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Abstract. In this technical report we will prove some results of the behavior of the
Quantum Jensen-Shannon divergence subject to an optimal state alignment of the density
matrices. Namely, we will prove that the unitary transformation that minimizes the
divergence aligns the eigenvectors of the two density matrices according to the magnitude
of the corresponding eigenvalues

1. Preliminaries

In quantum mechanics a state is described by a unit complex vector |ψ〉 ∈ H where H
is a complex Hilbert space and 〈ψ |ψ〉 = 1. Here, in accordance with Dirac notation, a
ket |ψ〉 represent a vector, the corresponding bra 〈ψ| represents the conjugate transpose,
and as a consequence, 〈φ |ψ〉 is the dot product between φ and ψ, and |φ〉 〈ψ| is a rank 1
operator.

The evolution of quantum states is governed by Schrödinger equation

(1) i~
d

dt
|ψt〉 = H |ψt〉

where H is the Hamiltonian of the system. As a consequence all state transformations are
governed by unitary operators.

While a pure state can be naturally described using a single ket vector, in general a
quantum system can be in a mixed state, i.e., a statistical ensemble of pure quantum states
|ψi〉, each with probability pi. The density operator (or density matrix) of such a system is
defined as

(2) ρ =
∑
j

pj |ψj〉 〈ψj | .

Density operators are positive-definite unit-trace Hermitian operators directly linked
with the observables of the (mixed) quantum system. Let O be an observable, i.e., an
Hermitian operator acting on the quantum states and providing a measurement. Without
loss of generality we have O =

∑
j vjPj , where Pj is the orthogonal projector onto the j-th

observation basis, and vj is the measurement value when the quantum state is observed
to be in this observation basis. The expected value of the measurement O over a mixed
state can be calculated from the density matrix ρ: 〈O〉 = Tr (ρO), where Tr is the trace
operator.
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The Von Neumann entropy of a density operator ρ is

(3) HN (ρ) = −Tr(ρ log ρ) = −
∑
j

λj log λj ,

where the λjs are the eigenvalues of ρ.
The quantum Jensen-Shannon divergence (QJSD) is a generalization of the classical

Jensen Shannon divergence used as a measure of distinguishability between quantum states.
Given two density operators ρ and σ is defined as

(4) DJS(ρ, σ) = HN

(ρ+ σ

2

)
− 1

2

(
HN (ρ) +HN (σ)

)
This quantity is symmetric, bounded between 0 and 1, and negative definite for pure
states and is conjectured, with ample experimental evidence, to be negative definite for all
states [2].

2. State-Aligned Quantum Jensen-Shannon Divergence

We define the state-aligned Quantum Jensen-Shannon Divergence as

(5) DSAJS(ρ, σ) = min
U∈U

DJS(ρ, UσU †) = min
U∈U

HN

(ρ+ UσU †

2

)
− 1

2

(
HN (ρ) +HN (σ)

)
where U is the unitary group over H.

Let

(6) H̄N (U) = HN

(
ρ+ UσU †

2

)
= Tr

(
−ρ+ UσU †

2
log

(
ρ+ UσU †

2

))
be the entropy of the aligned density matrix as a function of the state-alignment O ∈ U .
We can prove the following

Lemma 1.

∂

∂U U∈U
H̄N (U) =

[
UσU †

2
, log

(
e
ρ+ UσU †

2

)T]
where [·, ·] is the commutator operator defined as [A, B] = AB −BA.

Proof First note that

(7)
∂

∂U U∈U
H̄N (U) =

∂

∂S S∈U
H̄N (SU)

∣∣∣∣
S=I

.

Further, the unitary group U forms a a manifold in the space End(H) of endomorphisms
of H, so the derivative over U is the projection on the tangent space of U of the derivative
over the whole of End(H):

(8)
∂

∂S S∈U
f(S) = P

(
∂

∂S
f(S)

)
,
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where P is the orthogonal projection on the tangent space of U . For S = I the tangent
space is the space of anti-Hermitian operators, i.e., operators of the form iA where A = A†

is Hermitian. Thus

(9) P(A) =
A−A†

2
.

