$$
\begin{aligned}
& f(x, y)=(x-0.5, y)^{T} \\
& I^{\prime}(x, y)=I(x+0.5, y)
\end{aligned}
$$

but samples exist only for whole numbers!

Nearest Neighbour

- Need to estimate the values using the information from nearby samples (interpolation)
- 1a possibility: Nearest Neighbour use the image value at the closest integer location to $\mathrm{f}^{-1}(\mathrm{x}, \mathrm{y})$ [Round $(\mathrm{f}-1(\mathrm{x}, \mathrm{y}))$]

$$
I^{\prime}(x, y)=I(\operatorname{Round}(f-1(x, y)))
$$

FIGURE 5.33 Gray-level interpolation based on the nearest neighbor concept.

Nearest Neighbour

- When translating by $(\mathrm{a}, 0)^{\text {T }}$

$$
\left.I^{\prime}(x, y)=I(\operatorname{Round}(x+a), y)\right)
$$

- What happens when you zoom? artifacts! (blocks)

Nearest Neighbour

Nearest neighbour interpolation suffers from artifacts in presence of scale changes

The original texture

The same texture reduced by 90% using point sampling

The errors repeat throughout the point sampled texture

Bilinear interpolation

- 2a possibility: bilinear interpolation Use the 4 points around $\mathrm{f}-1(\mathrm{x}, \mathrm{y})$ (linear combination)

$$
\begin{aligned}
& \mathrm{I}^{\prime}(\mathrm{x}, \mathrm{y})=\alpha \mathrm{I}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)+\beta \mathrm{I}\left(\mathrm{x}^{\prime}+1, \mathrm{y}^{\prime}\right) \\
& +\gamma \mathrm{I}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}+1\right)+\delta \mathrm{I}\left(\mathrm{x}^{\prime}+1, \mathrm{y}^{\prime}+1\right)
\end{aligned}
$$

$$
\text { where } \mathrm{x}^{\prime}<=\mathrm{S}_{\mathrm{x}^{-1}}(\mathrm{x}, \mathrm{y})<=\mathrm{x}^{\prime}+1 \text { and } \mathrm{y}^{\prime}<=\mathrm{S}_{\mathrm{y}}
$$

$$
1(x, y)<=y^{\prime}+1
$$

$$
\Delta \mathrm{x}=\mathrm{S}_{\mathrm{x}^{-1}}(\mathrm{x}, \mathrm{y})-\mathrm{x}^{\prime}
$$

$$
\Delta \mathrm{y}=\mathrm{s}_{\mathrm{y}} \mathrm{y}^{-1}(\mathrm{x}, \mathrm{y})-\mathrm{y}^{\prime}
$$

$$
\alpha=(1-\Delta x)(1-\Delta y)
$$

$$
\beta=\Delta x(1-\Delta y)
$$

$$
\gamma=(1-\Delta x) \Delta y
$$

$$
\delta=\Delta \mathrm{x} \Delta \mathrm{y}
$$

Bilinear interpolation

NN Vs bilinear interpolation

NN Vs bilinear interpolation

Single
Pixel
Selection

$$
\begin{array}{l|l|l|}
\hline & & \\
\hline & 2 & 2 \\
\hline & 2 & 2 \\
\hline & - \\
\hline & \mid & \\
\hline
\end{array}-
$$

Interpolation

Zoom NN vs bilinear

a b c
def
FIGURE 2.25 Top row: images zoomed from $128 \times 128,64 \times 64$, and 32×32 pixels to 1024×1024 pixels, using nearest neighbor gray-level interpolation. Bottom row: same sequence, but using bilinear interpolation.

Zoom NN vs bilinear

Zoom out

- In the left image the black pixel is $1 / 81$ the size of the whole image after the scale change it weight $1 / 9$
- Recall that a sensor integrates the energy throughout its domain
- the intensity should be lower!

Sampling effects

FIGURE 2.19 A 1024×1024, 8 -bit image subsampled down to size 32×32 pixels. The number of allowable gray levels was kept at 256 .

Sampling effects

a b c
d e f
FIGURE 2.20 (a) 1024×1024,8-bit image. (b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) $256 \times 256,128 \times 128,64 \times 64$, and 32×32 images resampled into 1024×1024 pixels

Quantization effects

