

Interpolation

Andrea Torsello DAIS Università Ca' Foscari via Torino 155, 30172 Mestre (VE)

Spatial transforms

I(x,y) image s: R²->R²

UNIVERSITÀ Ca' foscari V e n e z i a

Spatial transformations

I->f(I)
$$f(I)(s(x,y))=I(x,y)$$

 $f(I)(x,y)=I(s^{-1}(x,y))$

f transforms the geometry of the image plane

Values ouside the samples

 In the continuous domain you only need to get the intensity/color at the new location

$$I'=f(I) => I'(x,y) = I(f^{-1}(x,y))$$

- After sampling the information is limited and the transformed point an fall outside of the samples!
- Example: translate the image by $(0.5,0)^T$ $f(x,y)=(x-0.5,y)^T$ I'(x,y)=I(x+0.5,y)but complex evict only for whole number

but samples exist only for whole numbers!

Nearest Neighbour

- UNIVERSITÀ CA' FOSCARI V E N E Z I A
- Need to estimate the values using the information from nearby samples (interpolation)
 - 1^a possibility: Nearest Neighbour use the image value at the closest integer location to f⁻¹(x,y) [Round(f⁻¹(x,y))]

 $I'(x,y)=I(Round(f^{-1}(x,y)))$

Nearest Neighbour

- When translating by $(a,0)^T$ I'(x,y)=I(Round(x+a),y))
- What happens when you zoom? artifacts! (blocks)

Nearest Neighbour

Nearest neighbour interpolation suffers from artifacts in presence of scale changes

The same texture reduced by 90% using point sampling

The errors repeat throughout the point sampled texture

Bilinear interpolation

 2^a possibility: bilinear interpolation Use the 4 points around f⁻¹(x,y) (linear combination)

UNIVERSITÀ Ca' foscari V e n e z i a

 $I'(x,y) = \alpha I (x',y') + \beta I(x'+1,y')$ $+\gamma I(x',y'+1)+\delta I(x'+1,y'+1)$ where $x' <= s_x^{-1}(x, y) <= x'+1$ and $y' <= s_y^{-1}(x, y) <= x'+1$ 1(x,y) < = y' + 1δ $\Delta \mathbf{x} = \mathbf{s}_{\mathbf{x}} (\mathbf{x}, \mathbf{y}) - \mathbf{x'}$ s⁻¹(x,y) $\Delta \mathbf{y} = \mathbf{s}_{\mathbf{v}} \mathbf{x}, \mathbf{y} \mathbf{y} \mathbf{y}'$ Δy $\alpha = (1 - \Delta x)(1 - \Delta y)$ $\Delta \mathbf{x}$ ß $\beta = \Delta x (1 - \Delta y)$ $\gamma = (1 - \Delta x) \Delta y$ $\delta = \Delta x \Delta y$

Bilinear interpolation

NN Vs bilinear interpolation

NN Vs bilinear interpolation

Zoom NN vs bilinear

UNIVERSIT)

CA' FOSCARI

VENEZIA

FIGURE 2.25 Top row: images zoomed from 128×128 , 64×64 , and 32×32 pixels to 1024×1024 pixels, using nearest neighbor gray-level interpolation. Bottom row: same sequence, but using bilinear interpolation.

Zoom NN vs bilinear

Comparison of Magnified Gravel Texture

- In the left image the black pixel is 1/81 the size of the whole image after the scale change it weight 1/9
- Recall that a sensor integrates the energy throughout its domain
 - the intensity should be lower!

Sampling effects

FIGURE 2.19 A 1024 \times 1024, 8-bit image subsampled down to size 32 \times 32 pixels. The number of allowable gray levels was kept at 256.

Sampling effects

UNIVERSITÀ

CA' FOSCARI

FIGURE 2.20 (a) 1024 × 1024, 8-bit image. (b) 512 × 512 image resampled into 1024 × 1024 pixels by row and column duplication. (c) through (f) 256 × 256, 128 × 128, 64 × 64, and 32 × 32 images resampled into 1024 × 1024 pixels.

Quantization effects