Let X = ρ+SUσUTST

2 , we have

(10)
∂

∂S
Tr
(
−X log(X)

)∣∣∣∣
S=I

=
∂

∂X
Tr
(
−X log(X)

)∂X
∂S

∣∣∣∣
S=I

.

For the first term of (11) we have

(11)
∂

∂xij
Tr
(
X log(X)

)
= Tr

(
∂X

∂xij
log(X)

)
+ Tr

(
X

∂

∂xij
log(X)

)
with

(12) Tr

(
∂X

∂xij
log(X)

)
=
∑
k

∑
l

∂xkl
∂xij

(
log(X)

)
lk

=
(

log(X)
)
ji
.

For the second term of (11) we use the following property of the exponential of a general
time-dependent matrix M(t) proved in [1]:

(13)
d

dt
exp(M(t)) =

∫ 1

0
exp(αM(t))

dM(t)

dt
exp((1− α)M(t)) dα .

Recall that ∂
∂xij

f(X) = d
dtf(X + tEij), where Eij is the matrix of all zeroes except the

entry (i, j) which is equal to one. Setting M(t) = log(X + tEij) and evaluating for t = 0,
we have:

Eij =
d

dt
(X + tEij)

∣∣∣∣
t=0

(14)

=
d

dt
exp

(
log(X + tEij)

)∣∣∣∣
t=0

=

∫ 1

0
Xα

(
d

dt
log(X + tEij)

∣∣∣∣
t=0

)
X1−α dα

=

∫ 1

0
Xα ∂

∂xij
log(X)X1−α dα .



4 ANDREA TORSELLO

From which we get

Tr
(
Eij
)

= Tr

(∫ 1

0
Xα ∂

∂xij
log(X)X1−α dα

)
(15)

=

∫ 1

0
Tr

(
Xα ∂

∂xij
log(X)X1−α

)
dα

=

∫ 1

0
Tr

(
X

∂

∂xij
log(X)

)
dα

= Tr

(
X

∂

∂xij
log(X)

)
.

Putting the last results together, we obtain

(16)
∂

∂X
Tr
(
−X log(X)

)
= − log(X)T − I = − log(eXT ) .

On the other hand, we have

(17)
∂

∂S

A+ SRBRTST

2

∣∣∣∣
S=I

= RBRT .

Finally, we have

(18)
∂

∂S S∈U
Tr

(
−ρ+ SUσU †S†

2
log

(
ρ+ SUσU †S†

2

))∣∣∣∣
S=I

=

P
(
∂

∂S
Tr

(
−ρ+ SUσU †S†

2
log

(
ρ+ SUσU †S†

2

))∣∣∣∣
S=I

)
=

P

(
− log

(
e
ρ+ UσU †

2

)T (
UσU †

))
=

− log
(
eρ+UσU

†

2

)T (
UσU †

)
+
(
UσU †

)†
log
(
eρ+UσU

†

2

)T †
2

=

UσU †

2
log

(
e
ρ+ UσU †

2

)T
− log

(
e
ρ+ UσU †

2

)T
UσU †

2
=[

UσU †

2
, log

(
e
ρ+ UσU †

2

)T]
where the second to last equality is due to the fact that ρ and σ are Hermitian. QED.

Theorem 1. The extremants of H̄N (U) are for unitary operators U that align the eigen-
functions of UσU † with those of ρ.
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Proof for the previous lemma, the differential of H̄N (U) with is null if and only if

(19)

[
UσU †

2
, log

(
e
ρ+ UσU †

2

)T]
= 0

In fact

(20)
∂

∂U
H̄N (U)

∣∣∣∣
U=U0

=
∂

∂S
H̄N (SU0)

∣∣∣∣
S=I

R†0 .

Since R0 is unitary

(21)
∂

∂U
H̄N (U)

∣∣∣∣
U=U0

= 0 if and only if
∂

∂S
H̄N (SU0)

∣∣∣∣
S=I

= 0 .

The commutator is zero if and only if the two matrices are co-diagonalizable. Hence,
at points with zero gradient There must be a (countable) set of functions that are form

a complete eigenbasis both for UσU † and log
(
eρ+UσU

†

2

)T
, or, equivalently, of ρ + UσU †.

This happens if and only if the eigenfunctions of UσU † and those of ρ are aligned. QED.
In the following we assume that the quantum system has a finite number of states, i.e.,

H = Cn.

Theorem 2. Let ρ = ΦρΛρΦ
†
ρ and σ = ΦσΛσΦ†σ be the singular value decompositions

of ρ and σ respectively, with the eigenvalues in ascending order in both Λρ and Λσ, i.e.,
i > j ⇒ (Λρ)ii ≥ (Λρ)jj and (Λσ)ii ≥ (Λσ)jj. The global minimum of H̄N (U) is attained

by U = ΦρΦ
†
σ.

Proof Since the gradient is zero only for rotations that align the eigenvalues, we can consider
only those. There the eigenvalues of 1

2(ρ+UσU †) assume the form 1
2(λj + µσ(j)) where λj

and µj for j = 1 · · ·n are the eigenvalues of ρ and σ respectively taken with their multiplicity
in ascending order, and σ : Σn is a permutation. Thus the problem of minimizing the Von
Newman Entropy can be cast into the equivalent bipartite matching problem

min
σ

∑
j

−
λi + µσ(i)

2
log

(
λi + µσ(i)

2

)
(22)

s.t. σ ∈ Σn

which in matrix notation becomes

min
P

Tr
(
MP

)
(23)

s.t. P ∈ Σn

where M = (mij), mij = −1
2(λi + µj) log

(
1
2(λi + µj)

)
. To prove the theorem we need

to prove that the minimum is attained for P = I. To do this we prove that the identity
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matrix is the global minimum for the relaxed linear problem

min
P

Tr
(
MP

)
(24)

s.t. P1 = 1

P T 1 = 1

P ≥ 0 .

To prove the result we need only to show that all the vertices of the feasible polytope
that are edge-adjacent to the identity matrix yield a higher value for the objective function.
The adjacent vertices are of the form I + SWij with

(25) SWij = Eij + Eji − Eii − Ejj .

However, we have

Tr
(
M SWij

)
= +Mji +Mij −Mii −Mjj(26)

= −λj + µi
2

log

(
λj + µi

2

)
− λi + µj

2
log

(
λi + µj

2

)
+

+
λi + µi

2
log

(
λi + µi

2

)
+
λj + µj

2
log

(
λj + µj

2

)
=

1

2

[
λi log

(
λi + µi
λi + µj

)
− λj log

(
λj + µi
λj + µj

)]
+

1

2

[
µi log

(
λi + µi
λj + µi

)
− µj log

(
λi + µj
λj + µj

)]
≥ 0

where the inequality holds because, if i > j then λi ≥ λj , µi ≥ µj , all the logarithms are
positive, and the ones multiplied by λi and µi are greater than the corresponding ones
multiplied by λj and µj . On the other hand, if i < j then λi ≤ λj , µi ≤ µj , all the
logarithms are negative, and the ones multiplied by λi and µi are in absolute value smaller
than the corresponding ones multiplied by λj and µj . QED.

Theorem 3. The orthogonal transformations minimizing the quantum Jensen Shannon
divergence (QJSD) between pairs of density matrices in a set are transitive, i.e. let

UAB = argmin
U∈U

QJSD(A,RBRT )

UBC = argmin
U∈U

QJSD(B,RCRT )

UAC = argmin
U∈U

QJSD(A,RCRT )

then

QJSD
(
A,UABUBCCU

†
BCU

†
AB

)
= QJSD

(
A,UACCU

†
AC

)
Proof The optimal transformation between two density matrices is completely determined
by the relation R∗AB = ΦAΦT

B up to a change of sign of the eigenvalue and a change of base
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for each eigenspace associated with an eigenvalue with multiplicity greater than one. In
any case these changes do not affect the value of the divergence. but,

(27) R∗ABR
∗
BC = ΦAΦ†BΦBΦ†C = ΦAΦ†C = R∗AC

QED.

Theorem 4. The state-aligned QJSD kernel is negative definite.

Proof Thanks to the previous theorems the value of the quantum Jensen Shannon diver-
gence of the optimally aligned density matrices is equal to the normal Jensen Shannon
divergence of sorted eigenvalues of the density matrices taken as probability distributions,
and the Jensen Shannon divergence is negative definite [2]. QED.
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